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ABSTRACT 

Due to the increasing complexity of contemporary production scheduling problems, it is generally not 

possible to calculate nearly optimal production schedules in an acceptable amount of time. Hence, normally, 

dispatching rules are used to determine the job sequences. However, the selection of suitable dispatching 

rules is not a trivial task and depends on the relevant key performance indicators. Moreover, the suitability 

of dispatching rules changes over time because of the stochastic and dynamic nature of manufacturing 

systems. This paper proposes an adaptive simulation-based optimization approach to select individual 

dispatching rules for production control. The paper’s contribution is two-fold. First, it shows that the 

proposed approach improves the performance compared to benchmark approaches in a manufacturing 

scenario from semiconductor industry. Second, in order to be able to react quickly to dynamic changes, it 

proposes strategies for maintaining information from previously calculated solutions after a change, such 

as a machine breakdown, occurred. 

1 INTRODUCTION 

In order to achieve a high performance, manufacturing companies have to accomplish a well-founded 

production scheduling and control. However, since production processes become more and more complex, 

these tasks demand the use of sophisticated methods. Since most production scheduling problems are NP-

hard optimization problems, optimal scheduling solutions often cannot be computed or only in extremely 

long computation times (Papadimitriou 2003, Pinedo 2016). Therefore, in literature, it is suggested to use 

meta-heuristics to calculate nearly optimal solutions instead of exact mathematical optimization models. 

But despite of the computational power of today’s computers, the necessary time to compute solutions for 
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complex scheduling problems by meta-heuristics is still too high to be acceptable in practical applications. 

Thus, shop floor control is mostly performed based on dispatching rules (Rajendran and Holthaus 1999, 

Pickardt and Branke 2012). However, the choice of suitable dispatching rules is not a trivial task and 

depends strongly on the layout of a manufacturing system as well as the relevant key performance 

indicators. In addition, previous research has shown that the suitability of dispatching rules can change over 

time since manufacturing systems are subjected to stochastic and dynamic influences, such as rush orders 

or machine breakdowns (Kück et al. 2016). Hence, this paper proposes an adaptive simulation-based 

optimization (ASBO) approach to select suitable dispatching rules for each machine of a manufacturing 

system with different strategies to react to system changes. The approach applies a genetic algorithm to 

generate possible solutions, i. e. sets of dispatching rules, and evaluates the qualities of the proposed 

solutions in a discrete-event simulation model. The approach is applied to a manufacturing scenario from 

semiconductor industry: the FAB6 model from the publically available MIMAC (Measurement and 

Improvement of Manufacturing Capacities) testbed (Fowler and Robinson 1995, Feigin, Fowler, and 

Leachman 1996). The experimental results show that the proposed ASBO approach improves the 

performance regarding average production cycle times in comparison to a previously proposed approach 

selecting one dispatching rule for all machines (Kück et al. 2016). In addition to this, the paper proposes 

different strategies to use information from previously calculated solutions after changes of the 

manufacturing system, e. g. machine breakdowns, occurred.  

The remainder of this paper is structured as follows. First, the state of the art is detailed, covering: 

traditional approaches for production scheduling and control as well as simulation-based optimization 

approaches applied to scheduling and control of manufacturing systems. Subsequently, the proposed 

adaptive simulation-based optimization approach is described. Then, the experimental setup and the 

experimental results are detailed. The paper closes with a conclusion and suggestions for future research. 

2 LITERATURE REVIEW 

2.1 Traditional Approaches for Production Scheduling and Control 

Production scheduling can be defined as the task of assigning a number of jobs to the available resources 

of a production system (Pinedo 2016). Since most scheduling problems, especially those emerging from 

real-world scenarios, belong to the class of NP-hard optimization problems, optimal scheduling solutions 

often cannot be computed or only in extremely long computation times. This is the reason for the extensive 

use of heuristic methods instead of exact mathematical optimization models. Heuristic methods cannot 

guarantee optimal solutions but are often able to generate near-optimal solutions in relatively short 

computation times (Papadimitriou 2003). A sophisticated approach is to compute a production schedule by 

a meta-heuristic method, such as a genetic algorithm or particle swarm optimization. Meta-heuristics are 

able to compute solutions for larger instances of combinatorial problems than exact mathematical 

optimization models. However, they also feature limitations like the dependence on the choice of several 

parameters and the possibility to converge towards local extrema (Jungwattanakit et al. 2008). Moreover, 

the computation of solutions for very large problems also takes too much time in general. Thus, often no 

complete schedule is computed in advance but the job sequence is determined according to dispatching 

rules. In this case, each job in the queue of a machine is related with a priority value according to some 

predefined criteria, for example the time that is left until its due date (Pickardt and Branke 2012, Rajendran 

and Holthaus 1999). Whenever a suitable machine is available, the job with the highest priority is chosen 

for the next production step. Dispatching rules are characterized by a low effort for application and 

implementation and are therefore often used. They generate quite tight schedules and prevent idle times of 

machines. However, the choice of suitable dispatching rules is not trivial and depends highly on the 

application scenario. 

While there are few approaches to describe the influence of dispatching rules on average production 

lead times analytically (Hübl, Jodlbauer, and Altendorfer 2013), an often applied approach for evaluating 
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the performance of calculated production schedules or sets of dispatching rules is developing a simulation 

model representing the real manufacturing system and using this simulation model for evaluation regarding 

different key performance indicators. In general, modeling and simulation is an approach for deriving 

experience-based solutions in order to deal with real-world complex systems (Banks et al. 2000, Law 2015). 

Simulation enables the decision maker to evaluate several control policies and various replications of a 

simulation can be carried out to evaluate the robustness of a considered design. However, simulation is only 

able to evaluate predefined parameter configurations of the simulation model but there is no standard 

approach for finding appropriate configurations. Hence, this paper combines simulation and meta-heuristics 

within a simulation-based optimization approach. 

2.2 Simulation-Based Optimization 

As described above, exact optimization approaches as well as meta-heuristic approaches are often 

prohibitive for production scheduling since the problem complexity is too high in general. Therefore, these 

methods can usually only be applied to production scheduling problems if the complex system can be 

modelled by a simplifying abstraction. In contrast, simulation is a powerful tool for the analysis and 

evaluation of complex and stochastic systems. However, it cannot provide an efficient optimization of these 

systems with respect to one or more key performance indicators. Thus, both individual approaches are 

limited in taking optimal decisions for complex and stochastic systems such as manufacturing systems. A 

promising approach with the aim of combining the strengths of both is the so-called simulation-based 

optimization (SBO). This approach evaluates different system configurations through simulation and uses 

a meta-heuristic to determine nearly optimal configurations of parameters for the simulation (Fu 2002, Krug 

et al. 2002). Since the simulation model represents the real system in detail, it is not always necessary to 

express all relations of parameters explicitly in an optimization model. Hence, SBO is a promising approach 

for solving complex problems. SBO approaches allow for prescriptive analytics by relating input settings 

and goal performance (Shao, Shin and Jain 2014). Regarding the increase in current systems’ complexity, 

Juan et al. (2015) argued for the relevance of extending meta-heuristics based on simulation, so that they 

are capable of properly solving stochastic combinatorial optimization problems. 

Recently, SBO and related approaches have been successfully applied to different problems in the 

production and logistics context. In order to deal with a huge search space, multi-objective, and high-

variability problems, Lee et al. (2008) combined evolutionary algorithms and simulation for performance 

estimation. Laroque et al. (2012) developed a fast converging procedure combining particle swarm 

optimization and genetic algorithms to find suitable parameter configurations in a material flow simulation 

concerning layouts of the production system of an automotive supplier. Pathak et al. 2014 used SBO with 

a particle swarm optimization to address manufacturing flow problems of a heavy equipment manufacturer. 

Ziarnetzky and Mönch (2016) applied an SBO approach for integrated production planning and capacity 

expansion decisions in a simplified semiconductor supply chain. Aurich et al. 2016 proposed an SBO 

approach for solving a hybrid flow shop scheduling problem with the objective to minimize the makespan 

and the total tardiness. Freitag and Hildebrandt (2016) used an SBO procedure with genetic programming 

to develop specified dispatching rules for the scheduling and control of a complex manufacturing scenario. 

Vieira et al. (2017) applied a hybrid approach using a genetic algorithm to compute production schedules 

for small scheduling problems and subsequently evaluating the schedule robustness through discrete-event 

simulation. Kück et al. (2016) proposed an SBO approach for choosing an aggregate dispatching rule in a 

semiconductor manufacturing problem. The authors showed that the use of real-time data coupled with a 

simulation model influenced the choice of better dispatching rules for improving system performance 

regarding the average production cycle times. The paper at hand extends these results by applying a genetic 

algorithm to enable the selection of individual dispatching rules for each machine as well as evaluating 

different strategies to use previously computed solutions after the production system has changed and new 

solutions have to be calculated. The next section details the adaptive simulation-based optimization 

approach developed in this paper. 
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3 ADAPTIVE SIMULATION-BASED OPTIMIZATION APPROACH 

This paper proposes an adaptive simulation-based optimization (ASBO) approach consisting of a genetic 

algorithm (GA) and a simulation model. The GA is used to propose possible solutions, i. e. possible sets of 

individual dispatching rules for each machine of a job-shop production. The simulation model is used to 

evaluate the performance of a solution regarding logistic key performance indicators (KPIs). In the 

following, the ASBO procedure as well as the GA procedure are described in detail. 

Figure 1 shows a flow chart of the ASBO procedure proposed in this paper. First, the necessary 

information about the production system to be optimized as well as the necessary parameters and criteria 

of the GA are initialized. In order to apply the GA for finding appropriate sets of dispatching rules for the 

job-shop production scenario, an optimization criterion (fitness function), a termination criterion (number 

of generations g) as well as the following parameters have to be initialized: population size n, mutation rate 

m, crossover rate c, elitism count e, and solution length (number of machines k in the job-shop production 

scenario). Afterwards, an initial population of n feasible solutions is generated randomly or by using 

available information about possible good solutions. Subsequently, the qualities of all n solutions of the 

population are evaluated by simulating the production system with the set of dispatching rules proposed in 

each solution and regarding the achieved KPIs. Based on these KPIs, the fitness of each solution is 

calculated by the fitness function. Afterwards, the solutions are sorted by their fitness values and a ranking 

of the n solutions of the population is conducted. If the termination criterion (number of generations g) is 

fulfilled the best solution of the ranking is taken as output solution. If the termination criterion is not fulfilled 

a new population is generated by the GA. The input values to the GA are the population p0 from the last 

current iteration of the ASBO procedure, the population size n, the mutation rate m, the crossover rate c, 

and the elitism count e. The GA procedure consists of two phases: the crossover phase and the mutation 

phase. The crossover phase starts with initializing a new empty population p1 of size n. Afterwards, all n 

individual solutions of population p0 are selected sequentially and the following procedure is conducted. If 

a selected solution s(i) is an elitism solution, which means that it is one of the e best solutions of population 

p0, it is also added to population p1. If a selected solution s(i) is not one of the best solutions, it serves as 

the first parent for a new solution. Then a second parent solution is selected from population p0 and a new 

solution s(i)* is created by conducting a crossover according to the given crossover rate c. Subsequently, 

solution s(i)* is added to population p1. The crossover phase is finished when all n solutions of population 

p0 have been regarded, so that population p1 consists of n solutions. Population p1 is the output of the 

crossover phase. Afterwards, the mutation phase starts with initializing a new empty population p2 of size 

n. Similar to the crossover phase, all n individual solutions of population p1 are selected sequentially and 

the following procedure is conducted. If a selected solution s(i) is an elitism solution in population p1 it is 

added to population p2. If a selected solution s(i) is not one of the best solutions, a new solution s(i)* is 

created by conducting a mutation according to the given mutation rate m and subsequently, solution s(i)* 

is added to population p2. The mutation phase is finished when all n solutions of population p1 have been 

regarded. The output of the mutation phase, which is also the output of the whole GA procedure, is the new 

population p2 consisting of n feasible solutions. Subsequently, this output population is used in the ASBO 

procedure. 

Since manufacturing systems are complex stochastic and dynamic systems, their configurations can 

change over time. In this case, the corresponding planning simulation model representing the real 

manufacturing system has to be adapted to the new system configuration (Figure 1). In order to prevent 

long computation times, the ASBO approach applies different strategies to maintain information from 

previously calculated solutions before the system change had occurred. As a step towards adaptivity, in 

addition to the approach of generating a completely random initial population of solutions, two further 

strategies are proposed and evaluated in this paper: adding the best aggregate choice of one dispatching rule 

for all machines to a random initial population or taking the best population of solutions that was found 

before the system change occurred. 
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Figure 1: Flow chart of the adaptive simulation-based optimization procedure. 
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4 EXPERIMENTAL SETUP 

4.1 Manufacturing Scenario 

Similar to previous research presented in (Kück et al. 2016), the FAB6 model from the publically available 

MIMAC (Measurement and Improvement of Manufacturing Capacities) testbed (Fowler and Robinson 

1995; Feigin, Fowler, and Leachman 1996) is considered as the manufacturing scenario. The model is 

derived from a real semiconductor manufacturing facility with the following characteristics: nine process 

flows/products having between 234 and 355 operations, 104 tool groups with a total number of 223 

machines including batch machines with sequence-dependent setup times, random machine downtimes 

(failures and maintenance). The simulation of the system was conducted for a total duration of 18 months, 

ignoring data from the first 6 months to focus on the system’s steady state behavior. About 3800 jobs/lots 

are started during the 18-month period used for a simulation run. To implement this model the jasima 

simulation library (jasima - an efficient Java Simulator for Manufacturing and Logistics; http://jasima.net) 

was used. As stochastic influences in the FAB6 model, the duration and time between downtimes were 

given using an exponential distribution. All other model parameters, especially job arrivals, were 

deterministic. Production orders are generated according to a make to order policy with immediate release. 

The product mix and bottleneck utilization resemble the settings from Zhou and Rose (2011).  

In the experiments, for each machine, one the following standard dispatching rules (Haupt 1989) could 

be selected: FIFO (first in (queue) first out), EDD (earliest due date first), FASFS (first arrival in system 

first served), CR (critical ratio), ODD (operational due date), SPT (shortest processing time first) and MOD 

(modified operational due date). To distinguish between jobs with the same priority, the FASFS rule was 

used as a tiebreaker. While EDD assigns priorities according to the overall due dates of jobs, ODD 

calculates intermediary due dates for all individual operations of a job and selects the job with the smallest 

intermediary due date for the current operation. MOD computes the maximum of the operational due date 

and the sum of the current time plus the operation processing time for each job and selects the job with the 

smallest value. As some machines require setup times, all dispatching rules were used with a setup-

avoidance strategy improving cycle times considerably. The batch machines used the “largest batch first” 

procedure forming a batch as large as possible for each batch family. Then the largest of these batches was 

started. Ties were resolved by selecting the batch family containing the job with the highest priority.  

4.2 Configuration of the Optimization Algorithm 

The optimization algorithm as outlined in Section 3 used the following parameter values of the genetic 

algorithm. The population size was n=100 possible individuals (solutions). Each individual had a 

chromosome length of 104, where each position (gene) represents the selected dispatching rule for one of 

the 104 machines. A generational schema with an elitism count e=10 was used. The genetic operators were 

roulette-wheel selection, point mutation (checking for every gene whether a mutation should happen, if true 

– a new random dispatching rule was chosen) with mutation rate m=0.1 as well as uniform crossover (each 

gene of the offspring had a 50% chance of coming from either its first parent or its second) with crossover 

rate c=0.9. The optimization criterion was to minimize the average cycle time. Each optimization was run 

ten times to be able to assess the average performance of the algorithm. The performance results presented 

in this paper are the averages over 30 independent replications for each of the investigated settings. In order 

to save computational time, a single replication was used to evaluate candidate solutions during the 

optimization run but the seed was changed after each generation to avoid overfitting a solution to a 

particular random seed value. 

4.3 Experiments 

In this paper, two different scenarios are considered: a scenario without machine failures (scenario 

“full”) as well as a scenario with long machine failures so that only three of the five machines within tool 
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group ”LTS-2”are available (scenario “failure”). For both scenarios, two different experiments were 

conducted. First, the ASBO approach described in Section 3 was applied to select an individual dispatching 

rule for each of the 104 machines of the manufacturing scenario. To assess the quality of the calculated 

solutions, they are compared to the benchmark solutions of selecting the same dispatching rule for all 

machines, which were previously presented in (Kück et al. 2016). In a second experiment, different 

strategies for initializing the start population of the ASBO procedure are compared, using information from 

previously calculated solutions after the production system has changed, i. e. either more or less machines 

are available. Each individual simulation run took about 2.57 seconds to be evaluated. In order to derive a 

good solution by the ASBO approach, 200 generations of 100 individual solutions each were computed in 

about 107 minutes of computation time. However, as Section 4.2 shows, good solutions can already be 

achieved within 50 generations, taking about 27 minutes of computation time. This short computation time 

shows the great potential of the ASBO approach to derive high-quality solutions in real-time applications.  

5 EXPERIMENTAL RESULTS 

5.1 Benchmark Results 

As already presented in (Kück et al. 2016), Table 1 shows the benchmarks of choosing one aggregate 

dispatching rule for all machines. In the case of no machine failures, the MOD rule achieves the lowest 

average cycle time per job of 24.92 days. If machine failures are included into the simulation, obviously, 

the average cycle times increase for all selections of dispatching rules. However, the MOD rule is not the 

best rule any more, but only the third best of the seven possible choices of dispatching rules. Now, the CR 

rule and the ODD rule perform better. The ODD rule achieves the best average cycle time, saving 20.5 

hours for each job on average compared to the MOD rule. This is a cycle time reduction of 3.1%, or a 

reduction of 5.9% of its reducible components, i. e., the sum of setup and waiting times. 

Table 1: Average cycle times per job (in days) for the seven different dispatching rules and different 

numbers of available machines in machine group “LTS 2”. Also shown: ranks of the dispatching rules for 

the respective scenario. Values in brackets show twice the standard error across the 30 independent 

replications. (according to (Kück et al. 2016)). 

Aggregate 

dispatching rule 

for all machines 

Average cycle times [days] / Rank 

for the case 

without machine failures 

(scenario “full”) 

with machine failures 

(scenario “failure”) 

MOD 24.92 (±0.08) / 1 27.98 (±0.61) / 3 

ODD 24.93 (±0.08) / 2 27.12 (±0.14) / 1 

CR 25.69 (±0.07) / 3 27.29 (±0.09) / 2 

FCFS 26.06 (±0.11) / 4 29.40 (±0.18) / 4 

SPT 26.66 (±0.12) / 5 32.99 (±0.31) / 7 

EDD 27.87 (±0.13) / 6 31.99 (±0.19) / 5 

FASFS 28.05 (±0.16) / 7 32.14 (±0.19) / 6 

5.2 Individual Selection of Dispatching Rules with Different Initialization Strategies 

Table 2 summarizes the results of the experiments described in Section 4.3, showing the average cycle 

times achieved over ten independent optimization runs conducted for each setting of the initial population. 

For both scenarios with and without machine failures, the average cycle times per job of the average best 

initial solution, the average best solution after 200 generations as well as the best overall solution after the 

ten optimization runs of 200 generations each are shown. Moreover, all these values are compared for three 

different initialization strategies of the start population: complete random initialization, random 
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initialization with adding the best benchmark solution for the particular scenario, and initializing the best 

population that was calculated in the respective other scenario before a system change, i. e. a breakdown or 

repair of machines, occurred. In addition, Table 2 also shows the average cycle times of the best benchmark 

solutions of the two scenarios. As can be seen in the row “Best individual solution after 200 generations” 

for both, the “full” scenario (left column), as well as for the “failure” scenario (right column), the 

optimization algorithm is able to find improved solutions compared to the benchmark solutions. The 

maximum possible improvement in the “full” scenario is a reduction of average cycle time of almost 6 

hours per job compared to the benchmark solution of using the MOD rule for all machines (24.68 days vs. 

24.92 days). For the scenario with failures, improvements over the best benchmark solution, i. e. using the 

ODD rule on all machines, seems to be much harder to achieve. The best solution found here reduces the 

average cycle time per job by about 1.5h (27.06 days vs. 27.12 days).  

Table 2: Average cycle times per job (in days) of the selected sets of dispatching rules after running the 

ASBO procedure as well as the best benchmark solutions. The left column shows the results of using 

different initialization strategies for the scenario without machine failures and the right column shows the 

corresponding results for the scenario with machine failures. Values in brackets show twice the standard 

error across independent replications. 

 

Average cycle times [days] in the 

scenario “full” for an initialization 

with 

Average cycle times [days] in the 

scenario “failure” for an 

initialization with 

 
random 

population 

random 

population 

with best 

benchmark 

solution 

best 

population 

for 

scenario 

“failure” 

random 

population 

random 

population 

with best 

benchmark 

solution 

best 

population 

for 

scenario 

“full” 

Average best initial 

solution 

25.19 

(±0.06) 

24.93 

(±0.00) 

24.87 

(±0.03) 

27.42 

(±0.09) 

27.44 

(±0.24) 

27.27 

(±0.16) 

Average best solution 

after 200 generations 

24.78 

(±0.05) 

24.83 

(±0.04) 

24.80 

(±0.05) 

27.21 

(±0.12) 

27.32 

(±0.21) 

27.40 

(±0.21) 

Best individual solution 

after 200 generations 

24.68 

(±0.08) 

24.73 

(±0.08) 

24.72 

(±0.08) 

27.02 

(±0.13) 

27.06 

(±0.15) 

27.08 

(±0.15) 

Best benchmark solution 24.92 (±0.08) 27.12 (±0.14) 

 

Dynamic optimization as performed in the ASBO approach presented in Section 3 aims at providing better 

solutions in a shorter amount of time by, e. g., reusing results from previous optimization runs or by 

incorporating additional knowledge about the problem. In order to investigate a step towards this direction, 

this paper compares the convergence behavior of the optimization algorithm starting with a random 

population without any previous knowledge to two ways of adding additional knowledge. The first strategy 

adds the best benchmark solution (same rule on each machine) to the initial population. Figure 2 shows the 

convergence curve of the average solution quality of this strategy compared to the random initialization 

strategy in the “full” scenario. As can be seen, adding the benchmark solution significantly improves the 

quality of initial solutions. In the long run, however (at about generation 60), the performance of the runs 

with the random initial population starts to get better, achieving a slightly better average result at the end 

of the optimization run. This is an indication of premature convergence occurring in the case of the biased 

initial population. Initial bias helps to find good solutions quickly but finally the optimization stops at a 

local optimum and is not able to find further improvements. A similar result is obtained for the “failure 

scenario. As already mentioned before, in this setting, it seems to be considerably harder to find good 
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solutions. In general, the optimization process is much more volatile, as shown by the rugged convergence 

curves (Figure 3) and the values of the standard errors (Table 2). The initialization strategy of using the best 

population from the “full” scenario leads to an improved quality in the first generations. From about 

generation 40, the optimization process seems to be stuck without being able to converge to better solutions 

(in fact, solutions even tend to get worse towards the end). Using the random population shows no such 

sign of premature convergence. There is a trend towards improved solutions as expected. Summarizing 

both scenarios, it can be seen that the two proposed initialization strategies lead to significant improvements 

regarding the average best initial solutions compared to random initialization. In the long run, random 

initialization achieves slightly better solutions, however, not statistically significant better solutions. 

 

 

Figure 2: Convergence curve for optimizing the scenario “full” starting with random initial population vs. 

starting with random initial population and adding the best benchmark solution. Results are averaged over 

10 optimization runs conducted for each method of setting the initial population. 

 

Figure 3: Convergence curve for optimizing the scenario “failure” starting with random initial 

population vs. reusing the last population of scenario “full”. Results are averaged over 10 optimization runs 

conducted for each method of setting the initial population. 
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Despite the use of elitism in the optimization algorithm, solutions can get worse during optimization. As 

stated previously, a single replication during the optimization run is used in order save computational time 

(but seed values are changed from generation to generation to prevent overfitting to a particular problem 

instance). The data for the convergence curves base on fully evaluating the best solution (i. e., what the 

optimization thought would be best) at a certain generation, however. Therefore, each data point in the 

graphs bases on averaging over ten optimization runs, where each solution was evaluated with 30 

replications, independent of those used during the optimization process. The noise and uncertainty 

evaluating a solution can mislead the optimization algorithm and cause performance to even decrease. This 

seems to be the case especially when reusing the old population for the new scenario of machine failures 

(blue curve in Figure 3). All in all, the applied ASBO procedure selects appropriate sets of dispatching 

rules. However, future work will focus on improved initialization strategies achieving a better convergence 

behavior. 

6 CONCLUSION AND OUTLOOK 

This paper proposed an adaptive simulation-based optimization approach to select suitable dispatching rules 

for production control in complex manufacturing systems. An application to a scenario from semiconductor 

industry showed that the approach achieves improved average cycle times compared to the benchmark of 

choosing a single dispatching rule to be used on all machines. In a second experiment, this paper proposed 

and compared different strategies to use information from previously calculated solutions after a change of 

the production system, i. e. a machine breakdown, occurred. The experiments showed that the applied 

simple strategies lead to improved solution quality at the beginning of a new optimization run. However, 

in the end, starting with a random population achieved slightly better, albeit not significantly better, 

solutions. This indicates that the simple strategies applied in this paper get stuck in local optima without 

being able to leave in order to reach a global optimum. Because of this result, future research should focus 

on more sophisticated strategies to maintain information from previously calculated solutions to be able to 

react to changes of the production system quickly, e. g. in the direction of Branke (2001) or Nguyen, Wang, 

and Branke (2012). Moreover, future research will deal with the questions on how often and in which cases 

a simulation model in the adaptive simulation-based optimization approach should be updated to reflect the 

current state of the real manufacturing system. Investigating the performance for different application 

scenarios will indicate the robustness of the proposed approach. 

ACKNOWLEDGMENTS 

This work is funded by the German Research Foundation (DFG) under reference number FR 3658/1-1 and 

also by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil) under reference 

number 99999.006033/2015-06, in the scope of the BRAGECRIM program. 

The work of Torsten Hildebrandt was partly supported by the ZIM project “SimChain”, funded by the 

German Federal Ministry for Economic Affairs and Energy. 

REFERENCES 

Aurich, P., A. Nahhas, T. Reggelin, and J. Tolujew. 2016. “Simulation-based optimization for solving a 

hybrid flow shop scheduling problem. In Proceedings of the 2016 Winter Simulation Conference, edited 

by T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, 2809-2819. 

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 2000. Discrete-Event System Simulation. 3rd ed. 

Upper Saddle River, New Jersey: Prentice-Hall, Inc. 

Branke, J. 2001. Evolutionary Optimization in Dynamic Environments. Norwell, MA, USA: Kluwer 

Academic Publishers. 

3861



Kück, Broda, Freitag, Hildebrandt, and Frazzon 

 

Feigin, G., J. Fowler, and R. Leachman. 1996. MASM Test Data Sets. Accessed May 6, 2016. 

http://masmlab.engineering.asu.edu/ftp.htm. 

Fowler, J., and J. Robinson. 1995. “Measurement and Improvement of Manufacturing Capacities 

(MIMAC): Final Report.” Technical Report 95062861A-TR, SEMATECH, Austin, TX. 

Freitag, M., and T. Hildebrandt. 2016. “Automatic Design of Scheduling Rules for Complex Manufacturing 

Systems by Multi-Objective Simulation-Based Optimization.” CIRP-Annals - Manufacturing 

Technology 65: 433-436. 

Fu, M. C. 2002. “Optimization for Simulation: Theory vs. Practice.” INFORMS Journal on Computing 

14:192-215. 

Haupt, R. 1989. “A Survey of Priority Rule-Based Scheduling.” OR Spektrum 11:3–16. 

Hübl, A., H. Jodlbauer, and K. Altendorfer. 2013 “Influence of dispatching rules on average production 

lead time for multi-stage production systems.” International Journal of Production Economics 

144:479-484. 

Juan, A. A., J. Faulin, S. E. Grasman, M. Rabe, and G. Figueira. 2015. “A Review of Simheuristics: 

Extending Metaheuristics to Deal with Stochastic Combinatorial Optimization Problems.” Operations 

Research Perspectives 2:62-72. 

Jungwattanakit, J., M. Reodecha, P. Chaovalitwongse, and F. Werner. 2008. “Algorithms for Flexible Flow 

Shop Problems with Unrelated Parallel Machines, Setup Times, and Dual Criteria.” The International 

Journal of Advanced Manufacturing Technology 37:354-370. 

Krug, W., T. Wiedemann, J. Liebelt, and B. Baumbach. 2002. “Simulation and Optimization in 

Manufacturing, Organization and Logistics.” In Proceedings 14th European Simulation Symposium, 

edited by A. Verbraeck, and W. Krug, 7 pages. SCS Europe BVBA. 

Kück, M., J. Ehm, T. Hildebrandt, M. Freitag, and E. M. Frazzon. 2016. „Potential of data-driven 

simulation-based optimization for adaptive scheduling and control of dynamic manufacturing systems.” 

In Proceedings of the 2016 Winter Simulation Conference, edited by T. M. K. Roeder, P. I. Frazier, R. 

Szechtman, E. Zhou, T. Huschka, and S. E. Chick, 2820-2831. Piscataway, New Jersey: Institute of 

Electrical and Electronics Engineers, Inc. 

Laroque, C., A. Klaas, J.-H. Fischer, and M. Kuntze. 2012. “Fast Converging, Automated Experiment Runs 

for Material Flow Simulations Using Distributed Computing and Combined Metaheuristics.” In 

Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach, R. 

Pasupathy, O. Rose, and A.M. Uhrmacher, 2887-2898. Piscataway, New Jersey: Institute of Electrical 

and Electronics Engineers, Inc. 

Law, A. M. 2015. Simulation modeling and analysis. 5th ed. New York, NY: McGraw-Hill Education. 

Lee, L. H., E. P. Chew, S. Teng, and Y. Chen. 2008. “Multi-Objective Simulation-Based Evolutionary 

Algorithm for an Aircraft Spare Parts Allocation Problem.” European Journal of Operational Research 

189:476-491. 

Nguyen, T. T., S. Yang, and J. Branke. 2012. “Evolutionary dynamic optimization: A survey of the state of 

the art.” Swarm and Evolutionary Computation 6:1-24. 

Papadimitriou, C. H. 2003. “Computational Complexity.” In Encyclopedia of Computer Science, 260-265. 

Chichester: John Wiley and Sons Ltd. 

Phatak, S., J. Venkateswaran, G. Pandey, S. Sabnis, and A. Pingle. 2014. “Simulation based optimization 

using PSO in manufacturing flow problems: a case study.” In Proceedings of the 2014 Winter 

Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. 

Miller, 2136-2146. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Pickardt, C. W., and J. Branke. 2012. “Setup-oriented dispatching rules–a survey.” International Journal 

of Production Research 50:5823-5842. 

Pinedo, M. L. 2016. Scheduling: Theory, Algorithms, and Systems. 5th ed. Heidelberg, Germany: Springer 

International Publishing. 

3862



Kück, Broda, Freitag, Hildebrandt, and Frazzon 

 

Rajendran, C., and O. Holthaus. 1999. “A comparative study of dispatching rules in dynamic flowshops 

and jobshops.” European Journal of Operational Research 116:156-170. 

Shao, G., S.-J. Shin, and S. Jain. 2014. "Data Analytics Using Simulation for Smart Manufacturing." In 

Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O. Ryzhov, 

L. Yilmaz, S. Buckley, and J. A. Miller, 2192-2203. Piscataway, New Jersey: Institute of Electrical and 

Electronics Engineers, Inc. 

Vieira, G. E., M. Kück, E. M. Frazzon, and M. Freitag. 2017. “Evaluating the Robustness of Production 

Schedules using Discrete-Event Simulation.” In Proceedings of the IFAC 2017 World Congress. 

Accepted for publication. 

Ziarnetzky, T., and L. Mönch. 2016. “Simulation-based optimization for integrated production planning 

and capacity expansion decisions.” In Proceedings of the 2016 Winter Simulation Conference, edited 

by T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, 2992-3003. 

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Zhou, Z., and O. Rose. 2011. “A Composite Rule Combining Due Date Control and WIP Balance in a 

Wafer Fab.” In Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R.R. Creasey, 

J. Himmelspach, K.P. White, and M. Fu, 2085-2092. Piscataway, New Jersey: Institute of Electrical 

and Electronics Engineers, Inc. 

AUTHOR BIOGRAPHIES 

MIRKO KÜCK is research scientist at BIBA – Bremer Institut für Produktion und Logistik at the 

University of Bremen, Germany. His research interests lie in simulation modeling, time series forecasting 

as well as data mining and machine learning applications in production and logistics. He currently finishes 

his PhD thesis on the topic of applying meta-learning to select time series forecasting methods for customer 

demand prediction and production planning. His email address is kue@biba.uni-bremen.de.  

 

EIKE BRODA is a master student at the University of Bremen, Germany. He currently finishes his master 

thesis regarding an adaptive simulation-based optimization approach for production scheduling. His email 

address is brd@biba.uni-bremen.de.  

 

MICHAEL FREITAG is full professor of Planning and Control of Production and Logistics Systems in 

the Faculty of Production Engineering of the University of Bremen. Moreover, he is director of BIBA - 

Bremer Institut für Produktion und Logistik GmbH at the University of Bremen, Germany. He holds a PhD 

degree in Production Engineering from the University of Bremen. His primary research interests lie in 

production and operations management, logistics and supply chain management with a particular focus on 

simulation modeling and simulation-based optimization. His email address is fre@biba.uni-bremen.de. 

 

TORSTEN HILDEBRANDT is branch manager at SimPlan AG, Germany, one of the largest tool-vendor-

independent service providers in the field of simulation. His research interests include simulation-based 

optimization, heuristic optimization algorithms, as well as planning and control of production and logistic 

systems in general. He is the main author of the discrete-event simulation library jasima (JAva SImulator 

for MAnufacturing and logistics, http://jasima.net). His email address is Torsten.Hildebrandt@simplan.de. 

 

ENZO M. FRAZZON is professor in the Industrial and Systems Engineering Department at the Federal 

University of Santa Catarina in Florianópolis, Brazil. He holds a PhD degree in Production Engineering 

from the University of Bremen. His research interests include theory and applications of production and 

logistics systems, with a focus on simulation and optimization. His email address is enzo.frazzon@ufsc.br. 

3863


