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Universitätsstraße 65-67

9020 Klagenfurt am Wörthersee, AUSTRIA

Robert Muhr

Infineon Technologies Austria AG

Siemensstraße 2

9500 Villach, AUSTRIA

ABSTRACT

In this work, we demonstrate that automatically classifying defects in topography images of silicon wafers
is feasible. We process topography images of a set of sample wafers with controlled induced defects in
their wafer back surfaces. We group these induced defects into three classes: cavities, cracks, and star
cracks. With this sample set, we train and test selected classifiers with suitable feature vectors extracted
from their wafer back surface topography images. A comparison reveals, that training and testing linear
and quadratic classifiers with two Fisher scores as features, yield the best classification performances. We
correctly classify all cavities and can separate them from the critical cracks and star cracks, which show a
sufficient signal in the topography images.

1 INTRODUCTION

This paper presents our approach, demonstrating a way how automatically classifying defects in topography
images of silicon wafers is feasible. These topography images are generated by a measurement method
based on deflectometry. This deflectometric measurement method is applied for inspecting specular surfaces
since years (Höfer 2011, pp.201-212), and is now entering the semiconductor market. It allows measuring
high reflective surfaces which are virtually invisible. Thus, three-dimensional defects in these surfaces can
only be observed by the distortions they cause in mirrored images of structured patterns. Such distortions
in patterns with a defined structure allow determining the surface curvature. This principle is applied in
the deflectometric measurement method, which provides topography images representing intensity coded
curvature values. Hence, deflectometric measurements are utilized to control the quality of specular
surfaces in industrial productions, allowing to find local defects. Fuller descriptions of the deflectometric
measurement principle can be found in (Werling, Balzer, and Beyerer 2007), (Hsakou 2006), and (Muhr,
Schutte, and Vincze 2010).

Currently, available deflectometric wafer inspection equipment provide promising data, allowing to
assess the wafer surface quality. However, only little research to automatically classify the defects visible in
these topography images of silicon wafers is available. Hence, we develop such a pattern recognition system.
Recently, pattern recognition tasks are addressed with deep learning algorithms (Goodfellow, Bengio, and
Courville 2016). However, it is challenging to interpret and understand these models, since they have kind
of a black box-like characteristic. Furthermore, we want to gain knowledge about the features describing
our defects. Therefore, we chose the statistical pattern recognition approach for our work. Our pattern
recognition system comprises four stages: image segmentation, feature extraction, dimensionality reduction,
and classification. For training and testing that pattern recognition system we need a sufficient sample set
size. Thus, we have to produce a set of sample wafers with controlled induced defects in their wafer back
surfaces. We chose to induce cracks and star cracks, since these are critical defects and affected wafers must
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be sorted out. By artificially inducing these cracks and star cracks we additionally get regions containing
continuous cavities. We consider these continuous cavities as uncritical defects in this work. Hence, we
group these induced defects into three classes: cavities, cracks, and star cracks. We analyze these defects
in Section 2. Then, we process topography images of our sample wafer back surfaces with a deflectometric
measurement equipment. To reduce the amount of data we start with the defect segmentation as described
in (Gonzalez 2009, pp.689ff), (Pernkopf and O’Leary 2002), (Narkhede 2013), and (Kaur and Singh 2002).
We describe this defect segmentation, which is the first step in our 4-stage pattern recognition system, in
detail in Section 3. In Section 4, we continue with the feature extraction. The goal of feature extraction is to
find distinguishing features describing the objects to be classified. The feature values of objects belonging
to the same class should be very similar. Whereas feature values of objects belonging to different classes
are ideally very different from each other. Furthermore, it is important that the features are invariant to
transformations, such as rotation, translation, or scale. (Duda, Hart, and Stork 2012). In Section 5, we
explain the dimensionality reduction. Dimensionality reduction removes irrelevant and redundant data and
thus increases the subsequent classification performance. Information about dimensionality reduction can
be found in (Webb 2003), (Brownlee 2015), (Guyon and Elisseeff 2003), (Design 2015), and (PRTools
2014). The last step in our pattern recognition system is the classification. Classification is the procedure
of assigning objects based on their features, also called input variables, to one of a set of predefined target
variables, also called classes. Hence, classification is a supervised learning method. Building a suitable
model comprises training the classifier and testing the classifier. For this procedure, a set of sample data
is required, where each data object consists of its input features and its corresponding class label. This
sample set must be divided into a training set and a testing set. Training the classifier means determining
the classifier based on the input features and the labels of the training set. Testing the classifier means
applying the classifier to the testing set. The classes assigned by the classifier are then compared to the true
class labels of the sample set. We use cross-validation to test the classifier and we measure the classifier
performance based on the classification error as described in (Bishop 2006), (Webb 2003), and (Perner
2009). We evaluate classifiers and compare their performances in Section 6. Finally, we draw a conclusion
and present an outlook in Section 7.

2 SAMPLE SET

In this section, we analyze the defects in detail to describe their physical appearances. Figure 1 shows
one example of each defect class. These controlled induced defects are visible on the wafer back surfaces.
Image (a) shows a cavity with a star crack, image (b) a cavity with a crack, and image (c) a continuous
cavity. A measuring bar is displayed in the bottom right corner of each image. These images are captured
with an optical microscope with a magnification of 2.5×. The field of view is 2.9mm×2.2mm. This field
of view only shows the center areas of the defects. The overall physical dimensions of the cracks and the
star cracks in our sample set range from 5mm up to 15mm. The cavities have a diameter of about 10mm.

We further analyze one center of a cavity with a star crack by a white light interferometer measurement
(Figure 2). The white light interferometer allows producing a 3D measurement of the wafer back surface
(upper image). It shows a 580 μm×380 μm section of the wafer back surface, containing the center area
of a star crack. Right beside this 3D measurement, a color bar indicates the heights. Its z-values range
from z =−1 μm to z =−3.5 μm. The horizontal blue line indicates the position of the profile depicted in
the lower part of the illustration. This profile shows a height and a slope discontinuity at the crack. Such
slope discontinuities cause disturbances within the cavity signals in the topography images.
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500 µm

(a) Cavity with a star crack

500 µm

(b) Cavity with a crack

500 µm

(c) Continuous cavity

Figure 1: Controlled induced defects

in wafer back surfaces.

Figure 2: 3D measurement of a cavity with a star crack.

Figure 3 illustrates such a topography image of a silicon wafer as an example. It shows the intensity
coded topography values of the wafer back surface in pseudo color representation. The green colored
intensity value 128 represents the intact area of our wafer back surface having curvature values of zero or
curvature values close to zero. The intensity values from 0 to 127 and from 129 to 255 represent areas of
distorted stripe patterns originating from local controlled induced defects in the wafer back surface. These
local defects are colored in the range from blue to red in our topography images. The yellow pixels in
these images form the border areas of the cavities having low negative curvature values. The blue colored
pixels represent the center areas of the cavities having positive curvature values. Some of the discontinuous
cavities have red and dark blue pixels in their center areas. They arise from the curvature calculation at
the position of the crack, where the surface has slope discontinuities. The green pixels between the border
areas and the center areas form the transition regions of the cavities. The curvature values in these transition
regions are close to zero too. These local defects are our regions of interest. They are marked with a blue
rectangle and numbered in ascending order for the following defect segmentation step.

3 DEFECT SEGMENTATION

Analyzing the image data of the wafer back surfaces reveals, that thresholding is a promising image
segmentation method for our task. It allows to identify the center point of possible defects and thus
to precisely segment the regions of interest. Figure 4 shows an overview of the implemented image
segmentation routine based on thresholding. The input image is the topography image of the wafer back
surface. The outputs are the individual regions of interest containing possible defects, saved as sub-images
of the wafer. The developed image segmentation algorithm can be divided into three major steps. In the
first step, we derive the thresholds. The thresholds are required for binarizing the image of the wafer back
surface in the second step. The result is a binary image representing the center areas of possible defects as
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Figure 3: Topography image of a wafer back

surface with numbered ROIs.

Topography image

Deriving the thresholds

Binarizing the image

Saving each ROI

ROI 002ROI 001 ROI n

(Step 1)

(Step 2)

(Step3)

Figure 4: Segmenting the regions of interest.

connected components. In step three, we determine the areas of these connected components to identify
possible defects. We save these possible defects as sub-images of the wafer. These are our regions of
interest. All three process steps are described in detail in the following paragraphs.

In the first step, we derive the thresholds manually from the histograms of multiple regions of interest
containing possible defects. The histogram (Figure 6) of the region of interest ROI 001 (Figure 5) is a
typical one of our sample set. It shows the number of pixels for each intensity value of the wafer back
surface. We crop the y-axis at a value of 60 pixels to particularly visualize the number of pixels at low
and high intensity values. The two thresholds T1 = 100 and T2 = 180, indicated by the red lines, separate
the center area from the background. These two thresholds divide the histogram into three modes. We use
the first and the third mode to select the center area of our regions of interest. We select them through
binarizing the input image of the wafer back surface using the derived thresholds T1 and T2 in the next step.

The second step is converting the intensity image, which represents the topography of the wafer back
surface, into a binary image. To binarize the image we use the previously derived thresholds from the
histogram of the wafer back surface, T1 = 100 and T2 = 180. A pixel p(x,y) belongs to the foreground, if
I(x,y)< T1 or I(x,y)> T2. A pixel p(x,y) belongs to the background, if T1 ≤ I(x,y) ≤ T2. Foreground pixels
are set to the value ’1’ representing the objects, and background pixels are set to the value ’0’. The result is
a binary image derived from the topography image of the wafer back surface. Based on this binary image
we identify the regions of interest in the next final step.

In this final third step, we identify possible defects in the binary image and save them as sub-images
of the wafer. We extract the area of each object in the binary image of the wafer back surface to identify
possible defects. We define possible defects as connected components with an area above 170 pixels. Then
we calculate a rectangle with a size of 16mm×12mm centered around possible defects and crop each of
these regions of interest. Finally, we save each region of interest as a numbered sub-image of the wafer.
We use these sub-images for the feature extraction in the next section.
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Figure 5: ROI 001.

Figure 6: Histogram of ROI 001.

Intensity values
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Figure 7: Cavity with star crack.

Intensity values
0 50 100 150 200 250

Figure 8: Cavity with crack.

Intensity values
0 50 100 150 200 250

Figure 9: Continuous cavity.

4 FEATURE EXTRACTION

Figure 7 to Figure 9 show intensity coded topography signals of our regions of interest (left images).
Analyzing them reveals that the major differences between the classes are in the center areas of the cavities.
Hence, we calculate our features out of circular-shaped center areas with a diameter of 40 pixels, as depicted
in the right images. The intensity values forming the center areas of cavities with star cracks typically
range from intensity value 0 to 255. The center areas of continuous cavities typically range from intensity
value 1 to 120 and the same applies to cavities containing cracks. Thus, some distinguishing statistical
features out of these circular-shaped center areas must be extracted in order to properly classify them.

We extract the summary statistics, the histogram divided into 16 intensity bins, and the empirical
isotropic semivariogram out of these circular-shaped center areas. To extract these features, we reshape
our two-dimensional image data into a one-dimensional vector format. We calculate the summary statistics
comprising: The count, arithmetic mean, median, mode, range, standard deviation, skewness, kurtosis,
10% - percentile, and the 90% - percentile of the one-dimensional intensity vector.

Furthermore, we extract the histogram divided into 16 bins

H(k) = card{X | Bk ≤ I(X) < Bk+1},
k = {1,2,3, ...16}, B = {B1 = 0, B2 = 16, B3 = 32, ..., B17 = 256},

where k is the histogram bin, X is the column number of the intensity vector, I(X) is the intensity
value at column X , and B is the break vector.

Moreover, we calculate the empirical isotropic semivariogram

γ(h) =
1

2N(h) ∑
(si,s j)∈N(h)

(z(si)− z(s j))
2, h = si − s j,
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Figure 10: Circular-shaped region of interest containing a cavity with a star crack, its histogram divided

into 16 bins, and its empirical isotropic semivariogram.

where, γ(h) is the semivariogram value for a specified distance range h, N(h) is the number of data
pairs falling within the specified distance range, si, s j are the two locations of data points, and z(si), z(s j)
are the intensity values of the two data points.

Figure 10 shows, from the left to the right, a circular-shaped region of interest, its extracted binned
histogram, and its calculated empirical isotropic semivariogram as an example. The intensity histogram
provides information about the intensity distribution (Gonzalez 2009, p. 120ff) and the empirical isotropic
semivariogram describes the roughness of our regions of interest as described in (Esri 2015) and (Waller
and Gotway 2004). To estimate the occurrence probability of an intensity value, we additionally normalize
the histogram. To compare the shapes of different empirical isotropic semivariograms we additionally
scale them to maximum. We add all extracted features, the summary statistics, the histogram bins, and
the empirical isotropic semivariogram values to one feature vector containing in total 82 values for each
circular-shaped region of interest.

Finally, we perform a univariate data analysis of our multivariate data as suggested in (Greenacre and
Primicerio 2014). This analysis shows us four characteristics of our sample set. The first one is the class
distribution of our sample set. We have in total 360 samples consisting of 172 samples of cavities, 115
samples of cracks, and 73 samples of star cracks. The second characteristic is, that we have significant
differences in the class means at 43 features and several outliers in our data. The third characteristic is,
that our feature vectors are not normally distributed over the classes nor within the classes. The fourth
characteristic of our data set is, that the feature vectors have different scales. Thus, to compare the feature
vectors, we standardize them using z-scores

Z =
X −μ

σ
,

where X is the vector containing the data values, μ is the arithmetic mean, and σ the standard deviation
of the data vector X . With these standardized data, we can now start with the dimensionality reduction.

5 DIMENSIONALITY REDUCTION

We apply feature selection and feature extraction methods to reduce the dimensionality of our data set.
Feature selection routines seek for n meaningful features that contribute to discrimination out of a set of m
features. Features which do not contribute to a class separation are neglected with these feature selection
methods. The feature extraction methods transform the m features to an n-dimensional feature space. Thus,
all initial m features are used to create a reduced subset of n underlying features describing the data.

For feature selection, we apply to our sample set the sequential forward feature selection, the sequential
backward feature selection, and the plus l - take away r feature selection routines of the PRTools. We run
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Kofler, Spöck, and Muhr

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

Feature size

A
ve

ra
ge

d 
er

ro
r 

(2
0 

ex
pe

rim
en

ts
)

Fisher
Quadr
5−NN
SVC

Sum of squared Euclidean distances

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

Feature size

A
ve

ra
ge

d 
er

ro
r 

(2
0 

ex
pe

rim
en

ts
)

Fisher
Quadr
5−NN
SVC

Minimum of squared Euclidean distances

Figure 11: Plus l - take away r feature selection.

each of the routines once using the sum of the squared Euclidean distances as separation criteria and once
using the minimum of the squared Euclidean distances as separation criteria. Figure 11 shows the feature
size curves of the plus l - take away r feature selection routine as an example. The feature size curve plots
the averaged classification error on the y-axis against the corresponding number of used features on the
x-axis. In this case, the number of features displayed on the x-axis refers to the feature position of the
tested feature vector. All the feature vectors are ordered in decreasing discrimination performance. Hence,
feature 1 is the best-performing feature of the feature vector, feature 2 the second best-performing feature
and so forth. Analyzing all the feature size curves reveals, that the classification error decreases the more
features we use for the classification. Overall, the major classification error reduction can be achieved by
the top ten features. By adding further features, the classification improvements are comparatively minor.

Analyzing these top ten features of each feature vector shows, that they consist of the same features
independent from the used feature selection routine. However, using the sum of the squared Euclidean
distances as separation criteria returns other features than using the minimum of the squared Euclidean
distances. Using the feature selection routine with the sum of the squared Euclidean distances as separation
criteria, the top ten selected features consist of summary statistic features as well as empirical isotropic
semivariogram values. Using the feature selection routine with the minimum of the squared Euclidean
distances as separation criteria, the top ten selected features consist of empirical isotropic semivariogram
values as well as histogram bins and normalized histogram bins.

For the feature extraction, we apply the principal component analysis (Webb 2003) and the Fisher
linear discriminant analysis (Welling 2005). For the principal component analysis, we define the number of
dimensions to be retained with ten. The retained ten dimensions are sorted according to their eigenvalues
in decreasing order. Figure 12 presents this eigenvalue plot. The x-axis depicts the first ten dimensions and
the y-axis reveals the corresponding eigenvalue of each dimension. This plot shows, that the eigenvalues
are decreasing approximately following an exponential function. According to this plot we compare the
averaged classification errors of selected classifiers applying the first two principal components ’PCAM
2D’, the first three principal components ’PCAM 3D’, the first five principal components ’PCAM 5D’,
and the first ten principal components ’PCAM 10D’ as feature vectors (Figure 13). Using the first five
principal components the K-NN(3), the K-NN(5), and the SVC (polynomial kernel 2nd order) classifiers
can yield an averaged classification error rate below 20%. Applying the first ten principal components the
K-NN(3) and the K-NN(5) classifiers can yield an averaged classification error rate below 20%. Overall,
the K-NN(3) using the first ten principal components as features reaches the lowest averaged classification
error rate in this comparison. Hence, we apply the first ten principal components in the overall comparison.
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Figure 12: Eigenvalues of the first ten dimensions

retained by the PCA.
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Figure 15: Scatter plot of the two dimensions of

the Fisher scores.

Figure 14 shows the scatterplot of the first two dimensions of our sample set retained by the principal
component analysis. The samples are represented with different symbols according to their class. Samples
belonging to class ’1 Cavity’ are depicted as blue crosses. The red stars represent samples of class ’2
Crack’ and samples of class ’3 Star Crack’ are drawn as pink circles. Examining this sample set reveals,
that the cavities are reasonably separated from the cracks and the star cracks. Yet, the cracks and the star
cracks are not separated in this two-dimensional scatterplot.

For the Fisher linear discriminant analysis, the number of mapped dimensions N is smaller than the
number of classes C in the data set. Hence, we can only retain two dimensions of our three-class data set.
Figure 15 shows the scatter plot of the two Fisher scores retained from our data set. Examining this scatter
plot reveals, that the cavities are well separated from the cracks and the star cracks. Though, the cracks
and the star cracks are not separated either.

Thus, we use these retained feature vectors from feature selection and feature extraction methods to
train and test selected classifiers in the next section.

6 CLASSIFICATION

There are numerous classifier algorithms available. The difficulty is to preselect which classifiers are best
suited for which kind of data set. A so-called cheat sheet for choosing the right classifier, in general, can
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be found in (scikit-learn developers 2014). This cheat sheet suggests us to start with the support vector
classifier (SVC) using a linear kernel. If this is not sufficiently working, we should continue with testing
the k-nearest neighbor classifier. If the k-nearest neighbor classifier (KNNC) is not working as demanded
either, we should try it with support vector classifiers using other kernels. To broaden our test scenario,
we also include the Fisher linear discriminant classifier (Fisher LDC) and the quadratic classifier (QDC).

Figure 16 shows the performances of the selected classifiers applying different feature vectors. We
analyze the performance of the different classifiers separately on each feature set using the k-fold cross-
validation with k = 10. Hence, our data set of 360 samples is divided into ten almost equally sized parts.
Each time 9 folds are used for training the classifiers and the remaining fold is used for testing the classifier.
We repeat this 10-fold cross-validation 20 times and compare the averaged classification error

erroravg =
1

N

N

∑
j=1

∑
i∈c

wi
nEL �=i

nT L=i

and its standard deviation of the different classifiers. Where erroravg is the averaged classification error
based on error counts weighted by class priors, wi is the class prior of class i, c are the classes, nEL �=i is
the number of wrongly classified samples for class i, nT L=i is the total number of samples belonging to the
class i, and N is the number of experiments. This evaluation shows, that the classification performance is
the best for most of the classifiers using the Fisher scores as features. The classification errors are below
15 % for the trained Fisher LDC, the QDC, and all SVCs.

Figure 17 shows the scatter plot including the decision boundaries of the trained Fisher LDC of the
7th fold as an example. This example has the largest false positive rate

FPR =
FP

FP+T N

of the class ’1 Cavity’. Where FP is the number of false positives and T N is the number of true
negatives. The figure title shows the classification error and the false positive rate of class ’1 Cavity’ of
this 7th fold. The x-axis shows the first Fisher score and the y-axis the second Fisher score. The test
samples are plotted according to their true class labels as blue crosses, red stars, and pink circles. The
decision boundary of the trained Fisher LDC is drawn as a black line in the figure. Close to this decision
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Figure 18: ROI004

40 mm x 25 mm

Figure 19: ROI007.

boundary are the two false positives of class ’1 Cavity’. Their topography images are included in the
figure. The topography image of ’ROI004’ only has a weak signal and the one of ’ROI007’ is not extracted
from the center area of the crack. The regarding microscopic images reveal, that ’ROI004’ is a very weak
crack (Figure 18) and that the ’ROI007’ is extracted from the border region of the defect instead its center
(Figure 19). This ROI 007 demonstrates, that the image segmentation algorithm still needs to be improved
for this region of interest. The left blue colored circle marks the center area of the crack, which should
have been selected by the image segmentation routine. Instead, the right area marked by the red colored
circle was segmented as the region of interest.

7 CONCLUSION & OUTLOOK

With this work, we demonstrated a way how automatic defect classification in topography images of
silicon wafers is feasible. To realize this, we developed a pattern recognition system comprising image
segmentation, feature extraction, dimensionality reduction, and classification. Our sample set consists of
topography images of wafers with controlled induced defects. We grouped these defects into three classes:
cavities, cracks, and star cracks. These defects induce strong signals in the topography images. In a first
step, we segmented the defect regions by thresholding. In a second step, we extracted features out of the
circular-shaped regions of interest containing the defects. The extracted features comprise the summary
statistics, histogram values, and empirical isotropic semivariogram values. In the third step, we reduced
the dimensionality of our feature vectors applying feature selection and feature extraction methods. In the
fourth and last step, we trained and tested selected classifiers on our different feature vectors. A comparison
revealed, that applying two Fisher scores as features perform best on most classifiers, reaching classification
errors below 15 %. We evaluated the classifier performances based on the averaged classification error
of 20 experiments. Additionally, we thoroughly analyzed all classification results and can conclude that
we are able to correctly classify all cavities. Furthermore, we can separate the cavities from the cracks
and star cracks, which show a strong signal in the topography images. The fact, that we are not able
to distinguish between cracks and star cracks is acceptable since either one must be sorted out anyway.
The two wrongly classified circular-shaped regions of interest containing cracks are caused by a weak
signal in the topography image and by a wrongly segmented region of interest, respectively. Hence, we
can improve the classification performance by three influencing factors. Firstly, we can seek for further
even more discriminating features. Secondly, we can improve the defect segmentation algorithm by using
more complex segmentation methods compared to thresholding. Thirdly, we can improve the classification
performance by evaluating and setting a classification threshold to reduce wrong classifications.

Another open and important issue is to verify whether cracks or star cracks can be detected if they do
not lie in a cavity. Cavities create strong signals in the topography images, due to their curvatures. Cracks
or star cracks cause discontinuities in such cavities and hence produce disturbances in the topography
signals of these cavities. In this work, we classify these cracks or star cracks based on these disturbances
they cause in the topography signals. However, the cavities are only a side effect of the controlled induced
defects. Hence, a method to detect cracks and star cracks not lying in a cavity, as it is the case for productive
wafers, is under development.
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