Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

THE ROLE OF SIMULATION FRAMEWORKS IN RELATION TO EXPERIMENTS

David W. King
Douglas D. Hodson
Gilbert L. Peterson

School of Electrical and Computer Engineering
Air Force Institute of Technology
Dayton, OH 45433, USA

ABSTRACT

The usefulness of software frameworks to support the development of military combat simulations is gaining
attention. Using a framework increases model reuse and can avoid the duplication of infrastructure code
used to support model and simulation application development. Simulation frameworks encourage defining
abstractions for the domain of interest, which allow for multiple concrete (i.e., specific) implementations of
models at varying levels of fidelity, resolution and/or detail to be produced and assembled. This flexibility
leads to customized simulation applications that are focused and aligned to an envisioned conceptual model
of a system of interest. However, the difference between a framework and a specific simulation application,
and its relationship to experimentation is not always clear. This paper elaborates on these distinctions and
addresses how software frameworks support experimental objectives.

1 INTRODUCTION

Experimentation supports the study of new technologies and ideas. In the defense industry, experiments
range from low-cost software prototypes to multi-million dollar research efforts. Results support or refute
a hypothesis and allow a researcher to understand relationships, inferences and draw conclusions about
a phenomenon of interest. Simulations provide a simplified approximation of real world situations that
can be used in experimentation. A simulations approximation is referred to as a model and is created by
assembling a collection of domain objects that define functionality and behavior. However, the underlying
architecture of the software system used to assemble object models is often misunderstood; specifically,
the role of frameworks in supporting the development of simulation applications.

Frameworks define the relationships between domain objects through the use of abstractions, thereby,
allowing complex models to be assembled from a collection of different implementations at various levels of
detail. These features support the development of simulation applications better aligned with an envisioned
conceptual model.

This paper highlights the role of frameworks as a tool to build simulation applications, and specifically
addresses how this capability supports experimentation. We first present the problem context in terms of how
the experimentation process drives simulation requirements. A short review on experimental processes and
simulation frameworks provides a base terminology for understanding the roles and relationships between
experimentation and simulation frameworks. Finally, we present two existing simulation frameworks with
a notional example.

2 PROBLEM CONTEXT

The terms model and simulation are often conflated. To avoid this ambiguity, we define them as

978-1-5386-3428-8/17/$31.00 ©2017 IEEE 4153

King, Hodson, and Peterson

e Model: physical, mathematical or otherwise logical representation of a system, entity, phenomenon
Or process.
e Simulation: the execution or processing of a model over time with an assumed modeling paradigm.

The execution of a simulation assumes a paradigm that defines how models are conceptualized and
created. For example, we are particularly interested in event-stepped (i.e., event-driven or discrete-event) and
time-stepped (i.e., frame-based) model execution which constitute two popular paradigms. Event-stepped
simulation differs from time-stepped in that time advances by irregular increments, whereas, time-stepped
advances time by fixed increments (Fujimoto 2000). Depending upon simulation purpose, one paradigm
can execute model code more efficiently than the other.

The role of software-based simulation applications to support experiment execution is well understood;
they create a representation of a system of interest. In the experimental process, these applications are
executed to generate data for analysis. As experiments are usually iterative, expansion of simulation
applications to incorporate more models or behaviors is expected (Montgomery 2013).

Based on our experience, many simulation applications follow a common life cycle. Initially, an
envisioned conceptual model of interest is defined and a simulation application to support its study through
experimentation is developed. Because experimentation is often an iterative exercise, extension to the
originally developed application are made that include more and/or different aspects to account for other
phenomenon of interest. At some point, the simulation application becomes complex enough, that some
way of improving or simplifying the User Interface (UI) is pursued. Example Ul improvements include
the creation of application configuration files, the development of a supporting language (i.e., scripts) to
configure and describe behaviors or the creation of Graphical User Interfaces (GUI).

At some point in time, even with these usability improvements, if the application continues to grow, the
desire for more examples, documentation and training material is sought to communicate and understand
the complexity. Beyond that, often, the effort to maintain the existing application ceases in favor of starting
over with a simpler, more understandable solution.

It can be argued that within this life cycle, opportunities to refactor (i.e., restructure, reorganize and/or
improve) the code to reduce complexity should have been considered. Failure to recognize this leads to
large applications difficult to “setup and run,” but more importantly, really understand and extend. Software
frameworks, specifically simulation frameworks, are designed to mitigate this complexity.

3 EXPERIMENTAL PROCESS

In 2006, The Technical Cooperation Program (TTCP), an international organization that collaborates
in defense scientific and technical information exchange, published the “Guide for Understanding and
Implementing Defense Experimentation (GUIDEX)” (Bowely et al. 2006). GUIDEx defines defense
experimentation as a series of tasks as shown in Figure 1.

We are particularly interested in the relationship between the “Determine the required fidelity of
representations” and the “Develop models and systems representations” activities of the “Experiment
Development” task. The activity of determining the fidelity, resolution and/or detail of a model is challenging
- and the process of doing so is probably more art than science. But there are some guidelines, for example,
the prevailing view has been to keep models “as simple as possible.” Cautioning against model complexity,
the following quote succinctly states the concern:

“It has long been understood by operational researchers that, in dealing with complicated
situations, simple models that provide useful insights are very often to be preferred to models
that get so close to the real world that the mysteries of the world they intend to unravel are
repeated in the model and remain mysteries.” (Bowen and McNaught 1996)

4154

King, Hodson, and Peterson

In other words, the main point of modeling is to rationalize the complexity of real life by simplifying
it (Bowely et al. 2006).

Problem Formulation

Find the warfighting problem
Identify proposed solutions
Identify relevant conditions
Determine appropriate metrics,
measures and key performance

Experiment Development

Determine required fidelity of
representations

Allocate responsibilities

Source data and technical details
Develop models and system
representations

Conduct pilot testing

+ Train subjects

@ * Undertake rehearsals

Experiment Execution

U

Analysis & Reporting

* ldentify findings
* Check for rival explanations of findings

parameters

Experiment Design

* Decompose problem

* Select hypotheses

+ Determine structure and nature of
experiment treatment groups

* Work through scenarios

» Determine technical requirements

Figure 1: Defense Experimentation Planning Flowchart (Bowely et al. 2006).

The activity of determining the required fidelity of representations (or abstracting a model from the
real world) is a mental process, called conceptual modeling. Conceptual modeling is the abstraction of
a simulation model from the real world system that is being modeled; in other words, choosing what
to model and what not to model (Robinson 2013) - its relationship to the problem domain is shown in
Figure 2. As shown, the conceptual model defines the “required fidelity of representations” activity of the
GUIDEXx “Experiment Development” task and the “develop models and system representations” relates to
“Model Design” (with an assumed paradigm) and the coding of a “Computer Model” (i.e., a simulation
application).

4155

King, Hodson, and Peterson

Problem Domain

System
Description

Real world
(problem)

Knowledge Acquisition
(Assumptions)

-
on

Repre:

Conceptual
Model

Model
Design

Computer
Model

Model Domain

Figure 2: Conceptual Modeling (Robinson 2011).

In summary, the “Experiment Development” task encompasses the creation of a conceptual model
from a system description using acquired knowledge about a real-world problem of interest to the full
development of software code that defines it. The remaining tasks include the execution of the experiment
(i.e., “runs” or “tests” from a test matrix) to generate data for analysis, understanding, reporting and possible

decision making.

4 SIMULATION FRAMEWORKS

The experiment development stage is where simulation software development begins; the creation of
executable models with an assumed paradigm. If software is written to implement a specific conceptual
model, there is usually good alignment between the model being created and the one envisioned. Because
experiments are usually iterative, very often, the next experiment will require changes to the simulation
application itself to include more and/or different models to account for other aspects of interest. Software
frameworks can mitigate this growth in model complexity by separating core “infrastructure” code from
its specific use within a given application.

A general purpose software framework is a collection of abstract and concrete classes and the relationships
between them (Sommerville 2007). From a process point of view, creating the abstractions often results
from the refactoring of existing concrete classes to create “black-box” points from which developers can
extend to build applications (Gamma et al. 1995). For example, given a particular modeling paradigm,
say event-stepped, software code that defines how events are stored, selected and processed (i.e., executed)
can be separated from the specific models that uses it. This same separation can occur at the model level,
where abstractions of what things are (called domain objects) and the functionality they define, can be
separated from specific implementations of it. Separating these two aspects alone is often the foundation
for a general purpose simulation framework.

Since abstractions allow for multiple concrete instances, frameworks provide the best method for object-
oriented code reuse; they provide a one to many mapping of models and behaviors to multiple applications
of interest (Sommerville 2007). This is counter to simulation applications that are more focused, and often
provide one to one mappings of specific models and behaviors for the intended experiment.

4156

King, Hodson, and Peterson

5 ROLES AND RELATIONSHIPS

Figure 3 shows the relationship between experimental design activities and software development. As
this figure shows, the experimentation process starts with a problem or question, which manifests into an
experiment to be run with a system of interest that, ideally, matches the envisioned conceptual model.

The role of the simulation application is to create and execute this representation by instantiating
and assembling the specific domain objects (i.e., concrete models) from the problem domain as shown in
Figure 2. The role of the framework is to define the abstractions so that specific models can be built, and
often provide the means to execute it.

Questions?
(Problem Situation)

U

Experiment Design
(Measures, Cause/Effect, etc)

Solutions
(Understanding)

NN

i @ Matching of conceptual model
Data/Analysis / with implementation
System Representation
(System Under Study) Strong Reuse
Execution Component
of System ﬁ l,
Dynamics
Simulation Application <j Concrete Models
(Software — Ad Hoc) (Specific Fidelity)

Some Reuse, but /7
often tailored ﬁ ﬁ

Strong Reuse R Simulation Framework
Component (Software Architecture/Infrastructure/Abstract Models)

Figure 3: Experimental Design/Software Development Relationship.

Very frequently, certain aspects of model code can be “reused” given the ability to adjust some parametric
data. For example, the development of a radar model with a high degree of resolution or detail might be a
significant development effort all on its own, but if designed with some flexibility (e.g., externally specified
parameters), the laws of physics this model captures could possibly be reused in other experiments. For
these concrete models, there may be a strong reuse component. For others, specifically models that are
narrowly focused on a particular aspect of the problem domain, they are often included, or bundled, with
the simulation application.

Because of this, we consider simulation applications to be “ad-hoc,” meaning they are used for a
particular purpose (e.g., a study), then often no longer needed. This is not to imply or dismiss their
importance, but rather to contrast their narrower purpose and shorter lifespan in relation to the framework.

6 EXAMPLE FRAMEWORKS

To illustrate the advantage of leveraging software frameworks to support simulation application development,
we present two established frameworks; one embraces the event-stepped modeling paradigm, the other is
time-stepped.

4157

King, Hodson, and Peterson

The Advanced Framework for Simulation, Integration and Modeling (AFSIM) (Clive et al. 2015) is
an example of an event-stepped (i.e., discrete-event) software framework. AFSIM is written in C++ and
supports simulation development by extending an application through software plug-ins, which are selected
points to add functionality. These points allow for the creation of specific concrete models that represent
system components of interest.

AFSIM Application

Framework
Components
Platforms Movers Sensors Weapons Processors Track
Management
Infrastructure

Simulation Time Event Terrain Utilities Distributed
Management Management Management Management Interfaces
Thread Plug-In Task Track Observers Script

Management Management Management Management

Figure 4: Advanced Framework for Simulation, Integration and Modeling (AFSIM) (Clive et al. 2015).

As shown in Figure 4, AFSIM defines an underlying infrastructure to support model and simulation
development, and another layer of components for model building. The components are abstract domain
objects of interest to the military combat simulation community. AFSIM defines both those abstractions,
and provides a collection or library of specific models (i.e., concrete models) tunable through user defined
input parameters to align a system representation with an envisioned conceptual model. AFSIM comes
with a number of supporting tools to facilitate model development, scenario definition, and simulation
execution.

The Mixed Reality Simulation Platform (MIXR), previously named OpenEaagles (Hodson et al. 2006),
is an example of an time-stepped simulation framework. Like AFSIM, MIXR is written in C++, but
the functionalities and purposes of intended applications are usually different, namely the inclusion of
people and/or other real-world devices into the simulated system representation (i.e., environment, world
or situation). In other words, MIXR is a platform to build a simulation with a set of connected controls
(i.e., a simulator) to provide a realistic interface to vehicles, such as an aircraft, or other complex systems.
For example, MIXR can be used to build a flight simulator that a person can “fly”” within a so-called virtual
world. Advancing simulation time in fixed discrete-time intervals (i.e., time-stepped) aligns the execution
of models with real-time software scheduling structures (e.g., cyclic) - which enables the system to meet
response time requirements. Execution in this fashion also supports reliable processing of external driving
functions (or signals from input devices) (Cellier and Kofman 2006).

Figure 5 shows MIXR which includes an underlying infrastructure to support the development of models,
simulations and simulator applications. While what is modeled in AFSIM and MIXR (the abstractions, the
domain objects represented as composable software components) is similar to each other, differences in
available concrete models in terms of how they are conceptualized (i.e., modeling paradigm) and fidelity
and/or detail do exist. This is a reflection of intended use and purpose.

4158

King, Hodson, and Peterson

MIXR-based Applications

Platform

Components

N
[Players] [Dynamics] [Sensors [
J

Graphical Navigati Track
Instruments avigation Management

]

Infrastructure
N
Base Object Graphics GUI Real-Time Distributed Interactive
System Interfaces Multi- Simulation
g Threaded _ and
Terrain Data] Out-the- Simulation High Level Architecture
I/O Device - ; Interf:
Loaders Window Architecture nterfaces

Figure 5: Mixed Reality Simulation Platform (MIXR) (Hodson et al. 2006).

For both frameworks, the key relationship to recognize is the layering (or relationship) of the application
(or applications) on top of the framework. The application doesn’t just use the framework as a generic
library of functionality (i.e., a toolbox), it extends, molds and shapes available abstractions so that there
is a tight alignment between the conceptual model and the representation it’s designed to create.

6.1 Application

As a specific example, if the goal of an experiment is to understand the value of carrying a given number
of missiles on an aircraft against an adversary who has a radar capable of detecting presence within a
given range, then a model that indicates or produces detections based on range might be sufficient. But, if
the goal of an experiment is to understand how to fly an aircraft in such a way to avoid detection by an
adversary, then a more detailed radar model might be necessary. For example, a radar model that produces
detections of an adversary accounting for their signature, atmospheric attenuation, terrain occulting and
the accumulation of several correlated electromagnetic refections might be more correct and better aligned
with the envisioned conceptual model.

6.2 A Note on Credibility

In the first case, it’s easy to make an argument that radar detection is greatly affected by the concept of
operations in play to deploy the missile, thus the experiment is invalid and not creditable. In the second,
it could be equally argued that the radar model used was too detailed, as the modeled terrain occulting
effects might confound results with the setting in the simulated world. Both criticisms are valid, hence
the reason to execute a campaign of experiments (Bowely et al. 2006) to gain a fuller or more complete
understanding of the system dynamics and relationships.

6.3 Usefulness of Concrete Models

As this simple example demonstrates, the value or usefulness of concrete models should not be judged
solely on the fidelity or detail represented; usefulness depends on how well it aligns with the conceptual
model defined for a particular experiment. A simple model might “fit” or align with experimental objectives
much better, then say, another which defines so much detail that it might confound the results (i.e., introduce
too much reality!).

4159

King, Hodson, and Peterson

Framework abstractions provide the means to select and use available concrete models, refine existing
ones, and/or create completely new representations. Ideally, from a reusability and/or capability perspective,
having multiple models at different fidelities, resolution and/or detail that represent the same conceptual
thing would be ideal. Frameworks provide the means to enable this capability.

7 CONCLUSIONS

As frameworks become more prevalent with the military combat simulation community, it is essential to
understand their role in relation to applications. The usefulness of software frameworks to support the
development of military combat simulations is clear; they offer a modeling infrastructure and a means to
craft and assemble specific models to represent a system of interest, for a given purpose. That purpose is
to align with an envisioned conceptual model.

In the experiment design process, frameworks provide a supporting role to developing simulation
applications. Applications provide the means to execute the model, which creates the envisioned system
representation, which may include facets of the real-world, such as people and/or devices, over time, to
generate data for subsequent analysis, understanding and decision making.

REFERENCES

Bowely, D., P. Comeau, R. Edwards, P. Hiniker, G. Howes, R. Kass, P. Labbe, C. Morris, R. Nunes-Vaz,
J. Vaughan, S. Villeneuve, M. Wahl, K. Wheaton, and M. Wilmer. 2006. Guide for Understanding and
Implementing Defense Experimentation. The Technical Cooperation Program.

Bowen, K., and K. McNaught. 1996. “Mathematics in Warfare: Lanchester Theory”. In The Lanchester
Legacy - A Celebration of Genius, edited by J. Fletcher.

Cellier, F. E., and E. Kofman. 2006. Continuous System Simulation. New York, NY: Springer.

Clive, P. D., J. A. Johnson, M. J. Moss, J. M. Zeh, B. M. Birkmire, and D. D. Hodson. 2015. “Advanced
Framework for Simulation, Integration and Modeling (AFSIM)”. In International Conference on
Scientific Computing, 73-77.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems. New York, NY: Wiley-Interscience.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Hodson, D. D., D. P. Gehl, and R. O. Baldwin. 2006. “Building Distributed Simluation Utilizing the
EAAGLES Framework”. In Interservice/Industry Training, Simulation, and Education Conference
(V/ITSEC).

Montgomery, D. C. 2013. Design and Analysis of Experiments. Eighth ed. John Wiley and Sons.

Robinson, S. 2011. “Conceptual Modeling for Simulation”. In Encyclopedia of Operations Research and
Management Science, edited by J. Cochran. New York: Wiley Press.

Robinson, S. 2013. “Conceptual Modeling for Simulation”. In 2013 Winter Simulation Conference (WSC),
edited by R. Hill, M. Kuhl, R. Pasupathy, S. Kim, and A. Tolk, 377-388.

Sommerville, 1. 2007. Software Engineering. 8th ed. Addison-Wesley.

AUTHOR BIOGRAPHIES

DAVID W. KING is a PhD Student at the Air Force Institute of Technology. He holds a B.S. in Computer
Science from the University of Maryland and a M.S. in Cyber Operations from the Air Force Institute of
Technology. His email address is david.king @afit.edu.

DOUGLAS D. HODSON is an Associate Professor of Software Engineering with the Air Force Institute
of Technology. He received a B.S. in Physics from Wright State University in 1985, and both an M.S. in
Electro-Optics in 1987 and an M.B.A. in 1999 from the University of Dayton. He completed his Ph.D.
at the Air Force Institute of Technology in 2009. He has over 30 years of experience in the domain of

4160

King, Hodson, and Peterson

modeling and simulation and has a research interest in characterizing the consistency of shared simulation
state data in terms of its temporal properties to estimate Live-Virtual-Constructive and Distributed Virtual
Simulations performance, cloud computing and modeling quantum key distribution systems. He is the lead
technical developer and project manager for the open-source Mixed Reality Simulation Platform (MIXR)
which has been used to develop a wide variety of standalone and distributed simulation applications. His
email address is douglas.hodson @afit.edu.

GILBERT L. PETERSON is a Professor of Computer Science at the Air Force Institute of Technology,
and Chair of the IFIP Working Group 11.9 Digital Forensics. Dr. Peterson received a BS degree in
Architecture, and an M.S and Ph.D in Computer Science at the University of Texas at Arlington. He
teaches and conducts research in digital forensics, statistical machine learning, and autonomous robots.
His research has been sponsored by the NSF, DARPA, AFOSR, AFRL, and JIEDDO. He has over 90 peer
reviewed publication, and 5 edited books. In 2008, he received the Air Force Junior Scientist of the Year
Category I award. His e-mail address is gilbert.peterson @afit.edu.

4161

