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ABSTRACT 

Many high-burden countries have committed to providing universal access to rapid diagnosis of 
tuberculosis (TB), but the corresponding impact on population-wide incidence is unknown. We designed 
an agent-based simulation of drug-susceptible (DS) and drug–resistant (DR) TB in a representative Indian 
setting and compared the impact of Xpert testing via a decentralized (Xpert available at each local-
population) versus centralized (Xpert available at the district-level serving multiple local-populations) 
strategy. Decentralized testing resulted in a 36% reduction in DR-TB incidence at 10 years compared to 
no Xpert. Depending on assumptions regarding pre-treatment loss to follow-up (ranging from 5 to 50%), 
the impact of centralized testing ranged from a 35% to 22% reduction in DR-TB incidence. 
Implementation of Xpert by either approach had a negligible impact (<5%) on DS-TB incidence. 
Decisions regarding choice of centralized vs. decentralized Xpert will heavily depend on operational 
aspects of centralized Xpert and loss to follow-up. 

1 INTRODUCTION 

Tuberculosis (TB) has existed for millennia and remains a major global health problem. TB infects 
millions of people each year, and in 2015 was named as one of the top 10 causes of death worldwide, 
ranking above HIV/AIDS as the leading cause of death from an infectious disease. This trend is despite 
the fact that TB disease can be cured in most cases if a timely diagnosis and correct treatment are made 
available.  
 Although TB control has been effective in some regions of the world and incidence has declined 
marginally over the past decade, these gains are threatened by the emergence of resistance to anti-TB 
drugs. The increasing burden of multi-drug resistant (MDR) and extensively drug resistant (XDR) TB – 
associated with high rates of mortality and high cost of treatment – poses a serious threat to global health. 
Worldwide, approximately 5% of patients with TB are estimated to have either MDR or XDR types, but 
the distribution of cases is not uniform (World Health Organization 2016). Despite availability and 
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provision of effective drugs for DS-TB, the primary transmission of MDR and XDR tuberculosis is now 
driving the spread of resistance in high-burden countries such as China, India, and South Africa, which is 
mainly attributed to delays in DR-TB diagnosis, failure to provide effective drugs for DR-TB, and poor 
management of DR-TB patients in these settings. 
 Global targets and milestones for reductions in the burden of TB disease in the period 2016–2035 
have been set as part of the Sustainable Development Goals and World Health Organization’s (WHO) 
End TB Strategy. The first milestones set for 2020 are a 35% reduction in TB deaths and a 20% reduction 
in the TB incidence rate. To reach these milestones, effective strategies are needed to facilitate the 
diagnosis and treatment of drug-susceptible and -resistant TB, especially in high-burden settings. 
 Isolation of Mycobacterium tuberculosis using conventional solid culture is the gold standard for TB 
diagnosis worldwide, and may be followed by culture-based, phenotypic drug susceptibility testing 
(DST). However these methods, as well as newer and slightly faster approaches such as liquid culture and 
molecular line probe assays, require long turnaround time, expensive laboratory infrastructure, extensive 
biosafety precautions, and specialized laboratory personnel seldom found in primary health care facilities 
in developing countries (World Health Organization 2015). The only WHO-recommended rapid 
diagnostic test for detection of TB and rifampicin resistance currently available, the Xpert MTB/RIF® 
assay, overcomes many of these operational difficulties in TB diagnosis (Boehme et al. 2011). WHO 
recommends Xpert as an initial diagnostic test in individuals suspected of having MDR-TB or HIV-
associated TB, and as a follow-on test to smear microscopy in settings where MDR-TB or HIV are of 
lesser concern. Of the 48 countries classified by WHO as “high burden” based on one or more criteria, 15 
had adopted national algorithms by the end of 2015 positioning Xpert MTB/RIF as the initial diagnostic 
test for all people suspected of having pulmonary TB (World Health Organization 2016). These countries 
accounted for only 10% of the estimated global number of incident TB cases in 2015, suggesting a 
persistent gap in global TB diagnosis. 
 Many studies have evaluated performance characteristics of the Xpert MTB/RIF assay and cost-
effectiveness of various strategies for implementing Xpert in different countries including India (Chang et 
al. 2012; Dorman et al. 2012; Vassall et al. 2011). A traditional model for implementation of Xpert in 
developing countries is via a “centralized” facility that provides services to several communities 
transporting clinical specimens (e.g., patients’ sputum samples) to that facility (World Health 
Organization 2014). This strategy enables cost-sharing across multiple different entities, consolidates 
maintenance of high-level infrastructure in a small number of facilities, and ensures high testing volume. 
However, the time required for transporting samples and conveying results back to the local level turns a 
two-hour test into a several day process, requiring patients to return another day for their test result – and 
thus leading to increased loss to follow-up. The forthcoming GeneXpert Omni device – a simpler, 
cheaper, and more portable testing platform for performing the Xpert assay – provides an unprecedented 
opportunity to “decentralize” molecular TB testing to the primary care level and to provide equal access 
to quality TB diagnosis (Alland et al. 2015). A decentralized strategy could help reduce pre-treatment 
losses to follow-up, while also improving sensitivity of TB detection over smear microscopy in settings 
where Xpert has not yet been made available.  
 India, which shoulders approximately 26% of the global TB burden, has recently announced a 
commitment to eliminate TB by 2025, with an ambitious new National Strategy Plan (2017-2025) which 
includes universal testing for drug-resistant TB among other interventions. Given the complexity of the 
Indian health care system and resource constraints, it is imperative to evaluate the likely impact and cost-
effectiveness of centralized versus decentralized Xpert implementation with regard to variation in the 
resulting rate of loss to follow-up. We therefore constructed a suite of economic and epidemiological 
models to explore the implications of these testing strategies within the Indian public sector. In this paper, 
we discuss our approach for development of the underlying agent-based simulation model of TB 
transmission in a representative Indian setting, and present preliminarily and descriptive results on the 
epidemiological impact of centralized vs. decentralized Xpert implementation.  
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2 METHODS 

In order to compare the implementation of centralized versus decentralized Xpert, we modeled two 
different levels of the public health system, which are based on the number of people served and reflect 
the organizational structure of India’s national TB control program. Our baseline model simulates a self-
contained population of 100,000 individuals corresponding to the catchment area of a single designated 
microscopy center (DMC), a local health clinic with capacity for sputum smear microscopy (Figure 1). 
We represent the central level – a District TB Center (DTC) referral facility with more advanced 
laboratory capacity, designed to serve at least one million people – as composed of several DMCs.  
 

 
Figure 1: Schematic representation of TB diagnostic system in India. Each simulation models a 
community of 100,000 individuals, served by three types of providers: informal, private and public sector 
(DMC). The upper panel represents the network of providers and the patients’ likelihood of presentation 
to each provider after a visit. Depending on availability of Xpert at a central location (DTC) versus a 
decentralized location (DMC), TB testing can result in various levels of pre-treatment loss to follow-up.   

 
 In the centralized scenario, Xpert testing is available only at the DTC, which operates a transport 
system to bring patients’ sputum samples from each DMC and takes up to a week to report results back to 
the DMC level. In contrast, the decentralized scenario places Xpert testing capacity at the DMC level – 
eliminating potential delays in returning diagnostic results and allowing patients to receive a test result the 
same day that they provide a sputum sample. We assume that the primary epidemiological difference 
between centralized and decentralized Xpert testing is that centralized testing will incur an additional 
probability of pre-treatment loss to follow-up14. As such, our primary goal is to evaluate impact of the 
Xpert testing at various levels of pre-treatment loss to follow-up ranging from 0% to 50%. 

2.1 Population demography and network of contacts 

Population demographics including age and gender distributions are calibrated to national census 
information from India (World Health Organization 2017). Assuming a steady population size, the annual 
birth rate is tuned to balance the number of deaths over time. To capture the heterogeneous pattern of TB 
transmission within a community, we implement a simplified household structure and define two types of 
contacts: 1) “close” contacts between household members, and 2) “casual” contacts among all community 
members. Close contacts are assumed to occur frequently between any two housemates and are modeled 
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at each time step (week) between all members of a household; casual contacts are assumed to occur less 
frequently among random pairs throughout the community. Households (ranging between 1 to 10 
members) are generated randomly at the beginning of the simulation according to a normal distribution of 
household size. During the simulation, newborns are randomly assigned to existing households, without 
controlling for the household age distribution over time. Individuals’ weekly frequency of casual contact 
is calibrated to reported levels from a synthetic network analysis of  social contacts in Delhi, India (Xia et 
al. 2015). 

2.2 TB natural history  

The natural history of TB is modeled at an individual level as shown in Figure 2. We model circulation of 
both drug-susceptible (DS) and rifampin-resistant (DR) TB strains in the population. Each person is born 
in full health and susceptible (SUS) to TB disease. When successful transmission of TB infection occurs, 
the infected person enters the Early Latent TB (DS-/DR-ELTB) state for a period of five years, during 
which the per-time-step probability of active TB development (Fast Progression Rate) is high but 
decreasing over time. At the end of this five-year period, the person enters the Late Latent TB (DS-/DR-
LLTB) state, which can last for many years and is associated with a lower, constant probability per time 
step (Slow Progression Rate) of developing active TB. Individuals with Active TB (DS-/DR-ATB) are 
symptomatic, infectious, and subject to increased mortality. The infectiousness and mortality of ATB is 
modeled as increasing linearly with time as disease progresses during the first months of infection, from 
zero to a peak level, and then staying constant until treatment initiation (DS-/DR-Trt) or death occurs 
(Kasaie et al. 2014). The peak infectiousness of DR-TB is allowed to be lower than that of DS-TB. 
 

 

 
Figure 2: TB natural history outline. Individuals are born susceptible to the disease and upon infection 
with DS-TB or DR-TB, they move through several stages over time. Individuals with active disease (DS-
ATB & DR-ATB) are subject to increased mortality risk (not shown). Latently infected or recovered 
individuals can get reinfected with either strain, at which time they move to the early latent stage (not 
shown). 

2.3 Care seeking behavior 

We model care-seeking behavior as a function of time since development of active TB disease, with the 
per-time step probability of seeking care (and probability of sputum smear positivity) increasing linearly 
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over the first months of infectiousness and staying at a constant level thereafter (Dowdy, Basu, and 
Andrews, 2013). Considering a representative care structure in a typical Indian setting, care for TB 
symptoms may be sought in one of three sectors: 1) the informal sector, comprising providers with no 
formal medical training; 2) the qualified private sector, including providers with formal allopathic or non-
allopathic medical training but no access to microscopic labs; or 3) the public sector (DMC), namely a 
local health clinic with capacity for sputum smear microscopy. Following prior studies (Salje et al. 2014; 
Kapoor et al. 2012; Mistry et al. 2016), individuals may initially seek care in any of these sectors, each 
with a specified probability, and if they remain untreated, their probability of visiting each sector during a 
subsequent care-seeking attempt is modeled as a function of where they sought care during their previous 
attempt, as shown in Figure 1. We assume that an informal-sector diagnosis never leads to appropriate 
treatment of TB, while a proportion of patients visiting the private sector will receive diagnosis for DS-
TB – though the diagnosis never leads to appropriate treatment of DR-TB. As such, a definitive 
bacteriologic diagnosis (using smear and/or Xpert) only occurs in the public sector. 
 Given the focus of our study on implementation of Xpert within the public sector, we modeled 
informal- and private-sector encounters as simple events, with a given probability of DS-TB treatment in 
the private sector and no other impact on the course of disease. Upon accessing the public sector, 
however, individuals with symptoms of TB will undergo a series of “clinical encounters” as shown in 
Figure 3. An encounter is defined as all activities occurring from initial suspicion of active TB to arriving 
at a presumptive diagnosis. As such, each encounter may encompass multiple clinic visits; for example, a 
patient may undergo an initial smear or Xpert test, return for bacteriologic results, undergo additional 
ancillary tests (e.g., chest X-ray, basic laboratory testing), and initiate empiric treatment – all as part of 
the same clinical encounter.  

 

 
Figure 3: A simplified model of TB diagnosis attempts at the public sector. Each clinical encounter is 
defined as a collection of activities (e.g., visits, labs, etc.) occurring from initial suspicion of active TB to 
arriving at a presumptive diagnosis (positive or negative). As such, an encounter does not correspond to a 
single visit but rather a collection of visits (and other activities) before arriving at a clinical decision. 

 
 At the initial encounter (encounter 1), we assumed all patients with presumptive TB will receive a 
bacteriologic test by definition (i.e., if such a test was not performed during an encounter, that encounter 
would not be considered a public-sector attempt at TB diagnosis). At the end of this encounter, patients 
will either initiate TB treatment (P1 in Figure 3) or will remain untreated due to a false-negative test (with 
no empiric treatment decision) or pre-treatment loss to follow-up (i.e., those testing smear-positive, as 
well as a proportion of patients with smear-negative results who receive an empiric diagnosis based on 
high suspicion of TB, will be treated). We assume that a proportion of patients who are not started on TB 
treatment during the initial encounter will never be successfully diagnosed in the future (P2 in Figure 3); 
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these individuals either die from TB or will spontaneously resolve. The remainder of patients are 
successfully diagnosed and treated, which we model as occurring at a second clinical encounter that will 
include a repeated bacteriological test (smear or, if available, Xpert) for TB. All patients who initiate TB 
treatment may be cured (through treatment or spontaneously), die of TB, or fail treatment (P3 in Figure 
3). Those who fail treatment (still infectious) are assumed to undergo a third clinical encounter in which 
culture and drug susceptibility testing are performed, in addition to Xpert where available. These patients 
will subsequently receive a new round of TB treatment (assuming correct diagnosis of DS/DR-TB among 
all retreated patients), but if they fail that treatment again, they are no longer eligible for a new encounter.  

2.4  TB Treatment and Role of Xpert 

We assume that all individuals initiating treatment for active TB are initiated on a four-drug treatment 
regimen for DS-TB unless they receive an Xpert test result indicating resistance to rifampin – in which 
case we assume that they are initiated appropriately on treatment for DR-TB. We assume that DR-TB 
treatment lasts for 20 months and is equally effective for individuals with DS-TB (clearing any active or 
latent DS-TB infection) and DR-TB.  

2.5 Evolution of drug-resistance 

DS-TB patients receiving DS-TB treatment are subject to a probability of treatment failure and acquiring 
drug resistance, upon which they will develop active DR-TB disease and will continue to transmit the 
DR-strain to other susceptible individuals until treated. We calibrate this probability, along with the 
maximum infectiousness of DR-TB, to provide the expected levels of DR-TB infections among new and 
previously-treated TB patients at baseline (Table 1).  

2.6 TB transmission 

TB transmission is modeled at the end of each month over all active household and community contacts. 
The probability of transmission (ptrans) from an infectious individual (p) to his/her contact (q) at time t is 
calculated as follows: 

𝑃𝑡𝑟𝑎𝑛 𝑝, 𝑞, 𝑡 = 𝐼𝑛𝑓 𝑝, 𝑡  × 𝐼𝑚𝑚 𝑞, 𝑡  × 𝑐𝑥 
 

𝐼𝑛𝑓 𝑝, 𝑡 =
𝑡 − 𝑡!
𝑑  × 𝑀𝑎𝑥𝐼𝑛𝑓 𝑖𝑓 𝑡 −  𝑡! ≤ 𝑑

𝑀𝑎𝑥𝐼𝑛𝑓     𝑜.𝑤.
 

 
 where Inf(p,t) estimates the infectivity of person p at time t, computed via a step function with linear 
increase over the first d months after original infection (time t0) before reaching the maximum level of 
infectiousness (MaxInf) and staying at that level afterward. In addition, Imm(q,t) denotes immunity of 
person q toward infection (1 if actively infected, 0.5 if latently infected or recovered, and 0 otherwise), 
and cx is a simulation coefficient used to tune the overall probability of transmission for calibration 
purposes. In the event of multiple transmissions to a single individual over a timestep, the resulted 
infection is chosen from successful transmissions at random. 

2.7 Mixed infection 

All individuals in latent or recovered states are subject to reinfection with either strain. Latent infections 
offer a degree of immunity against additional infection with either strain. In order to preserve a record of 
DR-TB risk when a person with latent DR-TB also becomes infected with and then treated for latent DS-
TB, we allow mixed latent infections with both DS-TB and DR-TB; for each strain type (DS and DR), we 
track only an individual’s most recent infection, but an individual may simultaneously, for example, have 
ELTB for one strain and LLTB for the other strain. Once active TB occurs with any strain, however, the 
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active infection and its subsequent multiple-drug treatment are assumed to eradicate the other latently-
infecting strain, such that dual active infections do not occur and such that future reactivation will only 
occur with the strain that caused the active disease.  

 

Table 1: List of key model parameters. 

Parameter Value Reference 

Annual risk of progression from 
early latent state by age 

[0 – 2] years: 20% 
(2 – 10] years: 2% 
(10 – 15] years: 6% 
(15 – 104] years: 9% 

(Vynnycky and Fine 1997; Marais, Gie, 
and Schaaf 2004) 

Annual risk of LLTB progression  0.5% (Horsburgh 2004) 
Annual risk of mortality, active 
TB 

12% (Tiemersma et al. 2011) 

Reduction in reinfection 
probability if latently infected 

0.5 (Andrews et al. 2012; Sutherland, 
Švandová, and Radhakrishna 1982) 

Risk of relapse within 2 years of 
resolution 

2%/year (DS-TB) 
4%/year (DR-TB) 

(Marx, Dunbar, and Enarson 2014; D. 
Menzies et al. 2009) 
(Palmero, Ambroggi, and Brea 2004) 

Individual’s likelihood of 
acquiring resistance during DS-
TB treatment 

0.001 Calibrated to DR-TB proportion among 
new-/ retreated-TB patients 

Coefficient of TB transmission 
upon each infectious contact 

0.022 Calibrated to provide  target incidence of 
DS-TB  

Coefficient of DR-TB maximum 
infectiousness (relative to DS-TB) 

0.57 Calibrated to provide  target incidence of 
DR-TB 

pTrans 0.0208 Calibrated to provide the DS-TB 
incidence at baseline 

Maximum weekly probability of 
seeking care 

0.17  Calibrated to provide the DS-TB 
prevalence at baseline 

Probability of empiric treatment 
at encounter 1 (smear-negative) 

0.25 Assumption 

Probability of loss to follow up at 
encounter 1 in public sector 

0.13 (MacPherson and Houben 2014) 

Maximum probability of 
returning for encounter 2 in 
public sector 

0.52  
 

Corresponding to an average duration of 
one month 

Probability of MDR-TB 
treatment failure (among those 
completing treatment) 

17%  (World Health Organization 2016) 

Sensitivity of Xpert for TB 
(smear-positive) 

smear-pos = 1 
smear-neg =  0.67 

(Steingart et al. 2014) 

Sensitivity of Xpert for rifampin 
resistance 

95% (Steingart et al. 2014) 

Specificity of Xpert  1 (Steingart et al. 2014) 
Probability treatment private 
sector 

0.5 Calibrated to DS-TB 
incidence/prevalence  
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2.8 Pediatric TB 

In order to capture the impacts of household contact interventions on TB morbidity and mortality in 
young children, the TB natural history described above is age-dependent. Young children (infected at age 
0-2 years) have a higher risk than adults of fast progression from early latent to active TB (Marais 1997), 
while older children (infected at age 2-10 years) have lower risk of fast progression than adults. Children 
who do progress to active TB before 10 years of age are considered non-infectious (Marais et al. 2006) 
and do not contribute to household or community transmission, although they face the same mortality risk 
as other ATB. In late latent infection, children are assumed to have the same risk of slow progression as 
adults. Infections acquired during childhood that progress to active TB after age >10 years are as 
infectious as other adult TB.  

2.9 Calibration and Intervention Scenarios 

After selecting the fixed model parameters from available literature (Table 1), we calibrated simulations 
in a multi-step procedure. We first brought the model to a steady-state equilibrium reflecting the 
prevalence of DS-TB in India. As a validation procedure, we evaluated the fit of the model against the TB 
incidence and mortality in India as estimated by the World Health Organization (Figure 4). We then 
introduced drug resistance at a time point of 40 years prior to the present day, assuming a relatively lower 
infectiousness of DR-TB (versus DS-TB) such that the incidence of DR-TB at present would match 
current estimates from the WHO (10 per 100,000/year), and the associated breakdown of DR-TB 
prevalence in new versus previously-treated cases (2.5% and 16%, respectively). During this time, we 
assumed that TB diagnosis was entirely by smear microscopy, except for evaluation of patients failing 
treatment. 
 At the end of the calibration period (“baseline”), we modeled the introduction of Xpert as an 
immediate up-front addition to sputum smear microscopy, and evaluated TB epidemiological outcomes 
over the following 20 years in terms of reduction in TB incidence and mortality. Each scenario was 
consequently replicated through 100 independent runs and outcomes were reported in terms of mean and 
95% uncertainty range of observations. Given the preliminarily status of this analysis, no statistical test of 
significance was performed.  

3 RESULTS 

At baseline, the simulation models a community of 100,527 individuals (half men) between the ages of 0 
to 104 (median age of 43 years), distributed among random households with a median size of 6 
individuals per household. Prior to the introduction of Xpert, DS-TB incidence in our simulated 
population was 167 [95% Uncertainty Range: 135 – 202], corresponding to a prevalence of 189 [151 – 
229] per 100,000 person years. At baseline (40 years after introduction of drug resistance), DR-TB 
incidence was 9.5 [0 – 61] per 100,000 person years, with 2% [0 – 15%] of new (pDR-new) and 19% [0 – 
75%] of previously-treated (pDR-treated) TB patients having DR-TB infection. This corresponds to an 
overall TB mortality of 14 [7 – 23] cases per 100,000 person-years at baseline (Figure 4).   
 
Implementation of Xpert: Decentralized implementation of Xpert testing (providing no loss to follow-
up) resulted in a 36% [-6% – 60%] reduction in DR-TB incidence at 10 years compared to no Xpert. The 
rate of improvement was greater at the beginning of program, showing a 24% [-16% – 50%] reduction in 
incidence by the end of 5 years compared to 52% [27% – 66%] by the end of 20 years. Universal access 
to Xpert testing reduced the proportion of misdiagnosed DR-TB patients to 0.39 [0 – 1] from 0.63 [0 – 1] 
at baseline, corresponding to a 2-month reduction in the duration of untreated DR-TB infection at the 10th 
years of implementation (changing from 37.7 [10 – 69] months in the absence of Xpert to 35.8 [10 – 64] 
months after Xpert).   
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 The impact of centralized testing was sensitive to assumptions regarding the associated pre-treatment 
loss to follow-up, and ranged from a 35% [3% – 62%] reduction in DR- TB incidence after 10 years to 
22% [-7% – 46%] when assuming 5% versus 50% loss to follow-up during the sputum transport process 
(Figure 5- Panel B).   
   
 

  
 
Figure 4: Overview of simulation calibration targets. Each panel compares the simulated means (green 
bars) versus data estimates (red bars). The black lines represent the 95% uncertainty ranges. 
 

 
Figure 5: Epidemiologic impact of Xpert implementation on DR-TB incidence. Panel A compares DR-TB 
incidence in the absence of Xpert (purple) to decentralized Xpert (black) and centralized Xpert with 40% 
loss to follow-ups (LTF) (red). Panel B compares programs at various levels of LTF for reduction in DR-
TB incidence. Each line presents the mean value across 100 independent simulation replications. 

 
Implementation of Xpert by either approach had a negligible impact (<5%) on DS-TB incidence and TB 
mortality, partly due to the role of empiric treatment for DS-TB in the absence of Xpert as well as the 
long duration of TB disease before diagnosis (18.5 [16.5 – 20.7] months). Moreover, despite 
implementation of Xpert, the incidence of DR-TB continued to rise over time, reflecting the underlying 
increasing trend in DR-TB incidence assumed at baseline (Figure 5- Panel A).  

4 DISCUSSION  

Implementation of Xpert for diagnosis of TB can have an immediate and significant impact on the 
population-level incidence of DR-TB in India (resulting in up to 36% reduction in 10 years). This impact, 
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however, can be diminished by pre-treatment losses to follow-up associated with delays in returning 
diagnostic results to patients under various models of Xpert implementation.  
 Our modeling results for population-level impact of Xpert on DR-TB incidence and prevalence are in 
line with previous cost-effectiveness studies (Cohen et al. 2012). However, the projected small impact of 
Xpert on DS-TB incidence and mortality in our model differs from those previously suggested. These 
results are partially driven by the long duration of untreated DS-TB disease (18 months) among patients at 
baseline (driven by calibration targets for incidence and prevalence of DS-TB in India), which – when 
combined with our assumption of increasing smear positivity over time -- increased the efficacy of smear 
microscopy testing alone for detection of DS-TB. Moreover, this observation is consistent with emerging 
evidence that empiric treatment practices may greatly attenuate the impact of Xpert at the population level 
(Menzies et al. 2015).  
 As with any modeling exercise, our analysis is limited by simplifying assumptions used in design and 
analysis of a simulation model, including simplified household structure and dynamics, homogeneous 
contact networks within households and community, a simplified model of the Indian TB diagnostic 
system as three provider tiers, and the discrete representation of the patient diagnostic process at the 
public sector via three clinical encounters. To the extent that these simplifications depart from the 
complex reality of TB transmission and diagnosis in the Indian healthcare system, our estimates of 
epidemiological impact may be affected. 
 In conclusion, this epidemiological model illustrates the potential impact of Xpert testing to facilitate 
faster detection of drug-resistant TB, and highlights the important role of pre-treatment loss to follow-up 
in determining the population-level impact of Xpert on TB incidence. The projected health benefits of 
implementing and scaling up Xpert involve a significant increase in demand for healthcare 
resources.  While the global TB control community is moving to embrace new diagnostic technologies, 
several studies have highlighted the important issues concerning the cost of programs and additional 
demands that they place on the existing healthcare infrastructure (Dowdy et al. 2011; Trébucq, Enarson, 
and Chiang 2011). As such, any decisions regarding the choice of centralized versus decentralized Xpert 
would require additional evidence on cost-effectiveness of each alternative and further considerations 
regarding the affordability of each program at the country level. 
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