
Proceedings of the 2017 Winter Simulation Conference

W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

VIRTUAL TIME III: UNIFICATION OF CONSERVATIVE AND OPTIMISTIC

SYNCHRONIZATION IN PARALLEL DISCRETE EVENT SIMULATION

David R. Jefferson

Peter D. Barnes, Jr.

Lawrence Livermore National Laboratory

7000 East Avenue, L-561

Livermore CA 94550, USA

ABSTRACT

There has long been a divide in synchronization approaches for parallel discrete event simulation, between

conservative methods requiring lookahead and optimistic methods requiring rollback. These are usually

seen as dichotomous, so that a model writer must make an early, static design decision between them. An

optimistic simulator does not need lookahead information but is unable to take advantage of it even if it

were available, whereas a conservative simulator may perform poorly or even deadlock without good

lookahead information. Here we introduce unified virtual time (UVT) synchronization which provides the

advantages of both conservative and optimistic synchronization dynamically for all models. Conservative

synchronization becomes an accelerator for optimistic synchronization. When lookahead information is

available the simulation will execute conservatively. Otherwise it will execute optimistically. In this paper

we present UVT, argue for its correctness, and show adaptations of Time Warp, YAWNS, and Null

Messages which cooperatively synchronize a single simulation.

1 INTRODUCTION

Parallel discrete event simulation (PDES) is a widely used approach to modeling complex systems,

especially those without governing differential equations. To construct a PDES model one decomposes the

system into logical processes (LPs), each with its own set of state variables and its own local virtual time

(LVT). LPs interact by sending timestamped event messages to each other, which trigger execution of

model component code (event handlers) in increasing timestamp order to update the component’s state.

Since almost the beginning of research on PDES there have been two fundamental approaches to

synchronization, conservative methods that require lookahead information but not rollback, and optimistic

methods that require rollback but not lookahead information (Fujimoto 2000). A conservative simulator

executes an event only when it has a nontrivial lower bound on the timestamps on all event messages that

will arrive in the future. An optimistic simulator speculatively executes events, correcting out-of-order

execution by rolling back and re-executing the events in correct timestamp order.

Conservative simulators typically are easier to understand and implement, and tend to have lower event

overhead, but they generally require structural restrictions on models and extra effort by the model writer

to provide good lookahead information to achieve good performance. Optimistic simulators, on the other

hand, though more complex, can deliver good performance over a broader range of models.

The two approaches have often been viewed as incompatible: a model writer must make an early static

design decision to adopt one or the other (Carothers 2010). Models that could benefit from conservative

synchronization in some parts or at some times but need optimistic synchronization in others must

nonetheless make a static global choice.

In this paper we argue that it is possible to have it both ways—to gain the advantages of both con-

servative and optimistic execution dynamically and within a single simulation. With our unified virtual time

(UVT) theory, events may be executed conservatively whenever good lookahead information is available

at an LP, but otherwise they will be executed optimistically. The decision is made on an event-by-event

786978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Jefferson and Barnes

basis in each LP. The default synchronization method is optimistic, but the simulator automatically switches

to conservative whenever timely lookahead information arrives at an LP, and back to optimistic when it

can’t execute conservatively any further. UVT thus treats conservative synchronization as an optional

accelerator for optimistic synchronization or, conversely, it treats optimistic synchronization as a baseline

default capability whenever good lookahead data is not currently available.

The UVT synchronization mechanism is compatible with essentially any conservative lookahead

calculation algorithm and any rollback algorithm, with suitable refactoring to fit in the UVT framework

described below. We will illustrate this with a basic optimistic Time Warp algorithm (Jefferson 1982;

Jefferson 1985) along with simple versions of both the Chandy-Misra-Bryant (CMB) Null Message

protocol (Chandy 1979; Bryant 1977) and a YAWNS-like windowing algorithm (Nicol 1993).

We have not yet implemented a UVT simulator, so we have no performance data to offer. We plan to

implement it in the near future however, and invite others to do the same. There are many improvements to

the algorithms presented here that we do not have space to describe but that will be obvious to implementers.

Much work remains before the practicality of this scheme is demonstrated on real models.

This paper is organized as follows: Section 1.1 describes prior and related work. Section 2 describes

our overall architecture and assumptions. Section 3 describes the UVT algorithm in detail. Section 4 shows

how to implement YAWNS synchronization in UVT. Section 5 shows how to implement CMB

synchronization in UVT. Section 6 offers some assessment and indicates future directions.

1.1 Prior work

There is a long history of prior work aimed at combining conservative and optimistic synchronization.

Fujimoto described how to federate conservative and optimistic simulations in the context of the High Level

Architcture (Fujimoto 1998). However each federate was statically designated as one or the other; they

were not allowed to dynamically switch back and forth as proposed here.

Lubachevsky, et al described a variant of his Bounded Lag algorithm in which a limited amount of

optimism (“filtered”) is permitted to soften the restrictions of an otherwise fairly synchronous, time

window-based conservative algorithm (Lubachevsky 1989).

Chandy and Sherman (Chandy 1989) described an innovative way of thinking about the unification of

conservative and optimistic simulation in which a simulator is situated in a space-time coordinate system

and a space-time relaxation algorithm calculates the state of the system at every point (event) in space-time.

Those ideas were greatly elaborated upon and formalized in (Bagrodia 1991). The UVT system described

here would fall within the nondeterministic universe of executions that the space-time relaxation algorithm

could emulate, though nothing like UVT was specifically described.

In (Marotta 2016) the authors describe their lock free Share-Everything platform, designed specifically

for a shared memory environment, and thus of limited scale. Recent versions do permit some LPs to execute

optimistically up to one event beyond the conservative execution limit.

The first study we are aware of to attempt similar unification of conservative and optimistic

synchronization (Jha 1994), in which LPs can switch dynamically between conservative and optimistic at

any time. Mode changes are made by explicit request of the model code, however, rather than transparently

by the simulator, so the model code must provide the switching logic. Also, the switch requires a rollback

and possibly blocking, whereas UVT adds no overhead.

 In (Perumalla 2005) the author describes a refined micro-kernel architecture for the μsik simulator,

which allows a mixture of conservative and optimistic synchronization. However, each LP in that system

is statically designated as either conservative or optimistic, whereas in UVT the kernel decides within each

LP, on an event-by-event basis, whether to execute the event conservatively or optimistically.

To our knowledge UVT is the first synchronization mechanism proposed in which the simulator (as

opposed to the model) decides dynamically, solely on the basis of whether lookahead data is available at

the moment, whether to execute an event conservatively or optimistically.

787

Jefferson and Barnes

2 UVT SIMULATOR ARCHITECTURE

First we discuss our basic assumptions about the computing platform, then the semantics of a UVT

simulator, and finally the underlying architecture of the UVT simulator.

2.1 Computing Platform

Nodes, processors, cores: We assume a distributed-memory system, with each LP executed by its own

simulation process. We make no assumptions about architecture, cores, threads, or co-processors.

Communication: We assume asynchronous, one-way, reliable, arbitrary-delay message transmission

from any simulation executive or LP to any other. Structured communication packages such as MPI may

simplify some parts of the simulator, but they bring constraints that we do not wish to impose generally.

Order preservation: In general we do not assume that the underlying message communication system

preserves message order between any two LPs. As noted below, however, specific synchronization

algorithms, in particular CMB, do require this constraint.

2.2 Simulator semantics

Communication graph: In general we do not assume a static communication graph connecting the LPs,

nor even that the set of LPs is static—it may grow or shrink dynamically. Any LP can send an event message

to any other at any time. However, some conservative synchronization algorithms, notably CMB, do require

a static graph; regions of models using CMB must obey that restriction, as shown in Section 5.

Message cancellation: Message cancellation may be aggressive or lazy, and implemented via anti-

messages or some other mechanism.

Conservative bit: Each message m contains a conservative bit set by the simulator to true when it is

sent by a conservatively-executed event, and thus cannot be cancelled, or false when sent by an

optimistically-executed event, and is subject to possible cancellation. This flag says nothing, however,

about whether m itself will be processed conservatively or optimistically by its receiving LP.

Zero-delay events: We allow zero-delay events, i.e. an event at virtual time t may send an event

message to be received at the same virtual time t, as long as there are no zero-delay cycles.

Event ties: Multiple event messages can arrive for the exact same virtual time at the same LP, a situation

known as a tie. Tie-handling must be semantically identical whether events are executed conservatively or

optimistically. The most general tie-handling mechanism, superposition, processes tied event messages

together as a set. An event function E is called only once to process the entire set, and thus has the signature

void E(EventMsgSet evSet). Iterating over the elements of EventMsgSet must be deterministic,

repeatable, portable, and independent of the order in which the elements were inserted.

Superposition is straightforward when executing optimistically. Arrival of an event message (or anti-

message) which ties with a previously-executed event causes the simulator to roll back and re-execute with

the modified tie-set. In conservative synchronization no event at virtual time t can be executed until the

simulator can determine that all messages with that timestamp have arrived, from all possible senders.

Reversible and Irreversible event-handling functions: Any event function E(evSet) is represented by

two related and almost equivalent functions (described further in Section 3.2):

 EI(evSet) The irreversible version of E(evSet), used for conservative execution.

 ER(evSet) The reversible version of E(evSet), used for optimistic execution.

Ideally the model programmer should only write EI(evSet), while ER(evSet) is automatically

generated at compile time, for example with Backstroke (Schordan 2015), or at runtime, using e.g. full state

saving.

788

Jefferson and Barnes

2.3 Simulator architecture

The UVT simulator architecture is shown in Figure 1. The MODEL consists of event handler code and model

state, and interacts with the simulator primarily by reading the current local virtual time (LVT) and by

sending event and null messages. The SIMULATION EXECUTIVE is the main event loop. We separate several

management algorithms from the main event processing loop and consider them to be asynchronous threads.

These include: the MESSAGING SUBSYSTEM, PRIORITY QUEUE and ROLLBACK QUEUE management, CVT

and GVT estimation algorithms, and COMMITMENT.

3 THE UNIFIED VIRTUAL TIME (UVT) SYNCHRONIZATION ALGORITHM

The basic idea of the UVT algorithm is that an LP executes events conservatively and irreversibly until it

reaches a dynamically-calculated safe virtual time upper bound CVT, conservative virtual time. At this point

a purely conservative simulator would pause to wait for updated lookahead information. Instead, the UVT

simulator continues executing events beyond CVT optimistically. If an updated CVT value arrives at some

later time some uncommitted events may be immediately committed, and if the new CVT is greater than LVT

then UVT switches back to conservative execution. Switching back and forth between conservative and

optimistic execution is handled at each LP on an event-by-event basis, transparently to the model code,

without any model logic required to control it directly.

The CVT value at each LP is an upper bound on when it is safe for that LP to execute conservatively.

The fundamental purpose of conservative synchronization algorithms in the UVT framework is to calculate

good values for CVT, as often and with as little overhead as possible. If multiple independent CVT

algorithms are used in the same simulation and each produces correct but different bounds for the same LP,

then the simulator in effect maxes them, as shown below in updateCVT() in Section 3.6.

At any given moment some LPs may be executing conservatively, some optimistically, and some will

be paused waiting for additional event messages, depending on the detailed dynamics of the model and the

lookahead calculation. Just as in optimistic simulation, a UVT simulation is internally nondeterministic but

externally deterministic, meaning that if a model is executed twice with identical configurations and inputs,

Figure 1. UVT simulator architecture.

789

Jefferson and Barnes

the set of events that execute conservatively or optimistically may differ, but the externally committed

output will always be identical and repeatable.

We now present the UVT algorithm in more detail. UVT requires no changes to existing optimistic

mechanisms, so we don’t present them in detail. But in sections 4 and 5 we incorporate two conservative

algorithms, variations on the YAWNS time windowing algorithm, and on the CMB Null Message algorithm.

We combine these three (optimistic, YAWNS, CMB), but additional algorithms or variations could also be

incorporated.

3.1 Virtual Time synchronization variables

The UVT simulator maintains at each LP three synchronization variables of type vtime (Virtual Time):

LVT, GVT, and CVT. These are defined as follows:

vtime LVT: This is the traditional local virtual time, and is the virtual time of (1) the event currently

executing in the LP or (2) if between events, the virtual time of the next event to execute, either

conservatively or optimistically, or (3) if there are no more events to execute, then +∞.

vtime GVT: This is the traditional estimated global virtual time used in all optimistic simulation

algorithms. In each LP it is a lower bound on the (true, instantaneous, global) value TRUE_GVT, and on

the virtual time of any LP state that will ever have to be restored in a rollback. LPs need not all have the

same value of GVT, but all GVT values must be less than or equal to TRUE_GVT.

vtime CVT: This value, conservative virtual time, combines lookahead information from the CMB Null

Message algorithm, the YAWNS algorithm and any other lookahead algorithms. It is the same as LBTS

(lower bound on timestamp) used in other papers, and is a lower bound on the virtual time of any event

message that will ever arrive at the LP in the future (including anti-messages, reverse (cancelback) messages,

retraction messages, null messages, etc.) An LP can execute conservatively and events can be committed

at virtual times up to but not including CVT. Note that while GVT is a global lower bound on rollback and

future event execution, CVT is a local lower bound on future message arrival.

3.2 Conservative and optimistic event execution

We define the two modes of event execution as follows:

 Optimistic execution: For optimistic execution of event E the simulator calls the reversible event

handler ER(evSet). Before and/or during its execution information is saved so that the LP state just

before it is called can be reconstructed in the event of rollback. Event messages m sent by ER(evSet)

have the m.conservative flag set to false; corresponding anti-messages (or similar data structures)

are saved so that event messages may be cancelled if necessary. Output operations and other

commitment actions are delayed until commit time. Null messages sent by ER(evSet) are held

until commit time, as discussed in Section 5.

 Conservative execution: For conservative execution of event E the simulator calls the irreversible

event handler EI(evSet). During EI(evSet) no information needs to be saved to allow

reconstruction of the prior state, and no provision needs to be made for cancelling event messages.

Any message m generated by EI(evSet) may be sent immediately and will have the

m.conservative flag set to true.

An event E may be executed optimistically and then rolled back any number of times, before finally

being cancelled, committed, or executed conservatively.

3.3 Invariants and the UVT principle

It is a consequence of the definitions in the previous sections that the UVT simulator must maintain the

following critical invariants at each LP:

790

Jefferson and Barnes

Invariant 1: GVT ≤ LVT Invariant 2: GVT ≤ CVT

Invariant 1 follows directly from the definition of GVT as the lower bound on any future event.

Invariant 2 allows CVT to exceed GVT when there is lookahead available. Equality indicates that there

is no lookahead information available for this LP at the moment.

The UVT Principle determines when an LP can execute an event conservatively or optimistically. It

indicates that the simulator executes conservatively if and only if LVT < CVT, with the strict inequality

required for correct tie-breaking during conservative execution.

UVT Principle: GVT ≤ LVT < CVT ⇒ LP executes conservatively

 CVT ≤ LVT ⇒ LP executes optimistically

Combining the UVT Principle with the Invariants we conclude that when GVT == CVT, as it is by default,

then the LP can only execute optimistically. If, however, CVT is frequently updated so LVT < CVT at all

times, then the LP will always execute conservatively.

Each LP’s instances of GVT and CVT are strictly monotonically increasing. LVT is monotonically

increasing during conservative execution, but because of rollback it may not be monotonic during optimistic

execution.

3.4 Commitment

In classic optimistic synchronization GVT is the commitment boundary. All queued actions earlier than GVT

can be finalized: data and anti-messages for rollback can be discarded, I/O can be finalized, null messages

transmitted, and runtime errors became fatal. In UVT this role of commitment boundary is played by CVT,

not GVT (although of course they may be equal).

Even though GVT is not generally the commitment boundary, it still must be periodically calculated as

a floor for CVT. If CVT is not updated by a lookahead algorithm to a value higher than GVT, then increases in

GVT will force increases in CVT as a side effect to maintain Invariant 2, as shown in Algorithm 2 below.

3.5 The unified synchronization algorithm

Figure 2 illustrates how the UVT algorithm works. In panels a) through d) we show virtual time lines for a

single LP. In panel a) we see that GVT < LVT < CVT. All events before GVT have been committed, and the

Figure 2: Relationships among LVT, GVT, CVT and conservative and optimistic execution.

791

Jefferson and Barnes

simulator is executing events conservatively because LVT < CVT. Conservative events are committed as

they execute, so no rollback data is saved, output and null messages are transmitted immediately, and any

runtime error is immediately fatal.

In panel b) LVT has progressed past CVT, so events are now being executed optimistically. Rollback data

is being saved, output and null messages are being queued, and runtime errors are tentative. Rollbacks can

occur as necessary, but never to times earlier than CVT.

In panel c) LVT has advanced and a new higher value of GVT has been calculated, forcing up CVT to

maintain Invariant 2. Events that were executed optimistically earlier than this new CVT value can now be

committed. Since LVT > CVT the simulator continues executing optimistically.

In panel d), a new value of CVT has been calculated, now greater than LVT. Now all executed events can

be committed, and the simulator can resume executing conservatively.

Algorithm 1 is a sketch of the Simulation Executive as it operates in the context of one LP.

Lines 1-6 define variables, including the future event priority queue and the rollback queue.

Line 7 starts the main event loop in an LP. The event loop terminates when (GVT == +∞) or

(GVT ≥ stoptime) is detected.

Lines 8-9 check the two Invariants.

Lines 10-13 check for unprocessed messages in futMsgQ. If there are none, set LVT = +∞ and wait for

more event messages. If all LPs run out of event messages and no messages are in transit then

GVT == CVT == +∞ and the simulation will terminate normally (through actions in the commitment thread

not shown here).

Line 14 removes the next unprocessed event message set with lowest virtual time from eventMsgQ.

Line 15 sets LVT to the virtual time of this event message set.

Lines 16-21 are the key lines in the simulator. They decide whether the event set evSet is executed

conservatively and irreversibly, or optimistically and reversibly, based on the UVT Principle.

3.6 GVT and CVT updates

In principle at the start of a simulation GVT and CVT are both initialized to -∞. This immediately satisfies

Invariants 1 and 2. Therefore every simulation starts executing optimistically at every LP, by the UVT

Principle, and can only execute conservatively once CVT has been updated to a value strictly greater than

Algorithm 1: The main UVT event loop.

 1 vtime stoptime; // Stop time

 2 vtime LVT; // Local Virtual Time

 3 vtime CVT; // Local Committed Virtual Time

 4 PriorityQueue futMsgQ; // Queue of future event message sets

 5 PriorityQueue pastMsgQ; // Queue of past event sets (for rollback)

 6 EventMsgSet evSet; // Next event message set

 7 while (GVT <= stoptime) do { // Process events until stop time

 8 assert (GVT <= LVT); // Invariant 1

 9 assert (GVT <= CVT); // Invariant 2

10 if (!futMsgQ.haveEventSet) { // No more event messages

11 LVT = +∞;

12 waitForEventMsg(); // Wait for arrival of new event messages

13 }

14 evSet = futMsgQ.nextEventSet; // Get the next event set and remove it

15 LVT = evSet.time; // Update LVT

16 if (LVT < CVT) { // UVT Principle

17 EI(evSet); // Execute irreversibly, conservatively

18 } else {

19 ER(evSet); // Execute reversibly, optimistically

20 pastMsgQ.enqueue(evSet); // Save in pastMsgQ in case of rollback

21 }

22 }

792

Jefferson and Barnes

GVT. (In practice lookahead from the model may allow initializing CVT > GVT, so the simulation can start

executing conservatively.) After initialization updated values of GVT and CVT are calculated from time to

time. A simulation will execute correctly and make progress as long as no LP is forever starved of increases

to GVT. The exact strategies for when and how to update GVT and CVT are unspecified here, and there can

be considerable variation. In general they may be updated in separate threads asynchronously with event

execution, though in some implementations it may be more convenient or provide better performance if

they are updated synchronously. However CVT and GVT must be modified only through the functions shown

in Algorithm 2.

Lines 1-4 update CVT. Line 2 guarantees that CVT is monotonically increasing, i.e. can never decrease,

because this is the only line in the simulator that ever modifies CVT. Note that it is not an error for

newCVTestimate to be smaller than the old CVT value. That can happen if two newCVTestimate values are

calculated asynchronously and arrive at an LP out of order, either because they take different amounts of

time to compute or suffer delivery delays. It is critical, however, that all messages with a timestamp less

than or equal to newCVTestimate arrive before updateCVT(newCVTestimate) is called. If updateCVT() is

never called, then GVT == CVT and only optimistic execution will be possible.

Line 3 checks that Invariant 2 is preserved.

Lines 5-9 update GVT. Line 6 guarantees that GVT is monotonically increasing. Again, it is not an error

for newGVTestimate to be smaller than the old GVT value, for the same reasons as above. What matters for

the correctness of the simulator is that every new value of GVT is in fact a true global lower bound on the

virtual times of all current and future events for all LPs, i.e. GVT <= TRUE_GVT.

Line 7 forces a (possible) update to CVT whenever GVT is updated, to maintain Invariant 2.

Lines 8 checks that Invariant 1 is preserved.

It is important to recognize that GVT and CVT are distinct concepts and GVT is still necessary to guarantee

the simulation’s forward progress even though it is not always the commitment boundary. On the one hand

GVT is just a value that gets maxed in to the calculation of CVT in Algorithm 2. On the other hand it is the

only contributor to CVT that is strictly necessary for correctness of the UVT algorithm. If there is no

lookahead in the model, or the lookahead calculation is just too slow, then periodic calculation of GVT is the

only thing that will drive CVT forward and guarantee that the simulation still makes progress. As described

in Section 1, we view conservative execution as an optional accelerator on top of a basically optimistic

simulation engine.

4 INCORPORATING A YAWNS-TYPE WINDOWING ALGORITHM INTO UVT

Here we show how to implement a UVT-compatible conservative YAWNS algorithm, utilizing ideas from

(Mikida 2016). To support this, the simulator needs an additional variable.

vtime delta: Static non-negative value (with default 0) set by model code at initialization time. This

is the minimum virtual time delay to any future event from the current event, i.e. the minimum difference

between the send time and receive time on any event message. It is an error to send an event message

violating this constraint. (LP-local delta and dynamic adjustments to delta are possible, but beyond the

scope of this paper.)

Algorithm 2: Updating CVT and GVT.

 1 void updateCVT(vtime newCVTestimate) {

 2 CVT = max(CVT, newCVTestimate); // This line must be done atomically

 3 assert (GVT <= CVT); // Invariant 2

 4 }

 5 void updateGVT(vtime newGVTestimate) {

 6 GVT = max(GVT, newGVTestimate); // This line must be done atomically

 7 updateCVT(GVT); // Updating GVT may update CVT

 8 assert (GVT <= LVT); // Invariant 1

 9 }

793

Jefferson and Barnes

We take the classic YAWNS synchronization loop and run it asynchronously in successive epochs, as

shown in Algorithm 3. The epochs are labeled by an index and the value of CVT at the start of the epoch.

Within each epoch the Simulator Executive counts the number of messages sent and received (not shown

in Algorithm 3). Then we proceed in the usual way: lines 8-13 perform a blocking MPI-style AllReduce on

the YAWNS threads, summing the number of messages sent and received, and min-ing the next event time

stamp, until all messages in the epoch have been received and all LPs have advanced past the epoch

boundary epochCVT, which signals the end of the epoch. As in traditional YAWNS the new granted time is

the minimum next event time plus the lookahead delta provided by the model, which we use to update CVT

in line 14. Finally, we record the new epoch boundary in line 15.

5 INCORPORATING THE CMB NULL MESSAGE ALGORITHM CAST IN UVT FORM

In this section we incorporate our variant of the CMB Null Message synchronization algorithm (Chandy

1979) into UVT. CMB only applies when the model can provide static knowledge of the exact set of LPs

that might send event messages to a receiver LP r. CMB also requires messages to be sent in non-decreasing

timestamp order, and that order be preserved by the messaging layer. In our CMB version only some LPs

need participate. We illustrate only a single “channel” between any particular sender and r.

In addition to sending event messages, the model can send a null message with timestamp t to an LP r

using a special simulator call, sendNullMsg(t, r). By sending a null message the sender guarantees that

it will never send another event or null message to r with a timestamp less than t. Note, however, that r

can still receive event messages with timestamps less than t from other senders.

We do not assume a sender knows if a destination LP is using CMB, which has two consequences. First,

LPs potentially sending to CMB receivers must send messages in non-decreasing timestamp order; violating

this restriction will cause a fatal error. Second, while it is safe to send null messages to non-CMB LPs they

will just be discarded, at the cost of wasted time and bandwidth.

In our version of CMB null messages can be sent regardless of whether the sending LP is executing

optimistically or conservatively. If the LP is executing conservatively null messages are transmitted

normally, i.e. immediately. But since null messages are intended to communicate lookahead guarantees,

during optimistic execution they must be queued at the sender until the sending event is committed. If an

event is rolled back, any queued null messages it sent are discarded. Null messages from an optimistically

executed event are thus treated essentially like output, transmitted only at commit time.

Having defined our version of CMB we now discuss the implementation.

Null bit: Our version of the CMB synchronization algorithm uses null messages, which we indicate

with a null bit in the message header. m.null is true for a null message, and false for an ordinary event

message. Null messages always have m.conservative == true.

Algorithm 3: Asynchronous YAWNS thread.
 1 void AsynchYAWNS() {

 2 int epoch = 0; // Epoch counter

 3 vtime epochCVT = 0; // CVT value at the beginning of the epoch

 4 int newCVT; // YAWNS-generated CVT estimate

 5 int msgSent[int]; // Count of my messages sent, by epoch

 6 int msgRecv[int]; // Count of my messages received, by epoch

 7 for (epoch = 0; ; ++epoch) { // Complete each epoch in turn

 8 repeat

 9 int sends = msgSent[epoch]; // Global messages sent, reduce by sum

10 int recvs = msgRecv[epoch]; // Global messages recv’d, reduce by sum

11 vtime lvt = LVT; // GVT estimate, reduce by min

12 AllReduce (sends, recvs, lvt); // MPI-style blocking reduction

13 until (sends == recvs && epochCVT < lvt)

14 updateCVT(lvt + delta); // New granted time window

15 epochCVT = lvt + delta; // Update the epoch time

16 }

17 }

794

Jefferson and Barnes

Boolean CMB: true if this LP is using the CMB synchronization, and false otherwise.

int senderCount: The number of LPs that can send event messages to this LP.

LPname sender[senderCount]: A complete list of all LPs that can send messages to this LP. It is an

error for an event or null message to arrive from an LP not on this list.

vtime senderCVT[senderCount]: For each sender, i, to this LP senderCVT[i], initialized to -∞,

contains a lower bound on the timestamps of all future messages that will ever arrive from sender[i].

senderCVT[i] can only monotonically increase. If it is ever set to +∞, no further messages must ever come

from sender[i]. The minimum of all elements in the senderCVT array is a lower bound on all future

messages to this LP from any source, and thus can safely be used as a value for CVT.

Algorithm 4 shows how an arriving message m, either a null message or a regular event message, from

sending LP src and with timestamp t, is processed in the simulator.

Lines 2-10 implement the CMB algorithm. Line 2 checks that this LP is CMB-capable and the message

has valid lookahead information. conservative event messages provide valid lookahead information.

(Recall that null messages are conservative). A non-conservative event message provides no useful

lookahead information, since it might be rolled back.

Line 3 searches the list of permitted senders to this LP to find the message sender’s index.

Line 4 checks that the sender is indeed a permitted sender. If it is not, line 9 raises a fatal error.

Line 5 tests that CVT is still consistent with the sender’s last CVT value.

Line 6 checks that the stream of null and conservative event messages from src are indeed in non-

decreasing virtual time order, as required. It is a fatal error if not.

Line 7 records t as the new lower bound on the timestamps of messages from LP src.

Line 8 is the key line in the algorithm. It updates CVT with the minimum of the senderCVT array, which

is now a lower bound on all future messages from any permitted sender.

In line 11 the simulator finally queues the event message for eventual execution by the model.

6 EXTENSIONS AND CONCLUSION

In this paper we have demonstrated that conservative and optimistic PDES synchronization are not mutually

exclusive, but can be unified harmoniously in a natural, scalable way, so that events will execute

conservatively when there is lookahead information available that permits it, but optimistically otherwise.

We truly can have the best of both worlds.

There is much more that can be done to extend and elaborate the UVT algorithm described in this paper.

Other conservative lookahead calculation algorithms can be added to the two described here, and as long

as they calculate correct lower bounds on future message arrival times and combine them into CVT using

only the updateCVT() function, the simulation will synchronize correctly. Additional lookahead algorithms

may capture lookahead information that YAWNS and CMB do not, so new CVT values they produce may

be systematically higher for some models. Or new algorithms may produce lookahead data faster, or more

frequently, or for LPs not covered by other algorithms. Of course each new lookahead algorithm has to

Algorithm 4: Processing incoming messages incorporating CMB.

 1 void processIncomingMsg (vtime t, LPname src, msg m) {

 2 if (CMB && m.conservative) { // CMB-specific processing

 3 int s = indexOf(src, sender); // Indicate not found by returning -1

 4 if (s>=0) { // Sender src found among senders

 5 assert (CVT <= senderCVT[s]); // Check CVT consistency

 6 assert (senderCVT[s] <= t); // Check non-decreasing times from s

 7 senderCVT[s] = t; // Update CVT for channel s

 8 updateCVT(min(senderCVT); // Update CVT

 9 } else fatalerror(t, src, m, “Message arrived from unexpected sender”);

10 } // if CMB

11 eventMsgQ.insert(t,m); // Enqueue m

12 }

795

Jefferson and Barnes

produce additional performance to cover the cost of its calculation, but within that constraint there is no

limit to the number that can be combined into the UVT framework.

It is also possible to extend UVT to include other synchronization-like phenomena, for example

throttling of optimistic execution. We can attach another virtual time parameter, TVT, to each LP to serve

as the upper bound to optimistic execution. An LP executes conservatively up to CVT, then optimistically

up to TVT, and then pauses until either a rollback or until TVT is increased. The simulator would then

maintain extended Invariant relations and an extended UVT Principle for each LP as follows:

Invariant 1: GVT ≤ LVT < TVT Invariant 2: GVT ≤ CVT < TVT

UVT Principle: GVT <= LVT < CVT ⇒ LP executes conservatively

 CVT <= LVT < TVT ⇒ LP executes optimistically

As is well known, individual synchronization algorithms have unique requirements for the kinds of

input needed from a model, and assumptions/constraints on the simulation executive (particularly around

message delivery). YAWNS requires model information about minimum send-to-receive simulation time

delay on event messages; CMB requires static model information about the communication graph, and

non-decreasing timestamps on messages, as well as in-order delivery from the messaging system. Many

forms of rollback for optimistic simulation also require input from the model, in the form of reversing

functions, identifiable LP state, etc. UVT does not relax these constraints. Rather it enables model writers

to provide the information which they have, and let UVT execute the model as fast as possible. Whenever

the constraints of all the cooperating synchronization algorithms are met, conservative or optimistic, we

believe that the UVT framework can enable seamless combination of all of them.

UVT synchronization enables an optimized software engineering strategy for model developers. In the

early stages, they should concentrate on getting the model logic correct under purely optimistic

synchronization as the default. The early model code should be instrumented to measure space utilization

and identify performance bottlenecks, but otherwise should concentrate on functionality, verification, and

validation. Later, as performance becomes more of a priority and the sources of lookahead in the model’s

critical path are better understood, the developers can add logic to calculate lookahead data or improve it,

with the goal of achieving additional speed through conservative execution.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under Contract DE-AC52-07NA27344, as LLNL-CONF-733763. We thank

anonymous referees for pointing us to papers describing related ideas that greatly improved our discussion

of prior work.

REFERENCES

Bagrodia, R., K. M. Chandy, and W. T. Liao. 1991. “A Unifying Framework for Distributed Simulation”.

ACM Transactions on Modeling and Computer Simulation, 1(4): 348-385.

Bryant, R. E. 1977. “Simulation of Packet Communication Architecture Computer Systems”. M.I.T. MS

thesis, MIT/LCS/TR-188.

Carothers, C. D., and K. S. Perumalla. 2010. “On Deciding Between Conservative and Optimistic

Approaches on Massively Parallel Platforms”. In Proceedings of the 2010 Winter Simulation

Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 678-687.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Chandy, K. M., and J. Misra. 1979. “Distributed Simulation: A Case Study in Design and Verification of

Distributed Programs”. IEEE Transactions on Software Engineering, SE-5:440-452.

796

Jefferson and Barnes

Chandy, K. M., and R. Sherman. 1989. “Space-Time and Simulation”. Distributed Simulation 1989, The

Society for Computer Simulation. University of Southern California Information Sciences Institute ISI

Reprint Series #238.

Fujimoto, R. M. 1998. “Time Management in the High Level Architecture”. Simulation,71(6):388-400.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems. New York: John Wiley & Sons, Wiley

InterScience.

Jefferson, D. R., and H. Sowizral. 1982. “Fast Concurrent Simulation Using the Time Warp Mechanism,

Part I: Local Control”. Rand Note N-1906-AF, The Rand Corporation.

Jefferson, D. R. 1985. “Virtual Time”. ACM Transactions on Programming Languages and Systems

(TOPLAS), 7(3):404-425.

Jha, V., and R. Bagrodia. 1994. “A Unified Framework for Conservative and Optimistic Distributed Simu-

lation”. In Proceedings of the 8th Workshop on Parallel and Distributed Simulation (PADS ’94), 12-

19. New York: ACM SIGSIM Simulation Digest, 24(1):12-19.

Lubachevsky, B., A. Schwartz, and A. Weiss. 1989. “Rollback Sometimes Works … If Filtered (Abstract)”.

In Proceedings of the 21st Winter Simulation Conference., edited by E. A. MacNair, K. J. Musselman,

P. Heidelberger, 630-639. New York: ACM.

Marotta, R., M. Ianni, A.Pellegrini, and F. Quaglia. 2016. “A Lock-Free O(1) Event Pool and Its

Application to Share-Everything PDES Platforms”. In Proceedings of the IEEE/ACM Symposium on

Distributed Simulation and Real Time Applications (DS-RT), 53-68.

Mikida, E., L. V. Kale, E. Gonsiorowski, C. D. Carothers, P. D. Barnes, Jr, and D. R. Jefferson. 2016.

“Towards PDES in a Message-Driven Paradigm: A Preliminary Case Study Using Charm++”. In

Proceedings of PADS 2016, 99-110. New York: ACM.

Nicol, D. M. 1993. “The Cost Of Conservative Synchronization In Parallel Discrete Event Simulations”.

Journal of the Association for Computing Machinery, 40(2): 304-333.

Perumalla, K. 2005. “μsik – A Micro-Kernel for Parallel/Distributed Simulation Systems”. In Proceedings

of the 19th Workshop on Principles of Advanced and Distributed Simulation, 59-68. Washington, D.C.:

IEEE Computer Society.

Schordan, Markus, D. Jefferson, P. Barnes, Jr., T. Oppelstrup, and D. Quinlan. 2015. “Reverse Code

Generation for Parallel Discrete Event Simulation”. In Proceedings of 7th Conference on Reversible

Computation, edited by Jean Krivine and Jean-Bernard Stfani, 95-110. Switzerland: Springer

International.

AUTHOR BIOGRAPHIES

DAVID JEFFERSON is a Visiting Scientist at Lawrence Livermore National Laboratory. He holds a Ph.D.

in Computer Science from Carnegie Mellon University, and has worked in the field of parallel discrete

event simulation (PDES) for decades. He is the co-inventor (with Henry Sowizral) of optimistic methods

for PDES and was the architect of the first optimistic simulator, the Time Warp Operating System. He has

also worked in various other fields, including distributed computation, synchronization, cybersecurity,

public election security, and artificial life. His email address is drjefferson@llnl.gov.

PETER D. BARNES, JR. is a staff scientist at Lawrence Livermore National Laboratory. He holds a Ph.D.

in Physics from the University of California, Berkeley. His research interests include the fundamentals of

PDES, as well as adapting PDES to new application areas. He has served on the technical program

committees of PADS, WinterSim and WNS3, for which he has also served as Program Committee Chair.

He is a reviewer for TOMACS. He is the current “core” maintainer for the ns-3 simulator. His email address

is pdbarnes@llnl.gov.

797

