Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

SIMULATING NETWORKS WITH NS-3 AND ENHANCING REALISM WITH DCE

Jared S. Ivey Brian P. Swenson
402 Software Maintenance Wing Information and Communications Laboratory
Warner Robins Air Logistics Complex Georgia Tech Research Institute
Robins AFB, GA 31098, USA Atlanta, GA 30318, USA

George F. Riley

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT

Communication networks are constantly evolving with new technologies providing greater quality, resiliency,
and security to the data traversing current networks. In this ever-changing field, simulation provides an
avenue for examining the traffic within new or existing networks. In simulating a network, characteristics
and metrics of the topology may be derived without interfering with the existing framework or incurring an
immediate hardware or software cost. The popular network simulator ns-3 is an effective tool for studying
these network behaviors. This talk presents an overview of ns-3, discussing its design as a discrete event
network simulator and its capabilities. Code snippets will be examined, demonstrating how to configure
a network topology in simulation, generate packet traffic to traverse the simulated network, visualize the
network behaviors, and glean metrics from the simulation. A subproject of ns-3, Direct Code Execution
(DCE), is also described, demonstrating a mechanism for deploying real-world applications within the
simulation.

1 INTRODUCTION

Network simulation employs representative models based on real-world communication network concepts
and paradigms to reproduce realistic behaviors and statistics. It aims to accomplish this task without the
required costs of constructing equivalent testsbeds with hardware. This tutorial discusses the design and
usage of the network simulator ns-3. This popular simulator began initial development in 2006 and was
first released in June 2008(ns-3 Project 2017). It employs a discrete-event scheduler to permit researchers
and educators to construct network topologies, generate traffic to traverse the simulated network, and gather
statistics based on the effects of manipulating characteristics of the network. This tool operates at the
packet level, processing individual packets as distinct entities as they move through a network. This design
differs from some flow-based network simulation tools which monitor flows of packets with similar header
attributes. This design decision ultimately weighs the trade-offs of specificity and speed. In this regard,
ns-3 shows preference toward the former.

ns-3 should not be construed as an extension or update to the network simulator ns-2(Breslau et al.
2000) as the two projects are distinct and not directly compatible with one another. Although ns-3 indeed
borrows some design concepts from ns-2, it has also been heavily influenced by other networks simulators
such as the Georgia Tech Network Simulator (GTNetS)(Riley 2008) and Yet Another Network Simulator
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(YANS)(Lacage and Henderson 2006). Similarly, ns-3 is not related to GNS3(GNS3 Technologies Inc.
2017), a graphics-based network emulator that permits integration of network kernel images on nodes.

The reliability of the results produced by a network simulation tool such as ns-3 is ultimately determined
based on the adequacy of the implementations of the models on which it is based. These models are
constructed based on the requirements of various network protocols and standards as well as the models of
underlying devices and communication channels. In this way, the realism of such simulators can be limited
if simplifications in the models are deemed necessary. Additionally, the time required to design, construct,
and validate these models can restrict the toolset, especially when one considers the rapid evolution of the
modeled technologies. This limitation motivates an additional module of ns-3 called Direct Code Execution
(DCE). This module permits the execution of real-world network applications and protocols directly in the
simulated environment instead of attempting to design adequate representations or models.

This tutorial introduces both ns-3 and DCE through the following sections. Section 2 discusses some
of the underlying concepts behind the design of ns-3. It specifically describes discrete event simulation,
build tools for the source code and dependencies, and the general design of both the simulator core and
the components required for simulating a network topology. Visualizing simulated networks and their
behaviors is useful toward debugging and better understanding them. As such, Section 3 examines some
of the visualization tools that ns-3 provides. DCE is discussed in terms of its architecture and application
in Section 4. An example requiring the use of both ns-3 and DCE is studied in Section 5. Finally, the
conclusion of this tutorial provides links to additional exploration and information in Section 6.

2 ARCHITECTURE

This section examines the basic architecture of ns-3. It first describes the concept of discrete event simulation
as it pertains to the network simulator, discusses the build systems that ns-3 employs, and then describes
the building blocks of the simulation architecture.

2.1 Discrete Event Simulation

A discrete event simulation models a system in such a way that changes to its state occur at discrete points
in the simulation time. This concept differs from a continuous simulation which monitors system state
continuously while the simulation process itself regularly progresses its simulated time. Functions will
schedule events to occur at a future time relative to the simulated time at which the function was executed.
This scheduling operation is most generally articulated through either the Simulator: :Schedule or
Simulator::ScheduleWithContext APIL As events are scheduled and thus included in the list of
events to be processed, the ns-3 event scheduler automatically orders them such that the simulated time
can progress in a chronologically appropriate manner. The ns-3 baseline provides the ability to choose
between four data structures for managing and ordering the events: map (default), list, heap, and calendar.
Initial commencement of the simulation occurs through the Simulator : : Run function which triggers the
initial processing of events in the event list. Subsequently, the simulation may be stopped either manually
by scheduling a Simulator: : Stop event or automatically by allowing the event list to become empty.

2.2 Build Systems

For configuring and building the source code, ns-3 uses the Waf build automation tool(T. Nagy 2017).
Waf provides a Python-based framework for configuring, compiling, and installing software applications.
It aims to simplify these processes under its singular framework by allowing processes to execute any
compilation and scripting distinctly, as necessary, and in parallel. Waf also provides basic compiler and
tool configuration support. Waf allows the modularization of the ns-3 source code through wscript files
that can be discovered in the ns-3 directory hierarchy and can be collected for building by the main wa f
script. This design permits only the necessary components for a particular simulation to be built.
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Listing 1: Sample Waf script (wscript) for the CSMA module in ns-3.

def build(bld):
obj = bld.create_ns3_module(’csma’, [’network’, ’applications '])
obj.source = [
’model/backoff.cc’,
"model /csma—net—device .cc’,
"model/csma—channel .cc’,
“helper/csma—helper.cc’,

]

headers = bld.new_task_gen(features=[ ns3header ’])
headers . module = ’csma’
headers.source = [

"model/backoff .h’,
’model/csma—net—device .h’,
"model/csma—channel .h’,
"helper/csma—helper.h’,

]

if bld.env[’ ENABLEEXAMPLES’ ]:
bld.add_subdirs (’examples *)

bld.ns3 _python_bindings ()

Interacting with Waf typically involves the use of three distinct command arguments. To configure
particular environment variables or specific ns-3 modules, the command . /waf configure is used. If
a wscript file is modified, ns-3 will need to be reconfigured with this command. For the source code to
be compiled and linked, the . /waf build command (or simply ./waf) is called. Waf will build all
of the necessary modules and dependencies based on the specified configuration and then display those
modules upon successful completion. To actually execute an instance of network simulation complete with
topology creation and traffic generation, referred to as an ns-3 script, one supplies the command . /waf
——run (or ./waf ——pyrun for Python scripts) along with the name of the script to be run.

Listing 1 displays the wscript for the CSMA module of ns-3. From the listing, the process for creating
the module and specifying its source code and header files can be seen. Also, one can see how additional
functionality can be described, either by specifying certain environment variables during configuration,
traversing further subdirectories in order to discover additional wscript files, or calling other Python scripts
contained in other objects.

Above ns-3 and Waf in terms of directory hierarchy is an extra layer of build automation that can
be used by way of the Python-based bake tool(INRIA 2012). Bake provides the capability to specify
additional configurable options and remedy additional dependency requirements through an XML-based
specification file. In this way, external software libraries can be retrieved and installed for local use by
ns-3. This functionality is especially useful for DCE as it resides external to the baseline ns-3 source code
and must be configured appropriately to recognize and employ the libraries that ns-3 creates. Bake can
perform all of the necessary configurations and installations automatically, hiding these complexities from
the user such that he/she can simply use the software. Like Waf, bake requires an initial configuration step
in order to specify both the configuration file that will be used and a specific configuration set in that file
that will be built. Unlike Waf, bake next requires a download step that will retrieve any and all necessary
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Listing 2: Sample script describing the simulator. Excerpt of source code from https://www.nsnam.org/
docs/release/3.26/doxygen/sample-simulator_8cc_source.html

#include <iostream>

#include ”ns3/simulator.h”

#include ”ns3/nstime.h”

#include ”ns3/command—line .h”

#include ”ns3/double.h”

#include ”ns3/random—variable —stream .h”
using namespace ns3;

int main (int argc, char xargv][])

{
CommandLine cmd;
cmd. Parse (argc, argv);
MyModel model;
Ptr<UniformRandomVariable> v = CreateObject<UniformRandomVariable >();
v—>SetAttribute (”Min”, DoubleValue (10));
v—>SetAttribute (”Max”, DoubleValue (20));
Simulator :: Schedule (Seconds (10.0), &ExampleFunction, &model);
Simulator :: Schedule (Seconds (v—>GetValue ()), &RandomFunction);
Eventld id = Simulator:: Schedule (Seconds (30.0), &CancelledEvent);
Simulator :: Cancel (id);
Simulator ::Run ();
Simulator :: Destroy ();

}

source code packages. Once all of these various packages have been downloaded, bake can then be used
to build and install them in a way that ns-3 and/or DCE can make use of them.

2.3 Simulator Core

The ns-3 simulator core integrates a number of components to provide the key aspects of a discrete event
simulator: time, events, and the simulator and event scheduler themselves. Additionally, the interfaces
for command line arguments and random variables assist in providing a more dynamic nature to an ns-3
simulation both programmatically and analytically. Listing 2 provides a simple example detailing some of
the commands required when interacting directly with the simulator.

Time within the context of ns-3 represents either a relative or absolute time within the simulator.
When referring to time in simulation, a distinction is made between real time, referred to as wallclock
execution time, and simulation time, an abstraction modeling the progression of time in terms of the events
processed by the simulator. The Time object in ns-3 implements the latter of these two concepts. To avoid
floating point discrepancies across various hardware and operating system platforms, the simulated time
is stored as a large integer. Manipulation of the simulated time occurs through operations across the ns-3
Time objects. Most standard operators are overridden to permit interactions with Time objects similarly to
integers or floating point values. The default time resolution is nanoseconds, but representation of days,
hours, minutes, and seconds is allowed as well. Time resolution is permitted to femtoseconds (1071).
Furthermore, although the underlying value is stored as an integer, the API of the ns-3 Time class allows
values to be set with and exported as floating point values.
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Events in ns-3 are simply function calls that will be processed at a specific simulated time. In this
way, the events act as callback operations that will be triggered in relation to some other occurrence in the
simulation. As shown in Listing 2, events can be scheduled with the Simulator: :Schedule APIL The
event specifies the relative simulated time when it should be processed, a function or callback that should
be executed when the event is processed, and any input variables required based on the function signature.
The relative simulated time provided to the Schedule function represents a time based on the current
simulation time at which the function is called. In the case of Listing 2, the simulated time is zero since
Simulator: :Run has not yet been called, and the resulting scheduled times will occur in simulation at
their specified times in the future. Additionally, ns-3 events possess identifying values to allow for status
checking or removal from the scheduler, as evidenced by the Simulator: :Cancel function.

As previously discussed briefly in Section 2.1, the Simulator class comprises the mechanisms
and data structures for implementing the discrete event simulator for ns-3. By default, events are main-
tained in a map and can be added in chronological order in terms of simulation time through either the
Simulator::Schedule or Simulator::ScheduleWithContext methods. As Listing 2 shows,
a number of operations beyond event scheduling are available under the Simulator class. Of particular
importance is the Simulator: : Run function which initiates the program loop through which events can
be processed. For this particular example, only two events will be processed (since one of the Schedule
operations is accompanied by a call to Cancel). Once these two events have been processed within the
Run loop, the simulator will exit the program loop on its own. Alternatively, the Simulator: :Stop
function may be used to specify a relative time in simulation when the simulator should be stopped.
Following completion of the Run operation, the call to Simulator: :Destroy is used to destruct the
employed object and clean up memory used by the simulator.

Besides the default simulation scheduler, ns-3 provides some alternatives to consider when interacting
with simulated topologies. A “Real Time” simulator implementation is available when the simulation
time needs to align with the wallclock execution time. The requirement for simulation time to coincide
with real time is most evident when the simulator is intended to operate as more of an emulation. This
capability in turn allows the simulated topology to interact with devices outside of ns-3 and the simulated
environment through either its File Descriptor (FD) or Tap Bridge network devices. These device objects
can be configured and used by ns-3 to send simulated packets to destinations outside of the simulation. As of
ns-3.8, a distributed simulator implementation has also been available to mitigate scalability issues related
to simulating significantly large topologies(Pelkey and Riley 2011). In this initial version, the mechanisms
underlying this implementation have been based on the Distributed Snapshot algorithm(Mattern 1993). In ns-
3.19, an additional distributed simulator option has been provided that employs null message synchronization
derived from the Chandy-Misra-Bryant (CMB) algorithm(Chandy and Misra 1979, Bryant 1977).

Command-line arguments are handled through the CommandLine class, permitting dynamic config-
uration of script parameters at runtime. As shown in Listing 2, following creation of the CommandLine
object, the Parse method handles the resolution of command-line arguments by analyzing the inputs to
the main program. What is not shown in the listing but will be covered in Section 5 is that an additional
set of steps between creation of the CommandLine object and calling Parse is required to specify valid
command-line arguments. This operation is handled through the Addvalue method.

Random variables in ns-3 augment a simulation script in an effort to better model the stochastic
nature of real-world network behaviors while doing so in a manner that can be adequately reproduced.
As Listing 2 demonstrates, random variables for ns-3 are provided through the creation of an ns-3 smart
pointer Ptr object that holds a reference to a pseudo-random number generator through which random
values are derived. Attributes such as the minimum and maximum values of the uniform random variable
in the listing are manipulated through the SetAttribute method in the same way that attributes of
other ns-3 Pt r objects are handled. Requests for a value from the random variable stream employ the
GetValue function which will return a floating point value that can in turn be introduced to a Time
object. (Values may also be acquired as 32-bit integers with the Get Integer method.) This process
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then allows the event scheduler to receive events with a certain level of randomness, enhancing the realism
of the simulation. With no additional configuration, the same values will be produced from the random
variable stream each time the simulation is executed. However, modification of the random variable seed or
run parameters can be introduced(ns 3 project 2017). This manipulation prevents the results from different
executions of the simulation script from being identical and allows statistical analyses to be performed across
the collected datasets. Recording the seed and run values during experimentation also permits others to
reproduce the observed results for verification. The ns-3 baseline currently provides the following selection
of random variable models: constant, deterministic, empirical, Erlang, exponential, gamma, log-normal,
normal, Pareto, sequential, triangular, uniform, Weibull, zeta, Zipf.

2.4 Network Components

Figure 1 provides a diagram of the components that constitute a simulated topology in ns-3. A Node
object in ns-3 models a generic computer system that can act as any number of “boxes” in the simulated
topology. As an end host, a Node object can represent a computer as either a server or client appliance,
generating or receiving packet traffic. When they are not residing on the edges of the network, the Node
objects can alternatively act as routers, switches, firewalls, NATs, or any other middlebox based on the
functionality which is installed on them.

Figure 1: Diagram of the components modeled in an ns-3 simulated topology.

Node objects are connected to one another via either wired or wireless links. Specific link classes in
ns-3 can model a variety of capabilities, with wired functionality such as the point-to-point protocol (PPP)
and CSMA or with wireless operations such as Wi-Fi or LTE as shown in Figure 1. The simulated links
in ns-3 are coupled such that the NetDevice subclass will only interact with its appropriate Channel
subclass. For example, simulation of PPP requires that Node objects have Point ToPointNetDevice
objects installed on them and individual Node objects are connected using PointToPointChannel
objects.

Working its way up the network stack, the Channel objects model the physical layer (1) while the
NetDevice objects act as the link layer (L2). Following this path, the network layer (L3) is implemented
in a number of ways. IPv4 models for ARP, ICMP, UDP, and TCP are well supported in ns-3. Some IPv6
support is provided as well with neighbor discovery (ND), ICMPv6, IPv6 extension headers, UDP, and
TCP. Routing with IPv4 can be accomplished through static or global means, the on-demand NIx vector
mechanism, RIPv2, or the wireless protocols OLSR, AODV, DSR, or DSDV. Routing with IPv6 is less
robust with static routing or RIPng being the two major ways to maneuver traffic.

The transport layer (LL4) provides both UDP and TCP support and connects the packet-forwarding
components in the lower layers to packet-generating aspects of the application layer. It accomplishes this
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coordination through a sockets API specific to ns-3 but mirroring traditional Berkeley sockets. TCP in ns-3
can be handled in a variety of ways either natively in ns-3, through the Network Simulation Cradle (NSC),
via DCE with the Linux kernel stack, or through the use of virtual machines. Furthermore, congestion
control for native ns-3 TCP is accomplished through any one of the following implementations: BIC,
HighSpeed, Hybla, Illinois, Scalable, Vegas, Veno, WestWood(+), or YeAH.

Traffic generation and reception occurs at the application layer through the previously mentioned ns-3
sockets API using subclass objects of the Application class. Users can create their own applications
to act as processes on the ns-3 Node objects. They may also use any of the provided applications in
the ns-3 baseline: BulkSendApplication, OnOffApplication, PacketSink, UdpClient,
UdpServer, UdpEchoClient, UdpEchoServer, V4Ping, Ping6, or Radvd.

The design of ns-3 provides two levels of granularity when developing a simulation script. At the lower
level, users can directly interact with the various models provided by ns-3 to configure the components of
their simulation with a finer granularity. However, this level of granularity would result in a simulation script
that would be unnecessarily long and tedious. Instead, a “helper” API is included with the ns-3 baseline to
abstract and simplify commonly collected program functionality. Anything written with the helper API could
also be coded using the low-level API. Since network simulations often perform sets of identical actions on
groups of components, ns-3 provides container objects as part of the helper API to realize this functionality.
For example, multiple nodes can be handled via a NodeContainer object. Using a more specific
example, the Install method of the PointToPointHelper takes one of these NodeContainer
objects and returns a NetDeviceContainer object, holding the NetDevice objects and their link
layer information (i.e. Ethernet addresses) associated with that installed connection. Subsequently, the
Assign method of an Ipv4AddressHelper object can take that NetDeviceContainer and return
an IpvdInterfaceContainer object, holding Ipv4dInterface objects and the network layer
information (i.e. IPv4 addresses) now associated with those NetDevice objects. Through the use of
these simple method calls on the associated helper objects, the helper API aims to make ns-3 scripts easier
both to read and write.

3 VISUALIZATION

Visualization of a simulated network topology contributes to demonstrating its operation and assists in
gauging its correctness. Graphical observation of the network simulation allows a user to see how a network
is acting and reacting based on the transmission of packets. Furthermore, visualization acts as a convenient
method for debugging a network simulation, verifying that the topology has been constructed and connected
as the user intends and that traffic is traversing the topology as expected. The network simulator ns-3 does
not have a preferred method of visualization. However, several tools have been developed, and this section
discusses three of them: NetAnim, PyViz, and FlowMonitor.

3.1 NetAnim

NetAnim, developed by George Riley and John Abraham, is a network animator that operates based on
an XML trace file collected during the ns-3 simulation. It supports IPv4 and can animate both wired and
wireless links, displaying packets and their metadata as they traverse these links. It visualizes nodes and
their mobility while also being able to display node information such as its IPv4 and Ethernet addresses.
Additionally, routing tables for each node can be displayed as they develop over the course of the simulation.
Packet timelines and node statistics can also be displayed through additional sections of the NetAnim tool.

NetAnim is developed using the Qt4 GUI framework and as such is built separately from ns-3 using the Qt
build tools. After NetAnim has been built, it can load an XML trace file generated specifically for NetAnim
animation by an ns-3 simulation script. To create this trace file, the ns-3 simulation script must be configured
properly. The net anim module must be specified as a dependency in the wscript of the script module, the
simulation script must include the netanim-module.h file, and an AnimationInterface object
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must be created in the script. This AnimationInterface object can be used to set the positions of
the simulated nodes in the topology so they appear in the NetAnim visualization.

3.2 PyViz

PyViz differs from NetAnim in that it is a live visualizer. It actively scans the running simulation script to
determine how to visualize the topology and its traffic without the use of trace files. Similarly to NetAnim,
PyViz can display information specific to each simulated node. However, rather than displaying individual
packets, it visualizes packet flow bitrates during packet transmission. As a live visualizer, it provides the
ability to move forward in a running simulation while also including an interactive Python console for
analyzing the instantaneous state of running objects. PyViz is written in Python but works for both Python
and C++ ns-3 simulations. When all package dependencies for this tool are met, it can be enabled for use
by ns-3 by simply including the flag ——vis to the . /waf ——run command.

3.3 FlowMonitor

FlowMonitor(Carneiro, Fortuna, and Ricardo 2009) is not a graphical visualizer but instead an analytical
visualizer, aiding researchers in easily deriving flow metrics from ns-3 simulations. Itis a statistics capability
that can interact with PyViz. Figures 2 and 3 visually describe the architecture and the statistics gathered by
FlowMonitor, respectively. Integrated into the ns-3 baseline as one of its modules, it installs probes on the
simulated nodes to track packets and measure the parameters found in the FlowProbe: :FlowStats
component for each flow. Most typical interactions with FlowMonitor can be accomplished through its
helper similarly to other ns-3 helper classes. Through the helper, the monitor can be installed, configured,
and used to print statistics. When the simulation completes, the FlowMonitor data can be exported into an
XML file.

Figure 2: FlowMonitor architecture.

4 DIRECT CODE EXECUTION

DCE(Camara et al. 2014, Tazaki et al. 2013, Inria 2013) is a subproject of ns-3 that permits testing of
real-world network applications within the simulated environment of ns-3. It allows execution of user space
and kernel space network protocols and applications from within an ns-3 simulation, enhancing the realism
of the simulated network. Simulated nodes in an ns-3 topology have these network applications installed
on them, much in the same way stock applications in the ns-3 baseline are installed. The applications
generally require no modifications to their source code. The source code for a particular application must
be available though because it must be rebuilt to act as a dynamic binary rather than a static executable.
Rebuilding applications in this way simply requires additional configuration flags for the compile and link
instructions in the build process of the applications. When an application is installed on a node using DCE,
it is then able to interact with the simulated network through either the ns-3 simulated network stack or
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Figure 3: Statistics gathered by FlowMonitor.

the Linux kernel stack. The installed binary functions within DCE similarly to how a process running on
an actual operating system would.

DCE has seen significant adoption in the realm of networking research as a means to enhance the
realism of network simulations. The fields of mobile and wireless networks have been some of the most
permissible areas for DCE adoption due to the frequency with which these technologies are updated.
Introducing implementations of new technologies from these areas is more direct via DCE as compared
to maintaining appropriate models of these protocols in simulation. The OLSR model in ns-3 has been
compared against a real-world OLSR daemon with DCE, identifying issues in both implementations(Bikov
and Boyko 2011). By tuning both the simulated model and the real-world program, both capabilities were
updated to more adequately represent the OLSR RFC. Additional use cases for DCE have been demonstrated
for content-centric networking (CCN) over mobile ad-hoc networks (MANETSs) and multipath TCP over
LTE and wireless in (Kwon et al. 2015, Tazaki et al. 2013). In both cases, no source code modifications
were required for the original programs. Furthermore, research that enables the use of additional languages
such as Python and Java has also been examined, expanding the number of potential applications that can
be studied directly and portably through DCE(Ivey and Riley 2016).

DCE comprises three layers: the core, the kernel, and a POSIX layer. The core layer coordinates the
actions of the simulated processes within the context of the ns-3 event scheduler. At this layer, global
variables are loaded in a way that they can be shared by the multiple simulated processes. Threads, memory
stack space, and the heap for each particular process are maintained here as well. The kernel layer links
the Linux TCP/IP stack to the simulated physical layer (L2) of ns-3. The installed applications then use
this hybrid simulated stack for packet transmission using application-level socket function calls.

The POSIX layer intercedes the system GNU C Library (glibc), the standard library for the C programming
language. Calls to glibc functions are captured by this layer for handling. In many cases, such as string
manipulation or mathematical operations, DCE requires no additional management and can simply pass the
calls to the glibc of the underlying system. Time-related functions are managed in relation to the simulated
time rather than the wallclock time. Socket function calls use the simulated sockets of ns-3 rather than
actual system sockets that would interact with the external network. Subprocesses and threads are handled
in terms of their simulated contexts instead of using the subprocessing and threading capabilities of the
underlying system. The POSIX layer also manages local files for each DCE-configured application in terms
of specific file space allocated for each node. For example, a node identified as Node O would handle files
for a DCE-configured application at runtime from a system directory named files-0. This file space would
contain the output files created during execution of the application. It could also be used for configuration
files or other runtime file dependencies specific to the application on that particular node.
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Listing 3: Instructions to install ns-3 and DCE

hg clone http ://code.nsnam.org/bake bake
mkdir dce—wsc

cd dce—wsc

../ bake/bake.py configure —e dce—ns3 —1.9
../ bake/bake.py download —vvv

../ bake/bake.py build —vvv

DCE provides a number of options when determining how to configure the operation and management
of the DCE-configured applications. Generally, users will choose whether to use the simulated internet
stack of ns-3 or the Linux kernel stack. Less typical configuration options allow the user to determine
how processes and binaries are handled. The FiberManager class in DCE handles the management
of execution contexts for the processes and subprocesses of DCE-configured applications. DCE provides
the option within the FiberManager class to either use a system modeled after the ucontext.h POSIX
API or the pthread library. These choices provide the user with the choice of either efficiency or easier
debugging, respectively. Similarly, the user has an option when determining how DCE will load the
binaries for the installed applications through its LoaderFactory class. This class by default uses
the CoojaLoaderFactory, which supports fork. Alternatively, a more efficient but somewhat less
reliable option is the D1mLoaderFactory.

C and C++ programs that will operate as DCE applications must be recompiled to be recognized as
dynamic libraries rather than static executables. The application must be configured in a way that DCE
can load the main function of a network application as if it was just another function of the “shared”
library. Compiling the source code into position-independent code with the £P IC flag configures it similarly
to a shared object library. Linking with pie creates a position-independent executable and rdynamic
prompts the resulting binary to load all of its symbols into the dynamic symbol table. The addition of
these flags when rebuilding a network application is typically the only requirement for compatibility with
DCE. However, certain functions used by the application may not currently be implemented in the glibc
coverage of the DCE baseline. If so, they will need to be included in a simulation-appropriate manner.

5 EXAMPLE WALKTHROUGH

This example takes a simplified version of the dce-iperf example found in the DCE baseline. It creates a
network of two nodes connected and configured with a single wired link using ns-3 simulation components. It
then installs two DCE-configured applications onto each simulated node such that one node will act as an iperf
client transmitting packets to the other node acting as an iperf server. It uses the latest releases of the ns-3 and
DCE libraries, which at the time of this writing are ns-3.26 and DCE-1.9. For this tutorial, it assumes that the
operating system in use is Ubuntu 14.04. Initial installation instructions using bake are provided in Listing 3.
Prerequisite software packages can be found at https://www.nsnam.org/wiki/Installation#Ubuntu.2FDebian.

An excerpt of the bake configuration file used to download and build ns-3 and DCE is shown in
Listing 4. Based on this part of the configuration, a version of iPerf 2.0 will be downloaded, built, and
installed. This installation is not system-wide but simply local to the overarching bake installation. This
excerpt demonstrates how bake will download the source code for iperf (specifically into a directory named
iperf-2.0.5under dce-wsc/source/) and then build and install it in a location that DCE can find it
(specifically in dce-wsc/build/bin). The bake installation tool understands based on the configuration
that the source code is retrieved from an archive rather than an online repository. The configuration also
allows commands to be executed and patches to be introduced prior to installation. Configuration of the
build instructions specifically adapt the resulting iperf executable for compatibility with DCE as noted by
the pie and rdynamic flags introduced during linkage. (Compile configuration using the fPIC flag is
introduced in the patch file.)
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Listing 4: Excerpt of bake configuration file for installing iperf for DCE usage

<module name="iperf”’>
<source type="archive”>
<attribute name="url”
value="http :// iperf. fr/download/source/iperf —2.0.5—source . tar.gz”/>
<attribute name="extract_directory” value="iperf —2.0.5”/>
</source>
<build type="make” objdir="yes”>
<attribute name="pre_installation”
value="cd $SRCDIR ;./ configure —prefix=$INSTALLDIR”/>
<attribute name="patch”
value="$SRCDIR/../ns—3—dce/utils /iperf_4_dce.patch”/>
<attribute name="build_arguments”
value ="LDFLAGS=—pie LDFLAGS+=—rdynamic”/>
</build >
</module>

The source code for this tutorial is shown in Listing 7. (It can be copied into the dce—-iperf.cc
file located in dce-wsc/source/ns—3-dce/example.) Lines 1-6 display the necessary header files
to be included. Lines 10-12 demonstrate the usage of the CommandLine object to permit command
line arguments, in this case specifying the number of buffers that the iperf client will transmit. Two
simulated nodes are created via the NodeContainer helper class (line 14), and these two nodes are
connected using a PointToPointHelper object (line 18). This helper is configured to create a wired
point-to-point link between the two nodes with a bandwidth of 5Mbps and a speed-of-light delay of 1ms.
The InternetStackHelper object installs the ns-3 simulated TCP stack onto the two nodes (line 19).
IPv4 addresses are then assigned to the devices on each node with the help of the Ipv4AddressHelper
class (line 22). This assignment will result in Node 0 possessing an IP address of 10.1.1.1 while Node 1
will be assigned 10.1.1.2. The final line of ns-3 topology configuration (line 23) is not necessary for this
example but demonstrates the simplicity with which routing can be enabled in ns-3. Rather than employing
a coordinated routing mechanism, such as BGP, for each node in the simulated topology, the simulation
collectively manages routing for the entire topology and realizes this mechanism in conjunction with the
Ipv4GlobalRoutingHelper class. In this way, simulated packet routing can be accomplished in a
simpler, more efficient manner.

Lines 25-40 of Listing 7 enable the two nodes created and configured by ns-3 to use the real-world iperf
application within the simulated environment. The DceManagerHelper class prepares the nodes to
operate collaboratively with the three layers of DCE. The DceApplicationHelper class then composes
the proper iperf commands and installs them onto each node. The SetBinary method (lines 28, 36)
specifies which executable should be used. The ResetArguments and ResetEnvironment methods
ensure that no previous information is erroneously connected to the executable. The AddArgument
function can then be called as many times as necessary to construct the remainder of the command that will
be executed. In this way, Node 0 will by default receive the following command: iperf -c10.1.1.2 -1
1 —n 1M; Node 1 will in turn make the following call: iperf —s. The start times for each DCE application
are controlled in this example using the Start method of an ns-3 ApplicationContainer object.
Since the St op methods are not called for either application or the simulator in general, the simulation will
stop once the iperf client has transmitted its specified number of buffers. The simulator begins processing
events with the call to Run, and upon completion, cleans memory using the Destroy method (line 42).

The simulation can be run directly from the dce-wsc/source/ns-3-dce directory in a terminal
using the following command: . /waf ——run dce-iperf. (Alternatively, the number of buffers can be
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Listing 5: Output of Node 0 (iperf client)

Client connecting to 10.1.1.2, TCP port 5001
TCP window size: 128 KByte (default)

[ 3] local 10.1.1.1 port 49153 connected with 10.1.1.2 port 5001
[ ID] Interval Transfer Bandwidth

[ 3] 00— 1.0 sec 640 KBytes 5.24 Mbits/sec

[ 3] 0.0— 1.6 sec 1.00 MBytes 5.16 Mbits/sec

Listing 6: Output of Node 1 (iperf server)

Server listening on TCP port 5001
TCP window size: 128 KByte (default)

[ 4] local 10.1.1.2 port 5001 connected with 10.1.1.1 port 49153
[ ID] Interval Transfer Bandwidth
[ 4] 0.0— 2.6 sec 1.00 MBytes 3.20 Mbits/sec

modified using this command: . /waf ——run "dce-iperf ——num=<num>".) Once the simulation com-
pletes, all output generated for the simulated Nodes 0 and 1 will be sent to files in the following locations, re-
spectively: ns—3-dce/files-0/var/log/<pid> and ns-3-dce/files-1/var/log/<pid>.
Listings 5 and 6 display the contents of the respective stdout files of Nodes 0 and 1. These output files
mirror the feedback that would be returned from two computer systems transmitting iperf data across a
real network. This particular example, although simple, demonstrates the potential when using DCE to
execute real-world network applications from within the ns-3 simulated environment.

6 ADDITIONAL RESOURCES

Although this tutorial covers a variety of topics concerning ns-3 and DCE, additional information can be
found as well through a number of different channels. A brief list is provided to point users to additional
links where further assistance can be found:

Official ns-3 website: https://www.nsnam.org
API documentation: https://www.nsnam.org/doxygen
Wiki: https://www.nsnam.org/wiki/Main_Page
Online tutorial: https://www.nsnam.org/docs/release/3.26/tutorial/html/index.html
DCE resources: https://www.nsnam.org/overview/projects/direct-code-execution/
Python/Java integration (based on ns-3.24.1/DCE-1.7): https://github.com/jaredivey/dce-python-sdn
Mailing lists for:
— Users: https://groups.google.com/forum/#!forum/ns-3-users
— Developers: http://mailman.isi.edu/mailman/listinfo/ns-developers
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Listing 7: Simplified example of dce-iperf.cc with two nodes transmitting data via iperf

#include “ns3/network—module.h”
#include ”ns3/core—module.h”

#include ”ns3/internet —module.h”
#include ”ns3/dce—module.h”

#include “ns3/point—to—point—module.h”
#include “ns3/applications —module.h”
using namespace ns3;

int main (int argc, char xargv[]) {

std::string num = 71IM”;
CommandLine cmd;
cmd. AddValue ("num”, “Number of packets. Default IM.”, num);
cmd. Parse (argc, argv);
NodeContainer nodes; nodes.Create (2);
PointToPointHelper pointToPoint;
pointToPoint. SetDeviceAttribute (”DataRate”, StringValue (”5Mbps”));
pointToPoint. SetChannelAttribute (”Delay”, StringValue ("Ims”));
NetDeviceContainer devices; devices = pointToPoint.Install (nodes);
InternetStackHelper stack; stack.Install (nodes);
Ipv4AddressHelper address;
address.SetBase (710.1.1.0”, 7255.255.255.252”);
Ipv4InterfaceContainer interfaces = address.Assign (devices);
Ipv4GlobalRoutingHelper :: PopulateRoutingTables ();
DceManagerHelper dceManager; dceManager. Install (nodes);
DceApplicationHelper dce; dce.SetStackSize (1 << 20);
ApplicationContainer apps;
dce.SetBinary (”iperf”); // Launch iperf client on node O
dce.ResetArguments (); dce.ResetEnvironment ();
dce . AddArgument ("—c”); dce.AddArgument (710.1.1.27);
dce . AddArgument ("—1i”); dce.AddArgument (717);
dce . AddArgument ("—n”); dce.AddArgument (num);
apps = dce.Install (nodes.Get (0));
apps.Start (Seconds (0.7));
dce.SetBinary (”iperf”); // Launch iperf server on node 1
dce.ResetArguments (); dce.ResetEnvironment ();
dce . AddArgument ("—s”);
apps = dce.Install (nodes.Get (1));
apps. Start (Seconds (0.6));
Simulator::Run (); Simulator:: Destroy ();
return O;

}

704



