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ABSTRACT

Vehicle sharing can increase the efficiency of transportation infrastructures and improve environmental
sustainability. A distributed operation model is needed to improve a vehicle’s intelligence and autonomy.
In this research, we develop an agent-based simulation model for a linear transportation system to evaluate
three different vehicle sharing operations that include: 1) an independent operation where vehicles are
isolate, 2) a centralized operation which assumes a central supervisor agent controls all the vehicles, and
3) a distributed operation where vehicles can communicate with others and make decisions by themselves.
Our simulation results demonstrate that: 1) the centralized and distributed models are significantly better
than the independent model for large car capacity, 2) centralized model performs significantly better than
the distributed model for large car capacity and small communication range, and 3) the distributed model
can perform better than the centralized model for large car capacity and communication range.

1 INTRODUCTION

Transportation consumes 32% of the energy among all the consumption units in the U.S. (Pérez-Lombard
et al. 2008). Due to its incomparable mobility, flexibility and freedom to travel, private automobiles account
for over 83% of the total passenger trips in the U.S. which contributes approximately 17% of household
expenses allocated to transportation, 70% of the total petroleum consumption, and 30% of greenhouse
gas emissions (Bureau of Transportation Statistics 2014). Private vehicles occupy 25% of urban surfaces
(Shoup and Manville 2005) which are usually in the idle mode for 23 hours per day (Litman 2007).
Although a public transit system can provide solutions to reduce transportation cost, energy consumption
and greenhouse gas emissions, it may not be well accepted due to its low service quality and flexibility,
e.g., causing passenger discomfort and difficulty in accessibility (Sinha 2003). As a result, a large national
initiative, shared mobility, has been launched recently to help increase the efficiency of transportation
infrastructures and improve environmental sustainability (Laporte et al. 2015). In this research, we focus
on shared mobility services in which a vehicle can be driven by a person (e.g., in ridesourcing services)
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or an autopilot (e.g., in future autonomous vehicle sharing systems) to seek for customers when it is not
occupied. Traditional vehicle sharing faces one major challenge, nearby vehicle availability (Li et al. 2016),
that prevents it from being widely used in the public. If no vehicle is nearby, a person may be stranded,
thus having to wait a long time or walk a great distance. In this situation, this person may give up using
shared vehicles for this trip and may be further dismayed of using this service for his/her future travels.

Although the practice of vehicle sharing can be dated back to 1940s in Europe and to 1980s in
North America (Shaheen and Cohen 2013), quantitative research on the vehicle sharing system modeling
is relatively scarce. Early vehicle sharing systems only served a limited number of members and were
regarded as niche markets (Millard-Ball et al. 2005). Based on the existing fleet assignment models (Du
and Hall 1997), several modeling approaches were adopted to analyze the operations of vehicle sharing
systems. Simulation models (Barth and Todd 1999, Ciari et al. 2009, Uesugi et al. 2007) were built
to analyze the sensitivity of the system cost and the service quality to system parameters such as fleet
size and vehicle relocation. Vehicle sharing has also been investigated in the context of autonomous
vehicles (AVs). For example, the autonomous taxi service that has a fixed taxi service and allows AVs
to operate between stands and pick up passengers is investigated (Ford 2012) where vehicles can relocate
to more favorable locations for potential next demand when needed. While promising, we notice that
most of the existing research focuses on centralized operations of vehicle sharing where each vehicle is
subject to the same central dispatcher’s control. The centralized models impose substantial communications
and computational requirements that prohibit their application for large-scale real-world vehicle sharing
problems (e.g., possibly involving millions of vehicles running on a massive transportation network in
a metropolitan area). Today, with the rapid development of the Internet of Things technologies (Atzori
et al. 2010), spatially and temporally distributed vehicles and passengers embedded with mobile devices,
software, and sensors can freely form interconnected networks to collect and exchange data, and improve
vehicles’ localized intelligence to maximize their own interest.

Various models and algorithms have been developed to study the distributed decision problems, such as
game theory (Xiao et al. 2005), marketing approach (Jennergren 1973, Sandholm 1998), coalition theory
(Klusch and Gerber 2002), collaborative optimization (Tappeta and Renaud 1997), just to name a few.
However, most of the existing distributed implementations are not absolutely parallelized or have relatively
complex structures (e.g., peer-to-peer structure) which prohibit their applications for large scale vehicle
sharing problems. In this paper, we will explore the applications of swarm intelligence for distributed
operations of vehicle sharing. In our proposed distributed model, we envision that certain collective
behaviors (e.g., cost effectiveness, robustness) can emerge when individual vehicles can form swarms with
others in their neighborhood to freely exchange information. Through mimicking the behaviors of ants
which emit pheromone to the environment to enable efficient communication with others to search food
(Dasgupta 2008), a digital pheromone mechanism is designed to enable efficient indirect communication
among vehicles. We will develop an agent-based simulation model to compare the performance of the
centralized and distributed models for vehicle sharing operations under various settings of car capacity and
communication range. In this exploring study, we explore a linear transportation system since its simple
structure can easily reveal managerial insights while it is also commonly seen in practical transportation
systems (e.g., a transportation corridor or a strip-shaped city). Four performance metrics including total
time steps to deliver all the passengers, average vehicle idle time, average passenger waiting time, and
maximum passenger waiting time are proposed to evaluate the vehicle sharing operation models.

This paper is organized as follows: the agent based simulation models for vehicle sharing operation
are introduced in Section 2, followed by the simulation results in Section 3, and conclusions and future
research are drawn in Section 4.

2 MULTI-AGENT MODELING FOR VEHICLE SHARING OPERATION

Due to its advantages to model complex systems, the agent-based simulation has been applied to a wide
variety of areas including manufacturing (Shen and Norrie 1999), transportation (Chen and Cheng 2010),
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economics (Chen et al. 2012), marketing (Negahban and Yilmaz 2014), social sciences (Axelrod 1997),
and biological system (Hinkelmann et al. 2011), just to name a few. In this research, we employ the
agent-based modeling approach to simulate vehicle sharing operations. Three types of agents are designed
which include: 1) supervisor agent, 2) car agent, and 3) passenger agent. The features and behaviors for
these three agents are presented in Table 1.

Table 1: Definition of agent features and behaviors.

Agent Category Name (Description)

Car

Feature

f 1: starting point (e.g., [0, 0])
f 2: initial time (the time period that the car is available in the system)
f 3: current position (e.g., [35, 10])
f 4: capacity (# of seats, e.g., 3, 4)
f 5: moving direction (e.g., east, west, south, north)
f 6: idle time (# of time periods without passengers on board)
f 7: on board passengers
f 8: waiting passengers (observed passengers that are not picked up)
f 9: expected passenger (passengers to pick up)
f 10: communication range (e.g., 1 mile, 2 miles)

Behavior

b1: pick up
b2: drop off
b3: U turn
b4: move
b5: get waiting passengers from car itself
b6: get waiting passengers from neighbors
b7: identify expected passengers from the waiting list

Passenger Feature

f 1: origin (e.g., [0, 0])
f 2: destination (e.g., [50, 5])
f 3: initial time (the time period that the passenger is available in the system)
f 4: current position (e.g., [35, 10])
f 5: status (0: waiting, 1: on board, 2: delivered)
f 6: car id (ID for the car to pick up the passenger)
f 7: on board time
f 8: arrival time

Behavior b1: move (the passengers can only move with a car when they are on board)

Supervisor
Feature f 1: waiting passengers (all the observed passengers that are not picked up)

f 2: available cars (all the cars that are not full)

Behavior b1: get waiting passengers from all the cars
b2: dispatch available vehicles to pick up waiting passengers

Three vehicle sharing operation models are studied. The first one is a rule-based independent operation
model where each vehicle is randomly driven on the road and it will pick up all the observed passengers
if it is not full. In this model, the vehicles do not have any communication and information exchange with
other vehicles. The second one is a centralized operation model where each vehicle can communicate with
a central supervisor agent (see Figure 1a). In this model, the vehicle will record the positions of all the
passengers it observes but does not have capacity to pick up. The vehicles will exchange the passenger
information with the supervisor agent. To this end, the supervisor agent will have a complete list of all
the unsatisfied passenger demand, and it will assign a nearest vehicle to pick up each passenger. In this
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model, the vehicles fully comply with operation commands from the supervisor agent instead of having
intelligence to autonomously operate themselves. The third one is a swarm intelligence based distributed
operation model where each vehicle can communicate with other vehicles in its neighborhood (see Figure
1b). Similar to the centralized model, each vehicle will record the positions of all the passenger demands
it observes and emit the list of waiting passengers as digital pheromone to the environment which can be
sensed by other vehicles in its neighborhood. According to the information received from other vehicles, the
vehicle can have a clear understanding about the passenger demands in its local area and can automatically
and intelligently make decisions to pick up the nearest passengers.
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Vehicle dispatch 
decision

Pick up 
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Arrive at 
destination?

Drop off 
passenger

Y
N

Supervisor 
Agent

Car 
Agent

(a) Flow chart for centralized model.
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(b) Flow chart for distributed model.

Figure 1: Vehicle sharing operation models.

Let c, p represent the cth car and the pth passenger, NC and NP represent the number of cars and
number of passengers, tc,i, tp,0, tp,ob, and tp,a represent the total idle time for car c, the initial time, on board
time and arrival time for passenger p respectively. We propose four metrics to evaluate the performance
of these three operation models which include: 1) total number of time steps to deliver all the passengers
T (see Eq. (1)), 2) average idle time for all the cars AIT (see Eq. (2)), 3) average waiting time for all the
passengers AWT (see Eq. (3)), 4) maximum waiting time for all the passengers MWT (see Eq. (4)). In
this study, the passenger’s in-vehicle travel time is not affected by the operation mode and car capacity, so
we only consider out-of-vehicle waiting time for passengers.

T = max
p=1,...,NP

tp,a, (1)

AIT =
∑

NC
c=1 tc,i
NC

, (2)

AWT =
∑

NP
p=1

(
tp,ob − tp,0

)
NP

, (3)
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MWT = max
p=1,...,NP

(
tp,ob − tp,0

)
. (4)

The first model, independent operation model, only has two agents, Car and Passenger where the
Car agent includes features f 1- f 7 and behaviors b1-b4, and Passenger agent includes all the features and
behaviors defined in Table 1. In the centralized model, all the three agents are included. The Car agent
includes features f 1- f 9 and behaviors b1-b5, and the Passenger and Supervisor agents include all the
features and behaviors. The distributed model only includes Car and Passenger agents which include all
the features and behaviors defined in Table 1. In this research, we implement the agent-based simulation
model in Mesa due to its powerful build-in core components (e.g., spatial grids, agent schedulers) and
browser-based interface to visualize the simulation model. Mesa is an Apache2 licensed agent-based
modeling framework in Python.

3 SIMULATION RESULT ANALYSIS

In this section, we compare the performance of three different operation models (independent, centralized,
and distributed) under different communication range (CR) and car capacity (Cap). We assume that there
are 50 cars and 100 passengers on a linear corridor with length 100 which has unlimited two-way lanes.
All the cars have the same speed, which is one unit distance per one unit time step. The passengers are
spatially and temporally distributed on the corridor, and they have the same destination. The car will move
forward when there is no passenger on board. The initial time for car and passenger are assumed to follow
an uniform distribution on range [1, 10], and the initial position for car and passenger are assumed to
follow an uniform distribution on range [0, 90]. The communication range (CR) is changed from 1, 10 to
20, and the car capacity (Cap) is changed from 1, 2, to 3. Each car is assumed to only communicate with
other cars in its neighborhood with distance less than CR. This indicates that the car can communicate
with more cars when the CR is large. Each model is independently run 30 times, and the values of the
four metrics in Eqs. (1)-(4) are recorded for comparison.

3.1 Comparison Analysis for the Three Operation Models under Settings of CR=10 and Cap=2

Table 2: Experimental results for the three operation models (CR=10, Cap=2).

Independent Centralized Distributed

T
Average 226.37 215.2 (4.93%) 215.3 (4.89%)

Maximum 248 236 (4.84%) 239 (3.63%)
Minimum 171 107 (37.43%) 107 (37.43%)

AIT
Average 70.51 60.95 (13.55%) 60.45 (14.26%)

Maximum 85.36 75.84 (11.15%) 77.36 (9.37%)
Minimum 43.22 5.74 (86.72%) 6.64 (84.64%)

AWT
Average 15.34 12.29 (19.87%) 12.07 (21.32%)

Maximum 31.51 23.78 (24.53%) 21.28 (32.47%)
Minimum 7.87 6.23 (20.84%) 5.63 (28.46%)

MWT
Average 123.5 113.93 (7.75%) 114.2 (7.53%)

Maximum 146 134 (8.22%) 137 (6.16%)
Minimum 96 34 (64.58%) 38 (60.42%)

In this set of experiments, we set CR as 10 and Cap as 2. The average, maximum, and minimum
values of T , AIT , AWT , and MWT obtained at each run are presented in Table 2. It is observed that
the centralized model performs the best in terms of T and MWT , and the distributed model performs the
best in terms of AIT and AWT . The independent model performs the worst in terms of the four metrics.
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According to the statistical t-test, we conclude that both centralized and distributed models significantly
outperform independent model in terms of AIT , AWT , and MWT . The centralized and distributed models
are comparable. Compared to the independent model, the centralized model can improve average values
of 1) T by 4.93%, 2) AIT by 13.55%, 3) AWT by 19.87%, and 4) MWT by 7.75%, and the distributed
model can improve average values of 1) T by 4.89%, 2) AIT by 14.26%, 3) AWT by 21.32%, and 4) MWT
by 7.53%.

3.2 Statistical Comparison of the Distributed Model under Various Settings of CR and Cap

In this set of experiments, the performances of the distributed model are compared under different values
of CR and Cap. Please note the independent and centralized models do not have parameter CR, so we do
not compare these two models under various settings of CR. The box plots for the distributed model in
terms of AWT under various settings of CR and Cap are shown in Figure 2 where the mean value over
the 30 runs is represented using triangle and the outlier is represented using circle. It is demonstrated
that 1) the performance of the distributed model is not impacted by the communication range when the
car capacity is 1, 2) when the car capacity is increased to 2 and 3, the distributed model under CR=10
and CR=20 performs better than the model under CR=1, and 3) the performances of the distributed model
under CR=10 and CR=20 are comparable.

cr1 cr10 cr20
cap1

0

10

20

30

40

50

60

AW
T

cr1 cr10 cr20
cap2

cr1 cr10 cr20
cap3

Comparison analysis for distributed model

Figure 2: Box plots of AWT for the distributed model under various settings of CR and Cap.

The statistical t-test results for the distributed model under various settings of CR and Cap are presented
in Table 3 where the model is ranked based on the t-test results. The model A will be assigned symbols
(“>>”, “>”, or “=”) based on the following rules: 1) symbol “>>” if it is significantly better than model
B (e.g., p-value < 0.05), 2) symbol “>” if it is better than model B (e.g., p-value is in the range [0.05,
0.90]), 3) symbol “=” if it performs the same as model B (e.g., p-value > 0.90). The two symbols of the
rank #1 model indicate its relationship between the rank #2 and rank #3 models, and the symbol of the
rank #2 model indicates its relationship with the rank #3 model. When Cap=1, the distributed model under
CR=20 performs better than CR = 10, and better than CR = 1. However, there does not exist significant
difference among these three values of CR. When Cap=3, the distributed model under CR=20 and CR=10
significantly outperforms the model under CR=1. Under all the three values of Cap, the performances of
the distributed model under CR=10 and CR=20 are comparable. We can conclude that the performance
of distributed model can be improved by increasing the communication range. The cars can communicate
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with more cars in their neighborhood when the communication range is increased which can significantly
improve the intelligence of car and to better match the passenger demands.

Table 3: Statistical t-test results for the distributed model under various settings of CR and Cap.

Cap Ranking T AIT AWT MWT

1
#1 20 (>, >) 20 (>, >) 20 (=, >) 20 (>, >)
#2 10 (>) 10 (>) 10 (>) 10 (>)
#3 1 1 1 1

2
#1 10 (=, >) 10 (>, >) 20 (=, >>) 10 (>, >)
#2 20 (>) 20 (>) 10 (>>) 20 (>)
#3 1 1 1 1

3
#1 20 (>, >>) 20 (>, >>) 20 (>, >>) 20 (>, >>)
#2 10 (>>) 10 (>>) 10 (>>) 10 (>>)
#3 1 1 1 1

3.3 Statistical Comparison of the Three Models under Various Settings of Cap

In this set of experiments, the performances of all three models are compared under different values of
Cap. The box plots for these three models are shown in Figures 3-5. It is observed that the performances of
all the three models are significantly improved when the car capacity is changed from 1, 2, to 3. For these
three models, the difference between Cap=1 and Cap=2 is greater than the difference between Cap = 2
and Cap = 3.
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Figure 3: Box plots of AWT for the independent
model under various settings of Cap.
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Figure 4: Box plots of AWT for the centralized
model under various settings of Cap.

The statistical t-test results for these three models under various settings of Cap are presented in Table
4. Increasing the car capacity can significantly improve the performance of all the three vehicle sharing
operation models. It is concluded that the vehicle sharing system will be more efficient when more cars
or cars with large capacity collaborate with others to share information.

3.4 Statistical Comparison of the Three Models under Various Settings of CR and Cap

In this set of experiments, the performances of the three models are compared under different values of
CR and Cap. The box plots for these three algorithms are shown in Figures 6-8. When Cap=1, there
does not exist significant difference among the three models, and the centralized model performs the best.

1342



Hu, Chen, Li, and Xiong

cap1 cap2 cap3
cr1

0

10

20

30

40

50

60

AW
T

cap1 cap2 cap3
cr10

cap1 cap2 cap3
cr20

Comparison analysis for distributed model

Figure 5: Box plots of AWT for the distributed model under various settings of Cap.

Table 4: Statistical t-test results for the three models under various settings of Cap.

Model CR Ranking T AIT AWT MWT

Independent
#1 3 (>>, >>) 3 (>, >>) 3 (>>, >>) 3 (>>, >>)
#2 2 (>>) 2 (>>) 2 (>>) 2 (>>)
#3 1 1 1 1

Centralized
#1 3 (>>, >>) 3 (>>, >>) 3 (>>, >>) 3 (>>, >>)
#2 2 (>>) 2 (>>) 2 (>>) 2 (>>)
#3 1 1 1 1

Distributed

1
#1 3 (>>, >>) 3 (>, >>) 3 (>>, >>) 3 (>>, >>)
#2 2 (>>) 2 (>>) 2 (>>) 2 (>>)
#3 1 1 1 1

10
#1 3 (>>, >>) 3 (>>, >>) 3 (>>, >>) 3 (>>, >>)
#2 2 (>>) 2 (>>) 2 (>>) 2 (>>)
#3 1 1 1 1

20
#1 3 (>>, >>) 3 (>>, >>) 3 (>>, >>) 3 (>>, >>)
#2 2 (>>) 2 (>>) 2 (>>) 2 (>>)
#3 1 1 1 1

When Cap=2, the centralized and distributed models perform better than the independent model, and the
centralized model performs better than the distributed model when the communication range is small (e.g.,
1). The performance of these three models under Cap=3 is similar to Cap=2. The distributed model can
outperform the centralized model when the communication range is increased (e.g., 10, 20).

The statistical t-test results for these three models under various settings of CR and Cap are presented
in Table 5. It is observed that both the centralized and distributed models perform significantly better than
the independent model when car capacity is greater than 1. This is due to the fact that the cars can be
more optimally dispatched when they can exchange information with others and have more capacities.
The centralized model performs significantly better than the distributed model when car capacity is large
(e.g., 3) and communication range is small (e.g., 1). In the centralized model, we assume all the cars can
communicate with the supervisor agent, so its performance is independent to the communication range.
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Table 5: Statistical t-test results for the three models under various settings of CR.

Cap CR Ranking T AIT AWT MWT

1

1
#1 Cen. (>, >) Cen. (>, >) Cen. (>, >) Cen. (>, >)
#2 Ind. (>) Dis. (>) Dis. (>) Ind. (>)
#3 Dis. Ind. Ind. Dis.

10
#1 Cen. (>, >) Cen. (>, >) Dis. (=, >) Cen. (>, >)
#2 Ind. (=) Dis. (>) Cen. (>) Ind. (=)
#3 Dis. Ind. Ind. Dis.

20
#1 Cen. (>, >) Dis. (>, >) Dis. (>, >) Cen. (>, >)
#2 Dis. (=) Cen. (>) Cen. (>) Dis. (>)
#3 Ind. Ind. Ind. Ind.

2

1
#1 Cen. (>, >) Cen. (>, >>) Cen. (>, >>) Cen. (>, >>)
#2 Dis. (>) Dis. (>) Dis. (>) Dis. (>)
#3 Ind. Ind. Ind. Ind.

10
#1 Cen. (=, >) Dis. (=, >>) Dis. (>, >>) Cen. (=, >>)
#2 Dis. (>) Cen. (>>) Cen. (>>) Dis. (>>)
#3 Ind. Ind. Ind. Ind.

20
#1 Cen. (=, >) Cen. (=, >>) Dis. (>, >>) Cen. (>, >>)
#2 Dis. (>) Dis. (>>) Cen. (>>) Dis. (>)
#3 Ind. Ind. Ind. Ind.

3

1
#1 Cen. (>>, >>) Cen. (>>, >>) Cen. (>>, >>) Cen. (>>, >>)
#2 Dis. (>) Dis. (>) Dis. (>) Dis. (>)
#3 Ind. Ind. Ind. Ind.

10
#1 Dis. (>, >>) Dis. (>, >>) Dis. (>, >>) Dis. (>, >>)
#2 Cen. (>>) Cen. (>>) Cen. (>>) Cen. (>>)
#3 Ind. Ind. Ind. Ind.

20
#1 Dis. (>, >>) Dis. (>, >>) Dis. (>, >>) Dis. (>, >>)
#2 Cen. (>>) Cen. (>>) Cen. (>>) Cen. (>>)
#3 Ind. Ind. Ind. Ind.

However, the cars can communicate with less cars when the communication range is decreased in the
distributed model. The performance of distributed model will be very similar to the independent model
when the communication range is small. The distributed model can perform better than the centralized
model for large communication range and car capacity. When both the communication range and car
capacity are large, the cars will have more flexibility to respond to system dynamics using the distributed
model and can achieve better performance comparing to the centralized model.

4 CONCLUSION

In this research, we have developed an agent-based simulation model to study the vehicle sharing operation.
Three operation models have been implemented which include: 1) independent operation model where
vehicles are isolate and always pick up the passengers they observe, 2) centralized operation model where
all the vehicles can record a list of the observed passengers that are in the waiting status, and are controlled
by a supervisor agent, and 3) distributed operation model where the vehicles can maintain a list of observed
waiting passengers and share this information with other vehicles in their neighborhood, and independently
operate themselves based on the collected passenger demand information. The three models have been
compared using four different metrics: 1) total time steps to deliver all the passengers, 2) average idle time
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Figure 6: Box plots of AWT for the three models under Cap=1.
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Figure 7: Box plots of AWT for the three models under Cap=2.

for all the vehicles, 3) average waiting time for all the passengers, and 4) maximum waiting time for all the
passengers. The simulation results demonstrate that: 1) the distributed model prefers large communication
range, 2) all the three models prefer large car capacity, 3) distributed and centralized models significantly
perform better than the independent model when car capacity is greater than 1, and 4) centralized model
significantly performs better than distributed model when car capacity is large and communication range
is small. These results can provide valuable insights to determine communication range and car capacity
for large scale vehicle sharing problem.

In the future study, we will extend the agent-based simulation model to consider limited lanes on the
corridor and multi-ways corridor. Some advanced passenger demand prediction models (e.g., deep learning
models) will be developed to accurately predict the passenger demand. More intelligent operation decision
models will be developed to optimally operate the vehicle sharing system, and the performance of the
centralized and distributed models will be compared using large-scale vehicle sharing operation problem.
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Figure 8: Box plots of AWT for the three models under Cap=3.
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