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ABSTRACT 

Automated planning is a key to unlocking the next generation of human behavior modeling for military 

simulations. Automated planning is distinguished from other dynamic behavior by its ability to reason 

with predictions or assumptions about future outcomes, which has traditionally been left to the meticulous 

effort of human modelers. In this paper, we present a conceptual planning framework as an architectural 

roadmap for the development of this kind of capability in support of modeling and simulation. This paper 

also presents an initial implementation of the framework in a representative combat simulation for 

exploring potential future opportunities for community advancement of the planning techniques.  

1 INTRODUCTION 

Automated planning is a key to unlocking the next generation of human behavior modeling for military 

simulations. Effective automated planning can speed up the scenario design process, but its potential goes 

beyond simple efficiency gains. A trustworthy automated planner enables the realization of an increased 

number of scenarios that could be evaluated for a study. For training simulations, it could reduce 

manpower requirements and help improve the realism of modeled units, allowing system operators to 

focus on higher levels of abstraction and better attend to the needs of the training audience. In general, 

combat models and simulations used in training and analysis do not have an automated planning 

capability for multiple units in a command structure, and they lack tools for forward reasoning about 

effects such as suppression by firepower. To address this, we present an architectural framework for 

automated battle planners for the design and management of complex planning systems, also providing an 

overview of a representative implementation. Full details are presented by Harder (2017). 

2 AUTOMATED BATTLE PLANNING SYSTEM 

Battle planning is a type of planning where the agents are units in a combat model, the initial contextual 

situation is a scenario, and the desired outcomes are military objectives. The latter may include goals, 

given as a logical combination of predicates evaluated against the world state, as well as numerical 

objective functions to be optimized. An automated battle planning system (ABPS) is a software system 

(or subsystem) that accepts a scenario and military objectives as input and produces a battle plan that is 

executable by designated units. This work is focused on battle planning for ground-based units operating 

in a simulated battlespace. The effectiveness of the ABPS is the degree to which execution of its plans are 

successful at achieving all military objectives. Effectiveness is just one part of an ABPS’s validity. 
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Our ultimate objective is to produce realistic plans executable by units in a combat model 

implemented on a computer. Therefore, we take an artificial intelligence (AI) point of view to define 

planning as the formulation of a partially ordered set of instructions for a set of agents in an attempt to 

modify the world state from an initial configuration towards a desired outcome. This is a more general 

definition than that of classical state-space AI planning because we will need extensions such as plan-

space, hierarchy, and continuous time. Harder (2017) provides an explanation about how the combat 

modeling domain violates several classical planning assumptions. 

It is convenient to distinguish an ABPS, assuming we have one, from the rest of the executable 

model. To that end, we define a combat simulation environment (CSE) as an executable combat model, 

along with its supporting tools (i.e., for scenario design, behavior development, etc.), with the exclusion 

of any ABPSs. We assume that an ABPS is only useful if it produces battle plans that resemble those of 

human planners; i.e., an automated battle planner is a model of the activities of a human commander and, 

if appropriate, a planning staff. Development of an ABPS is a modeling and simulation (M&S) activity 

subject to the same control and evaluation processes as a combat model. Since this work is restricted to 

ABPS development, we assume that the CSE is a fixed version. This lets us narrow our focus for issues 

such as verification and validation to the ABPS. We introduce other terms related to ABPS development: 

 

 Planning Simuland: What ABPs represent; i.e., real-world military and paramilitary commanders 

and planning staffs of tactical units, in the context of their development of battle plans.  

 Planning Referent: What we use as the authoritative source to guide ABP development; i.e., 

doctrinal, training, and technical publications of U.S. and other nations’ military organizations.  

 Conceptual Planner Model: A collection of data structures, logical components, and algorithms 

used to model the plan-generating capability of commanders and planning staffs, written in some 

formal way (e.g., Unified Modeling Language). 

 Executable Planner Model, or ABPS: An executable implementation of the conceptual planner 

model for a particular CSE. 

 Unit and command: For combat models, a unit is a representation of one or more people 

and assigned equipment that work together on a shared task in close geographic 

proximity. A command is a collection of units in a hierarchical relationship. 

 Invocation: A single execution of an ABPS planning capability, resulting in an executable battle 

plan (or failure to produce one). 

 

Initial planning is the generation of the first plan for a set of units in a replication. Replanning is 

planning activity for units that already have a plan, including both modification and complete 

replacement. In theory, an ABPS could replan several times during a single replication. Depending on the 

design of the combat model, there could be more than one ABPS for a scenario (one for each of the 

opposing forces, for example). These variations demonstrate that the number of invocations of an ABPS 

is usually not equal to the number of replications of a particular scenario in simulation execution. 

3 CONCEPTUAL PLANNING FRAMEWORK 

An ABPS produces plans for use in a combat model. Harder (2017) reviews several examples of effective 

systems that fit this basic description; however, no single approach stands out as dominant, in part 

because the combat models they support have different purposes and structures. To proceed, we define 

some additional terms. An architecture is the organizational scheme of a specific executable model or 

part thereof. Architectures delineate the major components and subcomponents of implementations and 

the interfaces between them. A framework is an abstract architecture applicable to a variety of 

implementations. It distills the design principles, common themes, and vocabulary of a class of 

architectures. This paper describes a framework for ABPSs. We remain intentionally abstract about 
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implementation details. The goal is to establish concepts that apply regardless of certain modeling 

decisions. Harder (2017) describes a particular architecture (for a specific executable combat model) 

conformant to this framework. There, the author is specific about modeling choices, but for now we 

remain agnostic about the following: level of aggregation (whether the smallest modeled unit is a person, 

vehicle, team, squad, or some larger echelon); types of combat units and their capabilities; dynamic 

behavior models governing small-unit or individual entity decisions; specific instructions that can be 

issued to units and composed together in a plan; the way terrain is represented and its effect on combat 

outcomes; the model and resolution of time advancement; and details of the combat adjudication 

methodology (which may be deterministic or stochastic). 

3.1 Top-Level Framework 

Our conceptual planning framework is organized at the highest layer of abstraction into three principal 

components: Planning Data, Planning Input, and the Plan Generator, as shown in Figure 1, which also 

includes blocks for the executable plan (the output) and the corresponding CSE. The dashed line in the 

figure delineates the system boundary of the ABPS (or the subsystem boundary if it is packaged together 

with a CSE). 

 

Figure 1: Top-level conceptual planning framework. 

Planning Data includes tasks, methods (rules for achieving tasks), and derived models that 

characterize the structure and dynamics of the battlespace. Planning Input takes data from a scenario in 

the CSE, and from a user interface, to formulate a planning problem for the ABPS. The Plan Generator 

provides the algorithms, heuristics, data structures, and interfaces that produce the battle plans. The Plan 

Generator uses Planning Input, its internal data structures, algorithms, and tools, along with the rules and 

heuristics of the Planning Data, to produce a plan in its own internal representation. Finally, it translates 

this plan into a format that can be processed by the particular CSE during one or more replications.  

When we speak of taking a separation-of-duties approach, it is to explicitly recognize that the 

Planning Data decouples military planning logic from more general AI-based algorithms found in the 

Plan Generator, in the same way that the developers of a planning software product (like a generic 

hierarchical task network (HTN) planner) are separate from the teams that use the product to produce 

plans for a specific domain. This separation is meant to allow distinct configuration control on these two 

components, which can be managed by different groups with different skill sets. This is similar to the 

video game development community where there is a distinction between “level” (scenario) designers and 

AI developers. A combat model with an ABPS may actually need a three-way separation: (1) scenario 

designers, who configure the CSE and use the ABPS; (2) behavior developers, who encode tactical 

planning logic within the architecture of an ABPS; and (3) automated planning developers, who are 

responsible for the architecture and algorithms of the ABPS. We need this additional silo because, unlike 

most video games, the scenario design and AI development for a combat model are often not together on 
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a single team. Scenario designers typically do not have the programming background needed to encode 

tactical planning logic in a programming language, so behavior developers with specialized skills are 

needed when the default Planning Data is insufficient. Finally, we distinguish automated planning 

developers from behavior developers because automated planning is an even more specialized skill than 

behavior programming.  

The three components of the conceptual planning framework are described in the following 

subsections. 

3.2 Planning Data 

The Planning Data component of the conceptual planning framework is shown in Figure 2. This 

component represents a persistent data store intended to support a data-driven approach to the 

development of functionality. This component is meant to be an enterprise-managed database, not just a 

local user’s data file, to support the sharing of products across organizations and to reduce overlapping 

and duplicated effort. Each conceptual component of the Planning Data (the Task Dictionary, for 

example) may be realized with one or more separate data stores. Ideally, everything in the Planning Data 

adheres to a single, seamless data model to more easily support sharing across components of the Plan 

Generator. Subcomponents of the Planning Data component are described in the following subsections. 

 

 

Figure 2: Planning data. 

3.2.1 Units and Templates 

Unit here refers to a software object that can be manipulated by the ABPS and corresponds to a particular 

combat unit instance in a scenario. Each unit has an assigned echelon: one of a discrete set of values such 

as squad, platoon, company, or battalion. A unit’s echelon does not determine its command relationships; 

it is simply a clue to the level of abstraction that the ABPS needs to use during planning. A unit template 

is a configuration of the attributes of a unit with the exception of explicit planning rules or planning 

guidance. Every unit is an instance of a unit template. If units contain entities, then each unit template 

also includes a multiset of entity templates. Similarly, an entity template is a configuration of the 

parameter values for an entity. The unit template includes reactive behavior models (which we abbreviate 

to behaviors henceforth), which are not part of the planning framework but are considered by it. 
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Behaviors may be defined at the unit or entity level and may be built-in or configurable, depending on the 

CSE.  

3.2.2 Commands and Hierarchies 

Side is defined as a set of units that are aligned together under a common commander or within the same 

alliance, coalition, or unification. A force is a subset of a side. Every unit is commanded by at most one 

other unit, called its commanding unit. The commanded by relationship is between individual units, not 

unit templates. There are different ways that combat models may interpret hierarchical unit organization, 

such as contingent aggregation, explicit command and control (C2) nodes, abstract C2 nodes, or a hybrid 

approach. The planner must account for the approach in order for its output to be meaningful for the CSE. 

3.2.3 Actions 

The actions of a CSE are instructions that may be included in the Executable Plan. Actions are issued to 

units and entities, and they result in a change to the state of the CSE. Typical actions include movement to 

a waypoint, switching engagement modes (i.e., from “only when fired upon” to “engage upon target 

detection”), firing on a designated target area, and preparing defensive positions.  

3.2.4 Derived Models 

In general, an ABPS requires derived models to estimate the effects of many highly detailed actions. 

These allow planning to occur at a higher and less computationally demanding level of abstraction. The 

derived models are the specific functions, algorithms, equations, and other tools that make up the 

conceptual world of the ABPS. The CSE is the external world; the real world is not even part of the 

planning framework. This can be a source of confusion, because the derived models are “models of the 

model” of the real world. The development of derived models is a characteristic and rather unique aspect 

of automated battle planning, compared to other combat modeling skills. For example, assume that some 

CSE has fine-grained equations to represent acceleration, effects of rough terrain on rate of movement, 

and realistic turning radii for each entity. It offers actions to instruct units to travel to a given waypoint, 

but the actual travel time depends on the frame-by-frame movement model, which is affected by the 

terrain type, number of turns, size and formation of the unit, and so on. Rather than use this detailed 

movement model to calculate paths or travel times for planning, a derived model could be a simpler, 

piecewise constant-velocity movement model with a small adjustment for unit size. If the simpler model 

can estimate the travel time within less than a second with high probability, say, then we have a derived 

movement model that is accurate enough for planning purposes and much less costly to calculate. 

3.2.5 Task Dictionary 

The Task Dictionary stores the set of tasks that can be assigned to units. We borrow the term task from 

HTN planning, but the framework does not necessarily require a task network representation or an HTN 

planning algorithm. Some of the tasks map to the CSE's actions, but the planner may augment the task 

language with other tasks. The tasks do not, by themselves, provide any guidance about when they should 

be used (see Method Dictionary in section 3.2.6), only when they may be used (preconditions). 

Parameters (within the allowed value ranges) allow behavior developers to write tasks that are applicable 

for a variety of different situations. They tend to reduce the number of different tasks needed at the price 

of greater complexity per task.  Tasks may be instantaneous (a discrete value change at a single point in 

simulation time) or enduring (affecting the unit state in a certain way between initiation and termination). 

Although these two types are analogous to the events and persistence conditions of continuous-time 

planning, the framework does not stipulate a particular time representation. 
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3.2.6 Method Dictionary 

The Method Dictionary conceptually groups all methods together to help explain other concepts such as 

method sets. A method is defined as an optional subroutine, function, or mapping that generates planning 

branches. Different types of methods may be present in the Method Dictionary if the Plan Generator uses 

multiple planning representations and algorithms. Each entry in the Method Dictionary may include a set 

of partial unit templates called its applicable template set. The applicable method set of a unit template is 

the set of all methods for which it matches a member of the applicable template set. 

3.2.7 Tactics Configuration Dictionary 

A planning style restricts individual units to the planning assumptions and tactics appropriate for 

their training, experience, motivation, goals, or national military culture, according to the 

scenario designer. A tactics configuration is a mapping from units to planning styles, or the combination 

of a method set, a task set, and a derived model set.. Every scenario that employs the ABPS must have a 

tactics configuration. A standard tactics configuration is a mapping from unit templates to method sets—

in other words, it specifies a set of unit profiles. Standard tactics configurations are shortcuts for quickly 

generating or resetting the tactics configuration of a scenario. A scenario designer can avoid dealing with 

tactics configurations by using a standard tactics configuration that has been verified and, ideally, 

validated for the class of scenario in use. The Tactics Configuration Dictionary is a collection of standard 

tactics configurations.  

3.3 Planning Input 

The Planning Input component of the framework is shown in Figure 3. Most of the input to the planner is 

drawn from the CSE. Concrete settings for all of the required elements of the Planning Input constitute a 

single instance of an automated battle planning problem. 

 

 

Figure 3: Planning input. 

3.3.1 Map 

The map is a digital representation of the geographical terrain where the combat occurs. The details 

included in the map depend on the terrain representation of the combat model, but the important point 

here is that the planner can access those details to support the prediction of combat outcomes.  
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3.3.2 Friendly Force 

The Friendly Force is the set of combat units for which the ABPS will generate a plan. All units in the 

Friendly Force are assumed to be on the same side, but it is possible to run the planner with a Friendly 

Force that does not constitute an entire side. If that is the case, all other units on the same side are 

considered Other Actors (see 3.3.4 below). Friendly Force information is expected to include unit 

organization and unit starting locations.  

3.3.3 Enemy Force 

The Enemy Force input has all of the same parameters as the Friendly Force input, with the addition of an 

assumed plan. However, in general the planning system cannot be assumed to have accurate information 

about the enemy. For this reason, we show Enemy Force data connected to a Military Intelligence module 

in the CSE, as if the ABPS is the recipient of the final stage of the intelligence collection, processing, and 

dissemination process. The ABPS can assume the accuracy of Military Intelligence output, weight risk 

versus reward based on a confidence level, or even plan against multiple Enemy Force courses of action. 

3.3.4 Other Actors 

We include an input space for Other Actors, referring to any decision-making agents not contained in the 

Friendly Force or Enemy Force. As with the Enemy Force, the Friendly Force cannot be expected to have 

intrinsic knowledge of Other Actors' plans or other parameters, so we say that their information comes 

from the Military Intelligence component of the CSE. Other Actors could include neutral combat units, 

local citizens, international aid workers, or even herds of livestock.  

3.3.5 Tasking 

The Planning Input must include a Tasking, which provides requirements and guidance to the planner. 

The Tasking could come directly from a user or from a software system (such as another instance of the 

ABPS). In doctrinal planning, the mission statement is developed by the commander and staff of the 

planning unit, not by the higher echelon command tasking the planning unit. If we think of the planning 

system as a simulation of the commander’s and staff’s planning activity, then the responsibility of 

developing a mission statement lies within the system boundary, not as an input. The Planning Input 

provider plays the role of the higher echelon tasking command, which has the responsibility of providing 

taskings to its subordinates in its own plan (operations order, or OPORD). The Tasking content consists 

of required tasks (i.e., task instances that describe what must be done by the Friendly Force), prior plan, 

area of operations, user cost function (whereby the user provides nuanced guidance to the ABPS by 

weighting measurable features of candidate plans), and tactics. 

3.3.6 Tactics 

While Tasking specifies what to perform, tactics specify how to perform a particular action, as given in 

doctrinal publications or defined for unique behaviors for a particular purpose.  

3.4 Plan Generator 

The Plan Generator component of the framework is shown in Figure 4. The Plan Generator consists of 

processing components that use the Planning Input and Planning Data to produce an executable plan. 
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Figure 4: Plan generator. 

3.4.1 Input Processor 

The Input Processor is invoked by the CSE or by the user to initiate execution of the ABPS. It retrieves 

necessary information from the Planning Data into local memory, generates the Annotated Mobility 

Graph (if it does not already exist), and passes control to the Planning Controller. If the Planning Input 

includes a Prior Plan, the Input Processor is responsible for translating it into the Partial Plan format. 

3.4.2 Planning Controller 

The Planning Controller contains the logic for control flow between the Mission Planners and 

Enhancement Planners. This could be a fixed sequence of function calls or a conditional, iterative logic 

based on Partial Plan features, Cost Function values, or other Planning Input data. Each Mission Planner 

and Enhancement Planner is a self-contained automated planning algorithm. Since each subordinate 

planning algorithm may be computationally expensive, the Planning Controller should be as simple as 

possible. Mission Planners and Enhancement Planners are each allowed to use different objective 

functions and heuristics. The Planning Controller is responsible for dealing with these different measures 

to select a single Partial Plan (the final plan) that achieves all Required Tasks, if possible. 

3.4.3 Annotated Mobility Graph 

The Annotated Mobility Graph is a representation of the Map used for planning computations (e.g., 

Pathfinding. Annotations add information to each node to use for tactical reasoning about units, such as 

visibility and risk. Its structure and contents may be dependent on the specific locations of units, which 

may change even during the execution of a single scenario. A node in the Annotated Mobility Graph is a 

location in discretized space; i.e., a point, area, or volume that may be occupied by one or more units.  

3.4.4 Mission Planner 

A Mission Planner is a processing component that constructs or expands partial plans using a tactics 

configuration in order to achieve tasks. It reasons about units in relation to the Annotated Mobility Graph 
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by using the Planning Data's derived models and the Enemy Force's Plan (if provided in the Planning 

Input). It may invoke the Pathfinding component to consider possible movement of units. The Plan 

Generator may contain any number of Mission Planners, and there is no requirement for any particular 

component to achieve any particular tasks as long as the overall system generates acceptable plans for the 

CSE. The Mission Planner’s effort is likely to involve searching the vast space of “goal” plans for one 

with an acceptable score—or at least best discoverable score—according to some objective function.  

3.4.5 Pathfinding 

Most conceivable tactical plans involve some kind of movement. Tactical movement planning is a 

relatively well-studied problem with some individually-packaged solutions, so we put this part of the 

problem into its own component. The Pathfinding component is expected to use the Annotated Mobility 

Graph as its search space, and it may use the derived movement models of the Planning Data for its 

calculations. 

3.4.6 Enhancement Planner 

The only fundamental difference between a Mission Planner and an Enhancement Planner is that the latter 

does not qualitatively achieve tasks; i.e., it does not have a meaningful goal test. An Enhancement Planner 

expands or modifies a partial plan using a tactics configuration to improve a plan according to an 

objective function. Enhancement Planners may be thought of as plan “optimizers,” with the caveat that 

“optimal” plans are generally not achievable (at least not tractably).  

3.4.7 Partial Plans 

The Task Dictionary is the lexicon of the language needed by Plan Generator components to 

communicate with each other. Its grammar is the partial plan representation of the Plan Generator. We 

use this term in a general sense here to represent a set of task instances assigned to the units of the 

Friendly Force with a timing specification. It may contain gaps in time where no tasks are assigned to a 

particular unit, and it does not necessarily achieve all—or any—of the Required Tasks (yet). The 

parameters of each task instance may be partially bound. A Plan Generator subcomponent that receives a 

partial plan as input must be able to operate on some of its tasks. Each subcomponent should be able to 

harmlessly ignore partial plan tasks that it cannot process.  

3.4.8 Plan Compiler 

The Plan Compiler translates the Planning Controller’s final plan into a format that can be executed by 

the CSE. If the planning system is built for a specific CSE, it may be possible to use the Executable Plan 

format of the CSE as the partial plan representation. In this case, a Plan Compiler is not required.  

4 PROOF-OF-CONCEPT IMPLEMENTATION 

An automated fire support planner has been developed which employs a greedy, best-first plan-space 

search with a continuous model of time (Harder, Balogh, and Darken 2016; Harder and Darken 2016). 

The planner accepts a maneuver plan (notionally generated by a Mission Planner) as input; it adds fire 

support tasks, including movement, for available units to suppress enemy threats and improve the chances 

of plan success. The CSE used for testing and demonstrating the planner is a custom-made simulation 

called WOMBAT XXI (WXXI), loosely patterned after the operational Combined Arms Analysis Tool 

for the 21st Century (COMBATXXI) simulation developed and employed by the US Army and US 

Marine Corps. WXXI is implemented in the Unity Game Development Environment (Unity Technologies 
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2016); see Figure 5. The implementation includes representations of entities, targeting and protection, 

stochastic range-based probability of hit and probability of kill, a three-state suppression model, 

hierarchical units, unit formations, waypoint-based movement, movement modes, operational tasks and 

actions, and terrain imported from real-world elevation data, as well as a simulation engine, run manager, 

and data collection mechanisms.  

 

 

Figure 5: Screen capture of WXXI Combat Simulation Environment developed in Unity3D. 

Implementation of the plan generator following the framework presented earlier is shown in Figure 6. 

A maneuver planner provides a partial plan for the fire support planner to modify. The fire support 

planner creates and modifies risk intervals (regions where a maneuvering unit is considered susceptible to 

enemy fire due to range and line-of-sight considerations) and fire support tasks to update the partial plan.  

Table 1 tabulates some outcomes from evaluation of generated fire support plans, where performance 

measures for mission accomplishment and fractional exchange ratio are computed as: 

 

1. Mission Accomplishment = [C(0) – C(tEND)] / C(0), where C(t) is number of cleared objectives at 

time t.  

2. Fractional Exchange Ratio = [[B(0) – B(tEND)] / B(0)] / [[A(0) – A(tEND)] / A(0)], where A(t) is 

number of attacking entities alive at time t and B(t) is number of defending entities alive at time t. 

 

In testing, the planner exhibited some interesting emergent properties such as well-timed 

suppressions, shifting and lifting fires, supporting follow-on attacks, consolidating fire support positions, 

ignoring low threats, and bounding movement. However, some negative outcomes were also possible, 

such as unsafe directions of fire, firing position collocation, and incorrect cease-fire times. Additional 

constraints can be added to the plan generation scheme to address such issues. Even so, the rapidity of 

execution to generate numerous acceptable plans will enable analysts to generate and explore a larger 

range of scenarios more quickly.  

5 SUMMARY AND CONCLUSIONS 

The planning framework described here supports a modular design for ABPSs, which in turn allows a 

division of labor in its development. The data-driven approach prescribed by the Planning Data may allow 

some components, such as the Planning Controller, Mission Planners, and Enhancement Planners, to be 
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re-used across different CSEs (or at least simplify migration). The Partial Plan data structure and 

Annotated Mobility Graph also may be reusable if references to units and terrain objects are carefully 

encapsulated. Agreement on a modularization approach can help with the re-use and improvement upon 

ideas, algorithms, and data structures. The framework makes few assumptions about the domain, but is 

general and modular enough to be applied to a wide range of combat M&S uses.  

  

 

Figure 6: Plan generator implementation for the fire support planner. 

Table1: Sample of quantitative results of the effectiveness of generated fire support plans. 

 

Group Forces Map
Fire Support 

Planning Type
µ std. err µ std. err

Manual 0.367 0.092 0.88 0.225

Best = Max 0.667 0.000 5.13 0.601

Close-quarters 0.800 0.054 6.49 1.362

Manual 0.567 0.071 1.73 0.177

Best = Max 0.833 0.056 19.50 3.744

Close-quarters 0.600 0.083 1.91 0.419

Manual 0.267 0.030 0.40 0.047

Best 0.733 0.038 1.87 0.148

Max 0.656 0.042 1.65 0.138

Close-quarters (Best) 0.733 0.050 2.59 0.364

Manual 0.450 0.050 0.53 0.087

Best = Max 0.875 0.042 8.88 1.307

Close-quarters 0.775 0.058 2.69 0.470

Manual 0.460 0.031 0.89 0.102

Best = Max 0.750 0.031 3.17 0.326

Close-quarters 0.690 0.023 2.21 0.129

Manual 0.156 0.020 0.38 0.024

Fastest 0.359 0.012 0.61 0.021

Fast 0.741 0.023 2.06 0.132

Best 0.841 0.037 2.56 0.173

Max 0.874 0.021 2.80 0.181

Close-quarters (Best) 0.933 0.011 4.42 0.222

4 Plt vs Squad

C

5 Co vs Plt

6 Bn vs Co

2 Plt vs Squad

B

3 Co vs Plt

Scenario
Mission 

Accomplishment

Fractional 

Exchange Ratio

1 Plt vs Squad A
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 As envisioned, a variety of different functions could be provided by a single ABPS. We offer the 

framework and implementations as starting points for the organization of research in this domain, but 

improvements on its structure, vocabulary, and assumptions are expected. Future open community 

competitions may serve to advance the state-of-the-art in much the same way as has occurred in the real-

time strategy gaming community. 
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