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ABSTRACT 

The idea of deploying unmanned aerial vehicles, also known as drones, for delivery in logistics operations 

has inspired this research. One conceivable scenario is to use a drone to transfer jobs between locations in 

a future semiconductor factory. Each job might be characterized by origin, destination, priority, and 

precedence-relationship. In particular, the precedence-relationship occurs when drones are competing for 

limited number of ports (similar to helicopter landing platform). The objective is to minimize the 

maximum completion time of all delivery jobs performed by a fleet of drones. Two exact approaches are 

presented: a mixed integer programming and a constraint programming, and tested for real-time 

perspective with problem instances up to 50-drone and 100-job. 

1 INTRODUCTION 

A semiconductor fabrication line (fab hereafter) has been always emphasizing a cycle time reduction in 

order to cope with a rapidly changing market demand. The efforts include deploying advanced 

scheduling/dispatching systems, merging processing steps, eliminating unnecessary steps, adjusting 

batching size, utilizing chamber machines, designing efficient fab layout, and so on. Now, material 

handling (or transfer) system (MHS or MTS), once considered as non-critical, has started receiving an 

intensive attention since a job travels several miles to visit hundreds of machine in a fab, relying on MTS. 

Furthermore, a fab, where its expensive clean-room facilities demand a zero footprint, has been motivated 

to utilize an air-space for MTS. Therefore, overhead transfer system (OHT), wherein vehicles travel on 

the rail mounted near the ceiling to transfer jobs, was devised. Ironically speaking, OHT already utilizes 

an air-space to transfer jobs, just like drone will do. Replacing OHT with drone would create many 

benefits. One of obvious is tearing down rails and vehicles, which opens up an whole new way of 

designing a fab. A high tower-like fab can be foreseen when drone replaces OHT. Another is a faster 

delivery time since drone flies.  

 Regarding vehicle allocation problem, industries have used simple dispatching approaches (Wang et 

al. 2016; Lin et al. 2001). Considering AMHS as a supporting mechanical system for main production 

machines in a fab seems to contribute to the reason. However, in this coming drone era, simple 

dispatching approaches will lose its ground. Instead, a detailed scheduling system, that simultaneously 

orchestras a fleet of drones and a set of jobs in real-time, will be demanded. 

2 MATERIAL TRANSFER DRONE SCHEDULING PROBLEM IN FAB 

Inspired by Amazon’s significant expansion of its army of warehouse robots and the adaptation of drones 

for final-mile small parcel delivery, Ham (2017) mixed these two emerging technologies and proposed a 

drone-powered material transfer system in a warehouse, wherein jobs could be picked up by drone, 
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transferred, and dropped off directly to shipping cartons. Ham termed this the material transfer drone 

scheduling problem (MTDSP). This paper applies his proposed model in a similar problem encountered 

in a fab. 

 The problem may be formally defined as follows (Ham, 2017). Let J represent the set of jobs {1, . . . , 

n} where n denote the number of jobs (lots to deliver). Let M represent the set of locations {1, . . . , m }, 

where 𝑚 denotes numbers of  collective locations including machines and stockers. Then let D represent 

the set of drones {1, . . . , κ𝑑 }, where κ𝑑  denotes numbers of parallel drones. Let ι𝑑 represent the last 

known location of each drone d. Also, let 𝑝𝑘𝑢𝑝𝑗(𝑑𝑟𝑜𝑝𝑗) denote the pickup (drop) locations of job j.  

The MTDSP for the fab can be defined on a directed graph G = (𝑀, A), where M = {1, . . . , m} is the set 

of nodes and A is the set of arcs. For 𝑝𝑘𝑢𝑝𝑗, 𝑑𝑟𝑜𝑝𝑗 ∈ 𝑀, the arc exists between them. The time required 

for the drone to travel between nodes is given by τ𝑚,�̂�
𝑡 . The travel-time is assumed to be given with a 

high accuracy. A time window [𝑤𝑗, 𝑤𝑗] is associated with each job j, where 𝑤𝑗  and 𝑤𝑗  represent the 

earliest start (EST) and the latest completion time (LCT), respectively, which indirectly reflect the job 

priority. Further, a set of jobs could have a precedence-relationship because some of ports of machine 

permit drone’s access one at a time due to limited space (similar to helicopter landing platform). 

Therefore, a pickup (unloading) must occur prior to a drop (loading) when a job preoccupies the port. The 

objective is to schedule parallel drones to minimize the maximum completion time of all jobs, while 

satisfying both precedence-relationship and job-priority expressed as time-window. 

 Table 1 represents a sample problem with 6-job. Each job has origin, destination, precedence-

relationship, and time-window. For instance, j1 is currently located at m1, and must be delivered to m2, 

within the given time-window. Also, j1 must complete after j2 completes since j2 must be first picked up 

since m2 has only one port. Also, there are two parallel drones, which are hovering over m3 and m2, 

respectively. Figure 1 pictures such a system with the transfer-time between locations. 

Table 1: A sample MTDSP in a fab with 6-job. 

Job from-loc(pkup) to-loc (drop) Precedence ECT LCT 

j1 m1 m2 after j2 0 120 

j2 m2 stk 

 

0 150 

j3 m3 m1 

 

30 60 

j4 m4 stk 

 

0 90 

j5 stk m3 after j3 0 180 

j6 stk m4 after j4 0 240 

 

 Two exact approaches are proposed by Ham (2017): a mixed integer programming and a constraint 

programming. This paper only contains the proposed CP formulation. For the MIP formulation, refer to 

his paper. It is worth mentioning that CP formulation is very different with MIP formulation. 

Furthermore, there is no standard in CP formulation. Namely, it varies to each CP package, unlike a 

similar MIP formulation (Ham and Cakici, 2016). Therefore, this paper will try to formulate the model 

using generic keywords and syntaxes as we refer to the CP formulations by Laborie 2009, Ghédira 2013, 

Goel et al. 2015, and IBM ILOG CPOptimizer (IBM, 2015).   

 The proposed model is built upon the following three decision variables: 

𝐼𝑡𝑣𝑗     interval variable representing the j-th job with the size of τ𝑝𝑘𝑢𝑝𝑗,𝑑𝑟𝑜𝑝𝑗

𝑡
 

𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑  optional interval variable representing the j-th job of drone d. 

𝑆𝑒𝑞𝑑  collection of interval variables (𝐼𝑡𝑣𝑗) assigned to drone d. 
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Figure 1: A tour representation of the sample problem with 2-drone. 

 An interval variable represents an interval of time during which, for example, a task occurs. An 

interval variable can represent optional tasks to be scheduled. The domain of an interval variable x is a 

subset of  {𝐴𝑏𝑠𝑒𝑛𝑡}  ∪  {[𝑠, 𝑒)| 𝑠, 𝑒 ∈ ℤ, 𝑠 ≤ 𝑒}. As any decision variable in an optimization problem, an 

interval variable x is said to be fixed if its domain is reduced to a singleton. When an interval is present, s 

represents the start time, and e the end time. Note each job interval (𝐼𝑡𝑣𝑗) has the size of its transfer-time 

between 𝑝𝑘𝑢𝑝𝑗 and 𝑑𝑟𝑜𝑝𝑗. Then, the MTDSP is concisely modeled in CP by Ham (2017) as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚𝑎𝑥 {𝒆𝒏𝒅𝑶𝒇(𝐼𝑡𝑣𝑗)} (1) 

𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒊𝒗𝒆(𝐼𝑡𝑣𝑗, 𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑) ∶  𝐼𝑡𝑣𝑗 → 𝑗 ← 𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑   (2) 

𝒏𝒐𝑶𝒗𝒆𝒓𝒍𝒂𝒑(𝑆𝑒𝑞𝑑 , τ𝑚�̂�
𝑡 ) ∀𝑑 ∈ 𝐷 (3) 

type function 𝜗 (𝑆𝑒𝑞𝑑 , 𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑 ∶  𝑆𝑒𝑞𝑑 → 𝑑 ← 𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑) 

                       𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 [ 𝜗(𝑆𝑒𝑞𝑑 , 𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑)] = ι𝑑    , ∀𝑑   
(4) 

𝒆𝒏𝒅𝑩𝒆𝒇𝒐𝒓𝒆𝑬𝒏𝒅(𝐼𝑡𝑣𝑗, 𝐼𝑡𝑣�̂�)    ∀𝑗, 𝑗̂ =  𝑒𝑏𝑒𝑗 (5) 

𝑤𝑗  ≤ 𝒔𝒕𝒂𝒓𝒕𝑶𝒇(𝐼𝑡𝑣𝑗)     ∀𝑗 ∈ 𝐽 (6) 

𝒆𝒏𝒅𝑶𝒇(𝐼𝑡𝑣𝑗) ≤ 𝑤𝑗     ∀𝑗 ∈ 𝐽 (7) 

The integer expression endOf(j) represents the end of interval variable j whenever the interval 

variable is present (otherwise, its value is 0 by default). Now, the objective function (1) seeks to minimize 

the maximum completion time of all jobs. Let alternative(J, {D}) constraint prescribe an exclusive 

alternative relationship among {D}. Namely, if interval J is present then exactly one of intervals {D} is 

present and it is synchronized together with this chosen one (same start/end value). Constraint (2) ensures 

that each job is assigned to exactly one drone in our model. Next, let noOverlap[Seq, 𝚫] constraint on a 

sequence variable Seq state that the sequence defines a chain of non-overlapping intervals, and any 
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interval in the chain is constrained to end before the start of the next interval in the chain with the minimal 

distance 𝚫 . Constraint (3) requires drone to observe the sequence-dependent transfer-time between 

locations. Note each job interval (𝐼𝑡𝑣𝑗) already considers the size of its transfer-time between 𝑝𝑘𝑢𝑝𝑗 and 

𝑑𝑟𝑜𝑝𝑗 . However, there is another transfer, flying to origin location (  𝑝𝑘𝑢𝑝𝑗 ), which is equivalent 

to τ𝑑𝑟𝑜𝑝𝑗, ⃖  𝑝𝑘𝑢𝑝𝑗 ⃗

𝑡  when 𝑗 is immediately preceding 𝑗 in the sequence of drone. Constraint (4) links the last-

known location of drone to the beginning of sequence variable in order to consider the initial location of 

drone. Constraint (5) ensures the precedence-relationship between jobs. The parameter, 𝑒𝑏𝑒𝑗, holds the 

precedence-relationship. Finally, Constraints (6) and (7) ensure the time-window: earliest start time and 

latest completion time. 

Figure 2 represents an optimal schedule for the earlier sample problem with 6-job and 2-drone. The 

drone 1 starts its tour with j3. Note there is no initial transfer time for the drone since the drone is 

currently hovering over m3 where j3 is located. After the drone delivers j3 from m3 to m1 at 50, the done 

next picks up j1 at the same location, drops j1 at m2 at 81, then flies to stocker for picking up j6 at 106, and 

finally delivers j6 to m4 at 127. The drone 2 follows a similar tour. 

 

 

Figure 2: An optimal schedule of the sample problem with 6-job and 2-drone. 

Although CP has excelled most notably in scheduling applications (Baptiste et al., 2012), the 

performance of the original CP formulation can be further improved by using variable orderings heuristics 

(VOH).  In the CP search strategy, the order of the search phases in the array is important. The variables 

will be instantiated phase by phase starting by the first phase of the array. There are some models where 

giving such an order can have a dramatic impact on the solution time. Beck et al. (2004) discussed that 

the “likelihood of finding a solution” could be treated probabilistically. For a given decision there is some 

probability over all possible subsequent decisions that the choice will lead to a solution. They 

demonstrated that different variable ordering heuristics do exhibit different levels of promise, wherein the 

promise is the ability to make choices that lead to a solution. 

For the purposes of our investigation, we implement instantiation orderings over variable groups 

defined as: 𝒱 ≔ {𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑 , 𝑆𝑒𝑞𝑑} , similar to the method proposed by Booth et al. (2016). Within these 

variable groups we investigate orderings on the sets. Problem variables not included in the selected subset 

will be instantiated after those selected. For instance, the variables 𝑆𝑒𝑞𝑑 will be firstly instantiated when 
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𝒔𝒆𝒂𝒓𝒄𝒉𝑷𝒉𝒂𝒔𝒆(𝑆𝑒𝑞𝑑) is added in CP model.  In experiments, 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕
𝒗𝒐𝒉 (𝑪𝑷𝒋𝒅

𝒗𝒐𝒉, 𝑪𝑷𝒔𝒆𝒒
𝒗𝒐𝒉) represent the 

CP search with the variable instantiation strategy for default, 𝐼𝑡𝑣𝐴𝑙𝑡𝑗,𝑑 , and 𝑆𝑒𝑞𝑑, respectively. 

3 COMPUTATIONAL EXPERIMENTS 

In this section, the effectiveness of the proposed model is compared. MIP, CP and flow control models 

are all coded in IBM OPL 12.7.0 on a personal computer with an Intel Core i5-3537 @ 2.5 Ghz processor 

and 8 GB RAM. 

For the MTDSP, a total of 60 test problem instances are randomly generated. The instances are 

divided to six different sizes: 5, 10, 25, 50, 75, and 100 customers, with 10 replications for each. 

Depending on job-size, different sizes of drones (1-50) are assumed. In particular, the 5 (10, 25, 50, 75, 

100) jobs are tested with 1 and 2 (3 and 5, 6 and 13, 13 and 25, 18 and 38, 25 and 50) drones, configuring 

each drone handles 2 jobs, respectively, on average. Note each job contains two transfers: flying to origin 

and flying to destination, which makes a total of 4 transfers per drone, respectively, on average. Finally, 

each instance is tested with the five different models: 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕,
𝒗𝒐𝒉  𝑪𝑷𝒋𝒅,

𝒗𝒐𝒉 and 𝑪𝑷𝒔𝒆𝒒
𝒗𝒐𝒉, which leads to a total 

of 600 runs as shown in Table 2. In addition, best feasible solutions founded in 1, 3, 5, 10, and 15 s 

runtime are collected in order to understand the capability of the proposed model from the real-time 

scheduling perspective.  

 

Table 2. Experimental Design for MTDSP in Fab. 

 Factors  Levels  Sizes 

Jobs 6 5, 10, 25, 50, 75, 100 

Models 3 𝐶𝑃𝑑𝑒𝑓𝑎𝑢𝑙𝑡
𝑣𝑜ℎ , 𝐶𝑃𝑗,𝑑

𝑣𝑜ℎ , 𝐶𝑃𝑠𝑒𝑞
𝑣𝑜ℎ 

Runs 6×3×10 reps. 180 

 

 The experiment assumes that every job has the precedence-relationship with another. All customers 

are distributed across an 80-meter square region. An initial location of each drone is set to be equal to its 

index for simplicity’s sake (ι𝑑 = 𝑑). All the test instances and CP log files are located at the following 

space: https://drive.google.com/open?id=0B85VSacgqRfTYUE5Q1BNemw0bE0. 

Table 3 summarizes the computational results of test problem instances of MTDSP. The table reports 

count of feasible solution, proven optimality, and gap against best solution found, according to different 

job-size, models, and runtimes. Columns 1 (2) show different job-sizes and models. Columns 3-7 (8-12, 

13-17) record the count of feasible solution, the count of proven optimality, and the gap against best 

solution found for the different runtimes, respectively. 𝑪𝑷𝒋,𝒅
𝒗𝒐𝒉 successfully proved optimality of all test 

instances (5, 10, 25, 50, 75, 100 jobs) within 5 s. 

 

Table 3. Count of feasible solution, proven optimality, and gap against best solution found, according to 

different job-size, models, and runtimes. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

  Count of feasible solutions found Count of optimal solutions found Gap against best solution found 

Jobs Models 1 s 3 s 5 s 10 s 15 s 1 s 3 s 5 s 10 s 15 s 1 s 3 s 5 s 10 s 15 s 

5 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕
𝒗𝒐𝒉  10 10 10 10 10 6 7 7 9 10 0.0% 0.0% 0.0% 0.0% 0.0% 

 
𝑪𝑷𝒔𝒆𝒒

𝒗𝒐𝒉 10 10 10 10 10 10 10 10 10 10 0.0% 0.0% 0.0% 0.0% 0.0% 

 
𝑪𝑷𝒋,𝒅

𝒗𝒐𝒉 10 10 10 10 10 10 10 10 10 10 0.0% 0.0% 0.0% 0.0% 0.0% 

10 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕
𝒗𝒐𝒉  10 10 10 10 10 5 5 5 5 5 0.0% 0.0% 0.0% 0.0% 0.0% 

 
𝑪𝑷𝒔𝒆𝒒

𝒗𝒐𝒉 10 10 10 10 10 7 10 10 10 10 0.1% 0.0% 0.0% 0.0% 0.0% 

 𝑪𝑷𝒋,𝒅
𝒗𝒐𝒉 10 10 10 10 10 6 10 10 10 10 0.3% 0.0% 0.0% 0.0% 0.0% 
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25 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕

𝒗𝒐𝒉  10 10 10 10 10 9 9 9 10 10 0.8% 0.7% 0.3% 0.0% 0.0% 

 
𝑪𝑷𝒔𝒆𝒒

𝒗𝒐𝒉 10 10 10 10 10 8 9 10 10 10 1.4% 0.3% 0.0% 0.0% 0.0% 

 
𝑪𝑷𝒋,𝒅

𝒗𝒐𝒉 10 10 10 10 10 9 9 10 10 10 0.9% 0.8% 0.0% 0.0% 0.0% 

50 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕
𝒗𝒐𝒉  9 10 10 10 10 7 10 10 10 10 0.1% 0.0% 0.0% 0.0% 0.0% 

 
𝑪𝑷𝒔𝒆𝒒

𝒗𝒐𝒉 10 10 10 10 10 0 8 8 10 10 99.5% 1.2% 0.2% 0.0% 0.0% 

 
𝑪𝑷𝒋,𝒅

𝒗𝒐𝒉 10 10 10 10 10 10 10 10 10 10 0.0% 0.0% 0.0% 0.0% 0.0% 

75 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕
𝒗𝒐𝒉  0 10 10 10 10 0 10 10 10 10 nf 0.0% 0.0% 0.0% 0.0% 

 
𝑪𝑷𝒔𝒆𝒒

𝒗𝒐𝒉 10 10 10 10 10 0 0 2 8 9 255.1% 61.6% 11.7% 0.3% 0.1% 

 
𝑪𝑷𝒋,𝒅

𝒗𝒐𝒉 10 10 10 10 10 4 10 10 10 10 3.2% 0.0% 0.0% 0.0% 0.0% 

100 𝑪𝑷𝒅𝒆𝒇𝒂𝒖𝒍𝒕
𝒗𝒐𝒉  0 8 10 10 10 0 0 8 9 10 nf 5.2% 0.8% 0.0% 0.0% 

 
𝑪𝑷𝒔𝒆𝒒

𝒗𝒐𝒉 0 10 10 10 10 0 0 0 0 6 nf 159.3% 77.1% 23.3% 3.8% 

 
𝑪𝑷𝒋,𝒅

𝒗𝒐𝒉 0 10 10 10 10 0 5 10 10 10 nf 2.7% 0.0% 0.0% 0.0% 

nf indicates no feasible solution was found in one of the instances at least. 

4 CONCLUSION 

Inspired by Amazon’s significant expansion of its army of warehouse robots and the adaptation of drones 

for final-mile small parcel delivery, this study has mixed these two emerging technologies and proposed a 

drone-powered material transfer system in a fab, wherein jobs could be picked up by drone, transferred, 

and dropped off. Contrary to OHT which utilizes rail mounted near the ceiling to transfer jobs via 

vehicles, this study proposes a delivery of jobs via drone, tearing down traditional rails and vehicles, and 

opens up an whole new way of designing a fab. A high tower-like fab can be foreseen when drone 

replaces OHT. For this coming drone era, a detailed scheduling system, that simultaneously orchestras a 

fleet of drones and a set of jobs in real-time, is studied. A job might be characterized by origin, 

destination, priority, and precedence-relationship. In particular, the precedence-relationship occurs when 

drones are competing for limited number of ports. The computational study demonstrates the proposed 

𝑪𝑷𝒋,𝒅
𝒗𝒐𝒉 impressively proved optimality of all test instances (5, 10, 25, 50, 75, 100 jobs) within 5 s when 

each drone is loaded with 4 transfers on average. As this is the first paper to address the use of a fleet of 

drones in a fab, several potential areas can be foreseen for future research: 

 Zone control: The zone control method, segmenting flow paths into zones (Berman et al., 2003) and 

dedicating a subset of drones to each zone, can be introduced to decompose the original problem, if the 

real-time performance of the proposed method becomes problematic, especially when there are very large 

number of jobs and drones, that must be concurrently scheduled. 

 Unrelated parallel drones: In this paper, identical parallel drones are assumed, but a drone might 

have its variants: one has only one carrier and another has two carriers. The drone equipped with two 

carriers will be able to greatly reduce a delivery-time, by picking up and dropping off jobs at one stop. 

 Simulation study: It will be very interesting to quantify the difference between a traditional OHT-

based transfer and this drone-based transfer, in terms of delivery time and cost. A drone is obviously 

much faster than a OHT vehicle. Furthermore, OHT system costs multi-billion dollar capital investment, 

whereas a drone costs much less.  
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