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ABSTRACT

This paper presents a simulation model of a generic automated planning and control system for the pick-up
and docking of semi-trailers by means of autonomous Yard Tractors (YTs) in a collision- and conflict free
environment. To support the planning and control of the YTs, we propose a Multi-Agent System (MAS).
We illustrate our approach using a case study at a Dutch logistics service provider. To evaluate the proposed
system, we design an agent-based simulation model, which is set up in a similar way as the MAS. We
conclude with the verification and validation of the simulation model.

1 INTRODUCTION

The past few years have witnessed an increased interest within the logistics sector for automated driving.
For logistics service providers it yields an opportunity to decrease waiting time and maneuvering time at
DCs and thus to overcome problems with the driver’s DOT (Department of Transportation) rules. For a
truck unloading at a distribution center, there are various ways of implementing automated driving. We
distinguish between two options once the truck arrives: (i) the truck driver is assisted using an automated
driving system or (ii) the truck and semi-trailer are decoupled and an Automated Guided Vehicle (AGV),
a so called Yard Tractor (YT), takes the semi-trailer to the dock. This paper focuses on the latter. Our aim
is to design (i) a stable and robust planning and control system and (ii) an agent-based simulation model
to evaluate this system.

For the planning and control of transportation resources, in this case the YT, we could resort to
operations research (OR) based global optimization methods. However, these methods may be less suitable
for real-time decision making in stochastic and dynamic environments, since they typically (i) require a lot
of information in advance, (ii) are sensitive to information updates, (iii) are not able to respond in a timely
manner, and (iv) are not flexible enough to deal with changing environments and situations with multiple
autonomous actors (Mes, van der Heijden, and van Harten 2007). An alternative is to use a distributed
planning approach in the form of a Multi-Agent System (MAS). A MAS consists of several independent
and autonomous control units (agents) that pursue their own interests and interact with other agents in
the environment. MASs are believed to be particularly suitable for decentralized systems in real-time and
dynamic environments (Mes, van der Heijden, and van Hillegersberg 2008).

One of the key design challenges of MASs, is the configuration of the agents such that their self-
interested behavior yields a near-optimal solution for the network as a whole. The network is defined as a
closed transportation network consisting of a fixed number of pick-up and drop-off (P/D) locations. YTs
transport the goods (e.g., semi-trailers) between these locations using a certain track layout. The network
is closed, so no YT can enter or leave the system, even when idling. Similarly to Ebben (2001), this
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Automated Transportation Network is defined as a fully automated system for the transportation, loading
and unloading of goods using YTs supported by a MAS that functions as a planning and control system.

In this paper, we design a flexible simulation model for fully automated trailer docking systems, using
agent-based control, that is suitable to analyze different kinds of DCs (and terminals), varying in size,
layout and/or modality. Picking up a semi-trailer and rearward docking is a complex task, which requires
well-designed control systems depending on the semi-trailer characteristics, e.g., length, number of axles,
and the degree of articulation. Automated docking is especially useful for relieving the truck driver of
the even more demanding task of rearward docking a giga-liner, which has two articulation points instead
of one compared to a standard semi-trailer. In the sequel, we use the term cargo to denote freight using
any mode of transport that can be decoupled from the transporting entity. For example, semi-trailers and
ISO-containers fall within this definition, but rigid trucks do not. Here, we specifically focus on the pick-up
and docking of semi-trailers by means of YTs in a collision- and conflict free environment in such a way
that it yields a cost-effective, near-optimal solution. The YTs within the system perform the following main
actions: (i) pick-up arriving cargo that is decoupled from the truck (ii) move the cargo to a predetermined
location, (iii) perform rearward docking of the cargo into the loading dock, (iv) after the terminal has
finished unloading/loading, pick-up the cargo, and (v) drop-off the cargo at a predetermined location such
that a truck is able to pick it up again. We validate the system using discrete-event simulation, and using
a case study at a Dutch logistics service provider.

The novelty of this research is the design and simulation of a large-scale agent-based AGV system
capable of handling heavy and large cargo, particularly semi-trailers. Compared to existing research on
agent-based AGV systems at container terminals, see, e.g., Henesey, Davidsson, and Persson (2009) and
Hanwu and Yan (2010), this research not only considers the transshipment of goods, but also considers a
cross-dock for the consolidation of cargo in a one-to-many and many-to-one fashion. This research can be
extended to incorporate multimodal cross-docks and thus provides a generic solution to agent-based AGV
systems for the handling of freight at any logistic hub. To the best of our knowledge, this particular topic
has not been addressed in the literature before. Furthermore, existing agent-based simulation models do not
provide the flexibility we are looking for. For example, the guide-path design is a strategic decision which
impacts operational performance. We provide a simulation model in which both strategic and operational
decisions can be evaluated simultaneously. Also, most agent-based simulations in similar problem settings
typically focus on one element of the system, such as routing (Srivastava et al. (2007)), scheduling (Erol
et al. (2012)) or deadlock avoidance (Fanti et al. (2015)), whereas we provide a more integral approach
to agent-based AGV systems.

The remainder of the paper is structured as follows. Section 2 presents our case study. In Section 3 we
present our MAS. Next, in Section 4, we present the simulation model to analyze the proposed MAS. Our
model is verified and validated in Section 5. We close with conclusions and directions for further research
in Section 6.

2 CASE DESCRIPTION

This study is motivated by the logistics service provider Rotra based in Doesburg, The Netherlands. Rotra
aims to build a new multimodal cross-dock in Velp, The Netherlands. The terrain will feature a 15,000
m2 cross-dock with 150 loading docks as well as a container terminal. This location is a perfect pilot
location to test the use of autonomous YTs and a MAS for planning and control because (i) there are no
public roads (no regulatory restrictions), (ii) there is enough maneuvering space, (iii) there is a possibility
to extend the system to multimodal (road and water), and (iv) there are no design restrictions (the terminal
has yet to be built). Including the industry partner Rotra within this research enables us to incorporate
many practical requirements at an early stage in the design.

Using the case presented by Rotra, we focus on a truck terminal (or DC) where semi-trailers arrive and
depart by truck and are handled at the DC by YTs. The primary processes for the handling of semi-trailers
at a DC are shown in Fig. 1 (where ‘trailer’ is shorthand for ‘semi-trailer’).
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Figure 1: Primary processes of an Automated Transportation Network at a truck terminal.

3 SYSTEM DESCRIPTION

Designing a MAS is an iterative process. Large-scale systems may contain agents in the hundreds operating at
real-time, perceiving, communicating, negotiating, decision-making and executing. Such a complex system
has to be designed properly and thus a comprehensive and detailed MAS design methodology is needed.
Wooldridge (2009) provides an overview of multiple methodologies. We decided to use the Prometheus
methodology, since it is generally conceived as comprehensive, practical and easily implementable (Winikoff
and Padgham 2004). Throughout the literature, Prometheus is used to design multi-agent systems, including
systems that feature AGVs (Erol et al. 2012, Wu et al. 2012). An important practical aspect is that the
Prometheus Design Tool (PDT) is freely available. Moreover, it has built-in completeness and consistency
checks. Prometheus is based on industry standards like case scenarios, UML sequence diagrams, AUML
(itself an extension of UML) and the Rational Unified Process (RUP) (Padgham and Winikoff 2004).

The Prometheus Method consists of the following three phases: (i) the system specification phase, (ii)
the architectural design phase and (iii) the detailed design phase (Padgham and Winikoff 2004). In the
following sections, we summarize the results of the different design phases.

3.1 System Specification

During the system specification phase, we breakdown the overall goals of the system into smaller sub
goals to elucidate which kind of behavior and functionality is required to reach the goals of the system as
a whole. From this breakdown, we define the following (generic) grouping of functionalities:

1. Demand Management (DM) - This functionality monitors inbound/outbound cargo, obtaining
information about expected arrival/dispatch time and cargo description.

2. Park Management (PM) - This functionality assigns pick-up and drop-off locations to all cargo and
YTs.

3. Vehicle Scheduling (VS) - This functionality decides when and where which YT should pick-up
and drop-off cargo or empty semi-trailers.
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4. Vehicle Routing (VR) - This functionality determines the route such that the YT can pick-up and
drop-off cargo or empty semi-trailers.

5. Conflict Resolution (CR) - This functionality monitors all YT movements and makes sure there are
no collisions and resolves conflicts.

6. Battery Management (BM) - This functionality determines when and where YTs should be refueled
or recharged.

The system specification phase continues with scenario development. Every scenario sets out a state
the system can be in and translates this into how the functionalities defined above should act upon this
state. We define the following scenarios: (i) cargo arrival, (ii) cargo departure, (iii) empty cargo movement,
(iv) YT idle, (v) YT low battery, and (vi) YT conflict. The first scenario assumes inbound cargo and the
second outbound cargo. The third scenario occurs when empty cargo is moved to (or removed from) a
dock. The fourth scenario occurs when a YT is idling and thus has to be parked somewhere. The fifth
scenario occurs when a YT has a low battery and thus has to be recharged at the appropriate location. Note
that recharging can also be replaced by refueling (in case of a combustion engine). The final scenario is
one that can happen anytime during system run-time and thus also during other scenarios, namely YTs
that are in conflict. This could for example happen when two or more YTs want to take the same route at
the same time. Appropriate measures have to be taken when this occurs such that congestion and system
dead- or livelocks are avoided.

3.2 Architectural Design

The architectural design phase defines the agents within the system based on the functionalities and scenarios
defined in the previous design phase. In this phase we determine how agents interact with each other and
which external connections are required. We employ a data coupling diagram to provide insight into the
connections between functionalities based on the scenarios defined. Directed links are shown between
functionalities and data. Arrows pointing towards data indicate that data is written by the functionality and
the other way around indicate the usage of data. Double-headed arrows indicate the usage and writing of
data by the functionality. Bold arrows indicate important connections within the system. All data used and
produced by the system must be somewhere in the diagram, including all external data sources. This also
functions as a consistency check between the first two design phases. For brevity of writing we do not
show the internal capabilities of the functionalities in the data coupling diagram (see Fig. 2).

The main external database required for the MAS is the Transport Management System (TMS). This TMS
contains information about inbound and outbound cargo, cargo properties (e.g., consolidation information),
where the cargo should go to at the DC (originating from the planning system) as well as client-specific
information. The expected arrival time of inbound cargo is obtained using the board computer of the
transporting entity. From Fig. 2 we see seven agents emerging. We further elaborate on these agents in
Section 3.5.

3.3 Detailed Design

The final design phase builds upon the agent descriptors defined in the previous phase and further specifies
the behavior of every agent. This includes all triggers the agent responds to, how it responds accordingly,
and which agents it interacts with. This phase narrowly defines the external connections of the MAS as
these contain many of the triggers the MAS responds to (e.g., ‘new arriving transport’ or ‘semi-trailer
unloaded’). An important part of this final phase is the outline of what kind of intelligence an agent should
inhabit. For example, the Vehicle Scheduling Agent should contain a scheduling algorithm or a set of
rules which makes sure the YTs are scheduled in an efficient and effective way. To show how the MAS
fits within an automated YT system, we employ the framework from Le-Anh and de Koster (2006). This
gives us a solid theoretical framework on how to align the design of the MAS (that corresponds with the
tactical and operational levels in the framework) with the design of a physical automated YT system. We
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Figure 2: Data coupling diagram of the MAS.

first focus on the strategic level in Section 3.4 and connect the agents with the tactical and operational
levels in Section 3.5.

3.4 Guide-path Design

One of the key design issues is the design of the guide-path (or flow path). The guide-path is a layout of
trajectories that YTs can follow by using, for example, wires or transponders in the ground connecting
all P/D locations (i.e., loading docks and parking slots). The design of the guide-path layout can be done
in various ways (Vis 2006) and has a direct impact on system performance (such as travel time, number
of required vehicles and degree of congestion). Specifically, it provides bounds to where YTs are able to
drive. Due to the impact on system performance, the guide-path is an important input for our simulation
model as we want to be able to verify different designs (see Section 4.1). As the layout of the building and
the locations of the P/D points are relatively straightforward, we fix these as input factors. The cross-dock
in our case study will have a rectangular shape with 75 loading docks (P/D locations) at opposite sides. In
this paper, we focus on one side of the cross-dock only. The key design issue is to create a well-balanced
trade-off between the space required for the layout and the most efficient way of maneuvering, such that
it can accommodate a multitude of vehicle configurations.

We use a unidirectional single loop to connect the main areas on the terminal and extend it with
bidirectional arcs per P/D location to (i) remove the YT and cargo from the single loop to lower congestion
and (ii) form a guide-path for the rearward docking/parking maneuver. Since we deploy articulated vehicles
(a combination of a YT with a semi-trailer) we need maneuvering space to straighten out the semi-trailer
behind the YT when turning. From here on we call this maneuvering space before a dock or parking slot
a crossroad. The crossroads facilitate rearward docking and parking maneuvers and are thus by definition
bidirectional arcs. This makes the entire system a mixed uni-bidirectional guide-path. Fig. 3 exemplifies
how the crossroads fit within the guide-path design and shows the overall design of our pilot location.
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n = # of docks, p = # of parking slots, m = # of AGV parking slots, k = # container terminal pick-up locations

1 2 n-1 n

1 2 n-1 n

1 2 p-1 p

1 m

Cross Dock

Empty Trailer Parking

Arrival/Departure Parking

YT Parking

See Figure 4

Figure 3: Guide-path design and layout of the pilot location.

At the Arrival/Departure Parking, truck drivers drop-off and pick-up semi-trailers. Here p parking slots
are available. From this point on, the autonomous YTs take over the handling and use the guide-paths to
dock, park, and move around semi-trailers. The cross-dock has n docks and the parking opposite to it also
has n parking slots. The YT parking is used for charging YTs and parking when YTs are idling, and is
strategically positioned between the main areas to decrease the response time of a YT. The YT parking
has m parking/charging slots.

There are multiple ways of designing the crossroads, three of which we discuss below. We limit our
discussion of the crossroads to the area in front of the cross-dock with a parking area opposite to it (e.g.,
to temporarily park semi-trailers). Fig. 4 shows three different crossroad designs.

Figure 4: Crossroad designs: design 1 (left), design 2 (middle), and design 3 (right).

To illustrate, a docking maneuver starts with a YT carrying a semi-trailer at the top main road on the
right-hand side of the dock. The YT turns away from the main road facing south until the back of the
semi-trailer is facing the dock. The YT then backs up the semi-trailer until it is docked into the (un)loading
area. When the YT is decoupled it can continue its path using the curve facing away from the cross-dock
in western direction. When picking up a docked trailer, a similar maneuver is used.

On the left in Fig. 4 (design 1), we display a simple design where only a crossroad is incorporated and
there is no possibility to move between the top and the bottom road (or vice versa). This limits the ability
to take shortcuts and thus the entire length of the cross-dock has to be traversed before the YT can switch
between the main roads. Design 2 resolves this problem by adding two additional arcs (marked with an
A) such that YTs can move between the two roads at every P/D location. Design 3 further extends the
ability to take shortcuts by adding an arc at every parking slot (marked with a B). The different designs
can be analyzed using the proposed simulation model (see Section 4).
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3.5 Agent Intelligence

Using the framework from Le-Anh and de Koster (2006), we finalize the MAS design by designing the
intelligence of the agents such that they fulfill their design objectives. Since this paper focuses on the
evaluation framework and not on detailed design issues, we only briefly describe this design for the seven
agent types.

• Demand Manager - This agent does not require complex algorithms, but instead provides the link
between external systems (e.g., TMS) and the MAS. Nevertheless, it is essential that all data required
is readily available and up-to-date.

• Parking Manager - We use a nearest-available rule for all parking areas. Arriving and departing
semi-trailers are assigned to the first available (i.e., not occupied) parking slot.

• Vehicle Scheduling Agent - We need to assign YTs to trailer movements. A common way of
supporting assignment decisions in MASs is through the use of an auction mechanism where YTs
compete for orders. The Vehicle Scheduling agent initiates a proposal when a new job enters the
system via the Demand Manager (e.g., pick-up at cross-dock). All YT agents evaluate this proposal
and send back a bid. Based on a bid evaluation function the winner is announced. We use the
auction mechanism as described in (Mes, van der Heijden, and van Harten 2007).

• Vehicle Routing Agent - The routing agent determines the shortest route the YT should take given
the pick-up and drop-off location of the job.

• Battery Manager - The battery management agent uses an opportunity charging strategy as defined
in McHaney (1995). Whenever a YT is idling it is sent to the YT parking. The Battery Manager
also monitors the battery level of all YTs and asks the Vehicle Scheduling agent to schedule a
charging job whenever the battery is below a certain threshold.

• Conflict Manager - This agent is responsible to avoid collisions, congestion and deadlocks. We use
a priority list to make stop-and-go decisions based on the current status of the YT. When two or
more YTs want to use the same arc at the same time, the Conflict Manager evaluates which YT has
priority based on the current jobs the YTs are processing and stops the YT with the lowest priority.

• YT Manager - The YT Manager agent has an important role within the MAS as it feeds information
about the YT to the system (e.g., current position and battery level). It furthermore uses the bid
calculating function as described above to respond to the proposals of the Vehicle Scheduling agent.

4 SIMULATION MODELING

To evaluate the proposed MAS, we the discrete-event simulation (DES) software Plant Simulation. As stated
by Law (2007), DES is suitable to model agent-based systems as in virtually all agent-based simulations
state changes occur at a countable number of points in time. In our DES, the agents interact with other
agents and the environment, following the design presented in Section 3. Although we focus on our case
study, we provide enough flexibility in our model to tailor the simulation model to other DCs. Two important
parts of our simulation model are (i) the modeling of a track system that resembles the guide-path design
and (ii) incorporating the agent intelligence. In the following subsections we focus on these two parts.

4.1 Modeling the Guide-paths

We model the guide-paths using so called Tracks. These tracks allow moving units (i.e., YTs) to travel from
one node to another and are characterized by length, direction, and curvature. The complete guide-path
is composed by a large set of connected tracks. The crossroads are modeled as bidirectional arcs and all
other tracks as unidirectional. One of the challenges is building a flexible track system. Since we want
to evaluate various physical designs, inserting the entire track system manually would not be an option.
Therefore, we created a procedure (CreateTracks) that generates the whole guide-path layout using the
given input. For our case study, this given input consists of: the values of n, m, and p from Fig. 3, the
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distance between the docks, the distance between the parking slots, the length of the crossroads, the length
of the parking slots, and the required distance between the cross-dock and the main road.

The network creation procedure enables us to systematically assess various designs as discussed in
Section 3.4. Moreover, different types of semi-trailers (i.e., normal-sized and giga-liners) require differently
designed guide-paths. Even within a semi-trailer type, the guide-path may need to be adjusted based on
the kinematic properties of the semi-trailer (e.g., number of axles) to realistically model vehicle behavior.
An example of the result of CreateTracks using five docks and design 2 from Fig. 4 is shown in Fig. 5.
The tracks on the right side connect the cross-dock with the Arrival/Departure Parking and the YT parking,
see Fig. 3.

Figure 5: Result of the CreateTracks procedure using design 2.

4.2 Modeling the MAS

A crucial part of the simulation model is the agent-based planning and control mechanism. We program
the functionalities of every agent as described in Section 3.5. Communication between agents lies at the
heart of a MAS. We capture the essence of communication without explicitly referring to a specific agent
communication language. In a sense, the simulation model not only serves as a tool to analyze the physical
design and MAS control, but also to validate the MAS software architecture. An overview of the simulation
model, including the initialization and the communication between agents, is shown in Fig. 6. In this figure
the green rounded shapes are triggering events and the red rounded shapes are end events. The processes
are depicted using rectangles. We use dotted lines to indicate when an agent has to wait for a triggering
event that has not been included for ease of presentation.

5 VERIFICATION AND VALIDATION

The basis of the simulation model is the layout of the pilot location of our case study. Despite the fact
that the pilot location has not been built yet, and thus no real world data is available, we do employ
validation techniques such as conceptual model validation, white-box validation, and black-box validation.
Our graphics use 3D models of Rotra’s semi-trailers. The YTs move over the guide-path and can hitch
and unhitch semi-trailers at the appropriate locations. The docks are modeled as transfer stations, which
function either as an unloading station or as a loading station, based on the job at hand. Fig. 7 shows a
screenshot of the simulation model.
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Figure 6: High level overview of the simulation model.

We omitted the YT parking from the screenshot to get a clearer view of the model. In this figure we
see four deployed YTs. The YT on the left in the top frame is currently rearward docking a semi-trailer
whereas the YT in the middle in the same frame is currently rearward maneuvering a semi-trailer to the
parking opposite to the DC. On the right a YT is transporting a semi-trailer along the bottom highway.
In the bottom frame, we see a YT driving rearwards to pick up an arriving semi-trailer and a truck on its
way to drop-off a semi-trailer at the Arrival/Departure Parking. Also an empty truck is leaving the DC
area. The remainder of this section describes the verification and validation of the simulation model and
presents preliminary results.

Verification of our model was done using (i) code debugging, (ii) model reviewing, (iii) providing
demonstrations to the stakeholders, (iv) comparing the assignment of the YT to a semi-trailer with the
actual YT picking it up, and (v) watching the animation of the semi-trailers moving along the guide-paths.
From this analysis, we conclude that the simulation is an accurate translation of the conceptual model.

Validation of our model was done using the techniques described in Robinson (2014). We illustrate the
validation process using the Parking Manager. As described before, the Parking Manager uses a nearest
available rule to assign parking slots to semi-trailers. We validated this agent by running the model and
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Figure 7: Screenshot of the simulation model.

checking whether the parking slot assignment corresponds with the nearest available rule. Fig. 8 shows the
assignment of parking slots to (i) arriving semi-trailers at the Arrival/Departure parking and (ii) unloaded
semi-trailers at the Empty Trailer (ET) parking. We expect from the Arrival/Departure parking that initially,
arriving semi-trailers have a low parking slot ID because the time it takes for the YT to pick-up the
semi-trailer is shorter than the inter-arrival time of the arriving semi-trailers. At some point the system
is full and semi-trailers are also starting to depart. This results in a mixture of arriving and departing
semi-trailers at the Arrival/Departure Parking. We thus expect that the parking slot IDs will then be higher,
also because there are more jobs at hand for the YTs and thus the time it takes for the YT to pick-up or
drop-off a semi-trailer increases. From Fig. 8 we conclude that this is indeed the case. For the ET parking,
the nearest available slot is opposite to the dock where the semi-trailer has been unloaded. We thus expect
that, under normal conditions, the parking slots are assigned opposite to the arrival dock. However, in
case of increasing utilization of the ET parking, only a few parking slots are available and thus the nearest
available parking slot may be far away from the arrival dock. When the ET parking is full, the model waits
until a parking slot becomes available and assigns this slot to the semi-trailer that has been waiting for
the longest time, irrespective of its location. Hence, in case of high utilization, we expect major outliers.
From Fig. 8 we conclude that our expectations of the ET parking correspond with the results. We used
similar procedures to validate the other agents.
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Figure 8: Scatter plots of the assignment of parking slots to semi-trailers.

To illustrate the working of our simulation model, we fix the guide-path so as to correspond to standard
semi-trailer dimensions. Moreover, as for crossroads we choose design 2 from Figure 4. We perform
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several experiments considering varying numbers of YTs. For every run, we did ten replications each with
200 arriving and departing transports. The results are summarized in Table 1. The cycle time, shown in
hours, consists of waiting time, (de)coupling time, and (un)loading time. The travel time is omitted as this
is just a minor component of the cycle time. We see that the waiting time significantly decreases when
three instead of two YTs are deployed. The waiting time at the ET parking shows less volatility as this
also includes the time the semi-trailers wait for a loading job. We conclude from this preliminary analysis
that at least three YTs are required to reach an acceptable cycle time.

Table 1: Simulation results (”hh:mm”).

3 YTs 2 YTs
Mean SD Min Max 95% Mean SD Min Max 95%

Total Cycle time 7:35 2:39 1:50 16:40 11:53 12:51 4:55 3:39 23:59 20:13
Waiting for YT at A/D 1:32 2:13 0:00 7:56 6:05 4:46 5:11 0:00 19:16 15:04

Waiting for YT at CD (arrival) 0:27 0:27 0:00 2:25 1:21 0:56 0:46 0:00 4:03 2:38
Waiting at ET 2:58 2:22 0:03 14:34 7:47 4:11 3:53 0:01 22:01 12:23

Waiting for YT at CD (departure) 0:40 0:32 0:00 2:29 1:44 1:03 1:00 0:00 4:01 3:11

6 CONCLUSIONS AND FURTHER RESEARCH

In this paper, we designed an agent-based simulation model for the automatic pick-up and docking of
semi-trailers by means of autonomous yard tractors. We presented various designs for the physical layout
of our pilot location. Specifically, we elaborated on the guide-path design. To evaluate these physical
designs as well as to validate our agent-based control architecture, we proposed a simulation model that
is flexible in the sense that the layout is generated on the basis of a small number of input parameters.
We illustrated the use of our simulation model in validating the proposed multi-agent system using a case
study at a Dutch logistics service provider. Further research directions include (i) the experimental design
of the simulation model to test the effectiveness of the proposed multi-agent system, (ii) finding more
test-bed case studies to validate the genericity of the model, and (iii) examining the impact of the various
semi-trailer characteristics on the size and form of the guide-path.
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