
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

POWER CONSUMPTION IN PARALLEL AND DISTRIBUTED SIMULATIONS

Richard M. Fujimoto

School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT

The energy and power consumed by computing applications have long been important concerns in mobile
systems and have recently become of great interest in high performance and cloud computing. To date,
only a limited amount of work has considered power consumption in parallel and distributed simulation
systems. A variety of options to reduce power consumption in these systems are discussed, suggestive of
directions for future research in this increasingly important area.

1 INTRODUCTION

Energy consumption has long been a major concern in mobile computing systems. Reduced energy
consumption can lead to longer times between recharging and/or the ability to use smaller, lighter weight
batteries. Executing parallel and distributed simulations on mobile computing platforms is an area of
increasing interest in the context of symbiotic simulations (Fujimoto et al. 2002) or dynamic data-driven
application systems (DDDAS) (Darema 2004). Such systems involve incorporating live data from
instrumented systems into simulations in order to optimize the system and/or steer the measurement
process. Trends such as edge computing are pushing computations away from centralized computing
facilities into devices embedded in and interacting with the real world. Placing the simulations in close
proximity to the physical system, e.g., within a sensor network, reduces or eliminates reliance on
connectivity to the central command center, offers the potential for greater scalability, enables faster
response time for latency-critical applications, and avoids privacy issues associated with storing data in a
centralized facility. In situations such as these the simulation may need to operate on battery-operated
mobile devices, so energy consumption becomes an important concern.
 For example, distributed simulations can be used to create adaptive sensor networks to monitor
dynamically changing physical systems. A collection of small, battery-operated unmanned aerial vehicles
(UAVs) might be assigned the task of monitoring a physical system, e.g., tracking the flow of traffic in a
city, monitoring the spread of a forest fire, or assessing the dispersion of a hazardous chemical plume
following an accident (Fujimoto et al. 2007; Kamrani and Ayani 2007; Madey et al. 2012). Each UAV is
equipped with sensors, an on-board computer, and wireless communications, and assigned to collect
information in a certain geographical area. Collectively the team of UAVs may then execute a distributed
simulation to project the future state of the system, e.g., to predict the evolution of the fire in order to
determine how best to relocate the UAVs in order to continue monitoring its spread.

In other contexts it may be more appropriate to utilize remote servers, e.g., computation resources
available in the cloud, to execute the simulations. Here the sensor nodes are only used for data collection
and aggregation. Indeed, this approach is more commonly used today. Use of remote servers may be
preferable if the embedded computational resources are insufficient to complete the simulations in a
timely fashion, the latency associated with communications to and from the remote servers is acceptable,
and use of aggregated data feeds yields sufficiently accurate simulation results. Here, the power utilized
for communication with battery-powered nodes as well as that consumed by the remote server systems, as
discussed momentarily, may be of greater concern.

720978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Fujimoto

In high performance computing power consumption is a major impediment to achieving increased
levels of performance due to limitations in dissipating heat from electronic circuits. It has been cited as a
key hurdle in achieving exascale performance in supercomputers. The Thermal Design Power (TDP) is
the amount of heat generated by a computer chip or component during normal operation for which the
cooling system has been designed (Huck 2011). Power capping used in some systems places a maximum
amount of power that can be consumed by a computer server. A typical goal for an HPC application
might be to minimize execution time subject to staying within the specified power cap constraint.

Further, power consumption in supercomputers and data centers used for cloud computing
applications is a major operating expense. The U.S. Department of Energy has set a goal of 20 megawatts
as the maximum power consumed by an exascale supercomputer. Electricity is a major cost in operating
data centers. It is estimated that in total, data centers consumed approximately 70 billion kW-hours or
about 1.8% of the total electricity consumption in the U.S. in 2014 (Shehabi et al. 2016). As such,
reducing power consumption is increasing in importance for high performance and cloud computing
applications.

2 PARALLEL AND DISTRIBUTED SIMULATION

We first review key concepts and algorithms in parallel and distributed simulation that will be utilized
later. Further discussion of this topic can be found in (Fujimoto 2000). Parallel simulation is concerned
with distributing the execution of a simulation program across the processors in a tightly coupled
multiprocessor. The principle goal is usually to reduce execution time. Here, we are primarily concerned
with discrete event simulations. Parallel execution is accomplished by partitioning the system being
modeled into a set of physical processes, and modeling each physical process with a simulation program
referred to as a logical process (LP). LPs communicate exclusively by exchanging timestamped events or
messages. Each event/message contains a timestamp with a value in simulation time indicating when that
event would occur in the physical system. Sending a message from one LP to another is equivalent to the
sending LP scheduling a new event at the receiving LP. The state variables making up the simulation are
partitioned among the LPs; no shared state among the LPs is allowed. The parallel simulator is often
partitioned into two components – the simulation engine that manages the execution of the simulation and
is independent of the particular simulation application being studied, and the simulation application that
includes the model where all aspects related to the domain of application are represented.

Distributed simulation typically refers to the execution of the simulation on a loosely coupled
distributed computing platform such as processors interconnected by a local or wide area network. While
scalability and performance is often a goal or requirement in distributed simulations, often a more
compelling objective is to interconnect or federate separately developed simulators, thereby realizing
great cost savings via software reuse compared to developing new simulation models. A key challenge is
to allow separately developed simulators to interoperate and exchange data. Standards such as the High
Level Architecture (IEEE Std 1516.3-2010 2010) and Distributed Interactive Simulation (IEEE Std
1278.1-1995 1995) have been developed to facilitate interoperability. Middleware often referred to as
Runtime Infrastructure (RTI) software implements services for simulations to exchange data,
synchronize, and manage the execution of the distributed simulation. Like the simulation engine in a
parallel simulator, RTI software is often independent of the simulation application being studied.

Parallel and distributed simulations are different, but share many aspects in common. In the
following, when the distinction is not important, we simply use the term “distributed simulation” to
generically refer to both.

2.1 Synchronization

Parallel and distributed simulations that are used for system analysis (as opposed to training) utilize
mechanisms to ensure that the parallel/distributed execution yields the same results as a sequential
execution. In discrete event simulations this is accomplished by ensuring that the events processed within

721

Fujimoto

each LP are processed in timestamp order. Provided events with the same timestamp are processed in the
same order by the parallel/distributed and sequential simulation, ensuring each LP processes events in
timestamp order is sufficient to ensure that the same results as a sequential simulation are produced.

There are two major categories of synchronization algorithms used to ensure each LP processes
events in timestamp order. The first, called conservative synchronization, ensures that each LP never
processes an event until it can guarantee that it will not later receive an event containing a smaller
timestamp. This can be accomplished by each LP determining a lower bound on timestamp (LBTS) of
any message it might later receive. The earliest algorithms developed independently by Chandy and Misra
(Chandy and Misra 1979) and Bryant (Bryant 1977) are known as the null message or
Chandy/Misra/Bryant (CMB) algorithm. CMB has LPs send dummy or “null” messages to each other
indicating a lower bound on the time stamp of any message it might send in the future. This lower bound
is computed using the LP’s current simulation time, and the minimum amount of simulation time into the
future that could be used to generate a new message. This latter value is referred to as the LP’s lookahead.
Lookahead is a fundamental requirement of all conservative simulations, and a large lookahead value
relative to the average amount of simulation time between events in an LP is usually required to achieve
efficient execution. Second generation conservative algorithms also utilized the timestamp of the next
unprocessed event within each LP to compute LBTS values. This can greatly improve the efficiency of
the algorithm, but large lookahead values are still required.

The other major approach is called optimistic synchronization. Jefferson’s Time Warp algorithm was
the first, and remains the most well-known optimistic algorithm (Jefferson 1985). While conservative
algorithms avoid synchronization errors, i.e., processing events within an LP out of timestamp order,
optimistic algorithms use a detection and recover approach. An LP can easily detect when it has
processed events out of timestamp order by simply comparing the timestamp of each incoming message
with that of the last event it processed. The computations associated with events with timestamp larger
than the incoming message must be rolled back. Rolling back an event involves restoring the state
variables of an LP to that which existed prior to processing the event, and “unsending” any messages sent
by the rolled back event. The latter is accomplished in Time Warp using a mechanism called anti-
messages that cancel previously sent messages. Anti-messages may cause additional rollbacks, leading to
the possibility of rollback cascades where one rollback results in a second, or third, etc. Time Warp also
requires the computation of a value called Global Virtual Time (GVT) which is a lower bound on the
timestamp of future rollbacks. GVT is required to reclaim memory, e.g., snapshots of LP state variables
needed because of the possibility of rollback, and to perform operations such as I/O that cannot be rolled
back. A number of other optimistic synchronization algorithms were developed after Time Warp
appeared, however, most rely on the basic mechanisms used by Time Warp described above.

From the standpoint of power and energy consumption, synchronization is important because it
represents overheads required by the distributed simulation, separate from the simulation application. The
amount of power and energy required for synchronization can be a significant concern in parallel and
distributed simulations. More will be said about this later.

2.2 Data Distribution

A second major function in distributed simulation concerns the distribution of information among the
LPs or federates making up the simulation. Data distribution in parallel discrete event simulations is
usually relatively straightforward because the parallel simulator is developed as a single unified body of
code so the sending LP knows which other LP(s) should receive the messages it is sending. In federated
distributed simulations this is not so straightforward because each federate is designed to be an
autonomous simulator that can interoperate with other simulations that were developed separately from
each other. When the state of a federate such as the position of a moving vehicle modeled by that federate
changes, it is not immediately obvious which other simulators should receive a message notifying them of
this update. The simulators modeling vehicles that can “see” the moving vehicle should receive

722

Fujimoto

notification, however, the federate modeling the moving vehicle does not know which other federates are
modeling these vehicles. Data distribution is typically accomplished by RTI software that matches the
interests of each federate with information concerning the messages that are produced. In the High Level
Architecture, for example, the data distribution management (DDM) services match data publishers with
subscribers, and route messages to federates accordingly. Computations and communication are required
to determine who is to receive what messages, and to maintain information necessary to determine
receivers, translating into power consumption.

3 DEFINITIONS AND TERMS

Energy and power are two related, but distinct quantities. Energy is commonly defined as “the
capacity for doing work” (Encyclopedia Britanica 2000), and here refers to the energy expended by the
computing system to execute a distributed simulation. A joule corresponds to the energy required to move
one coulomb of electric charge through an electric potential of one volt. Power refers to the amount of
energy consumed per unit of time, with one watt referring to the expenditure of one joule of energy per
second. Minimizing energy usage and power consumption are not the same thing (Unsal 2008). For
example, decreasing the clock rate of the processor can lead to less power consumption. However, this
will usually lead to longer execution times and can increase the total amount of energy needed to
complete the computation. Energy or power may be much more important depending on the context in
which the simulation is operating. Here, we are concerned with both power and energy consumption, but
use the term “power” whenever the distinction between the two is not important.

For computing platforms operating on batteries energy consumption is usually the principle concern.
Batteries convert chemical energy from materials within the fuel cell into electricity. A battery has a fixed
energy capacity that is defined as the amount of electrical charge the battery can deliver at its rated
voltage, measured in amp-hours (Wikipedia 2017). Thus, the amount of energy consumed by a
computation directly impacts the battery’s lifetime. Reducing power consumption is not helpful in
addressing battery lifetime or size concerns if it does not result in a reduction of the total amount of
energy consumed by the computation.

Concerns regarding heat dissipation and electric power bills suggest that power may be a greater
concern for parallel simulations rather than energy, per se. Certainly this is true if the objective is to meet
a power cap constraint. Very often power is viewed as the main metric for parallel simulations, and
energy for distributed simulations designed to prolong battery life. However, this is not always the case.
For example, an area of increasing interest is micro-cluster servers composed of closely coupled power-
efficient processors, the same processors used in cellular phones, for instance, operating in energy
constrained mobile platforms. As such, energy consumption for parallel simulation codes executing on
these platforms may be of greater interest than power consumption. Similarly, in distributed simulations
where part or all of the simulation executes on back-end cloud computing platforms or the concern is heat
generated by the mobile device, power consumption may be of great concern.

Power-aware and energy-aware systems are those where power or energy consumption is a principal
design consideration. For example, power-aware systems may utilize techniques to change the system’s
behavior based on the amount of power being consumed. Energy-aware systems may modify the
operation of the system based on the amount of energy remaining in batteries, e.g., reducing data
sampling rates or using lower precision computations. Battery operated devices are energy-constrained
systems because they operate with a finite amount of available energy; thus a design goal might be to
minimize the amount of energy utilized by the computation as a whole, subject to certain execution time
and accuracy constraints. On the other hand, in power-constrained systems such as supercomputers and
data centers the amount of available energy is effectively unlimited, but a design goal may be to minimize
the amount of time required to complete the computation given a certain maximum level of power
consumption, or alternatively to minimize power consumption, subject to certain execution time

723

Fujimoto

constraints. In real-time systems a common goal is to minimize energy consumption while ensuring that
certain deadlines are met by the computation.

Finally, it should be noted that minimizing execution time does not necessarily result in minimal
energy consumption, although the two are often closely correlated. Energy consumption is affected by
many factors including the operation of the memory system, the number and complexity of computations
performed by arithmetic circuits, and importantly, the amount of inter-processor communication that is
required. A parallel or distributed computation that executes in a shorter amount of time may consume
both more energy and more power if more communications are required.

4 POWER CONSUMPTION IN DISTRIBUTED SIMULATIONS

Power and energy consumption in distributed simulations must always consider other design goals such
as execution time, meeting deadlines, throughput, model accuracy, and/or precision. This suggest taking
an holistic view of the system as a whole. In order to characterize different approaches to realizing power-
efficient distributed simulations, we use the framework depicted in Figure 1. This framework is not unlike
that described in (Benini and G. De Michela 2000), but has been adapted to apply to distributed
simulations. The framework has two dimensions. The vertical axis corresponds to a view of the
hardware/software stack used to implement the distributed simulation system. Specifically, we
differentiate between (1) the simulation model layer where the application-specific simulation program is
defined, (2) the simulation engine layer that includes distributed simulation middleware, and (3) the
system layer that includes the operating system and hardware upon which the simulation engine and
simulation model execute. The second, horizontal axis differentiates between the power consumed for (1)
computation, (2) memory and storage, and (3) communications. Different techniques defined in the
software stack will impact power consumption in different parts of the system.

The simulation model layer includes the representation of the state of the system being modeled and
the code for transforming this state from one time instant to the next. It includes those portions of the
distributed simulation that are specific to the simulation application. Several design decisions in creating
the simulation model can have a large impact on power consumption. Perhaps most importantly, the
degree of detail at which the system is modeled in space (e.g., the level of aggregation) and time (e.g., the
time step size) will impact the amount of memory required and memory access patterns as well as the
amount of computation required to update the system state. The model detail and abstractions that are
used will also impact the amount and frequency with which data must be communicated among the
processes making up the distributed simulation. Decisions such as the precision at which data is
represented and algorithms used to transform the state of the simulation model will similarly impact
energy consumption. Techniques such as dead reckoning (DR) may be used to reduce the amount of
communication required, and thus the amount of energy expended for communications, at the cost of
increased computation to execute the DR models. Design of the distributed simulation model will require

Figure 1. Framework of techniques for creating power efficient distributed simulations.

724

Fujimoto

one to determine the minimal level of detail required to meet the accuracy and precision objectives of the
simulation while also meeting runtime performance, memory, and power consumption constraints.

The simulation engine layer includes distributed simulation software that does not depend on the
system being modeled. It includes the synchronization algorithm as well as other functions such as event
list processing and data distribution. Design decisions concerning the implementation of these services
can have a significant impact on power consumption. Different approaches to implementing data
distribution and logical process scheduling will impact power. Clustering messages for inter-processor
communications can also be used to reduce power consumption.

The systems layer includes the underlying hardware and operating system over which the distributed
simulation executes. Low power operating systems focus on techniques such as light-weight
implementation of essential services to reduce power consumption while meeting performance
requirements and/or task completion deadlines (Cho et al. 2011; Quan and Hu 2001; Saewong and
Rajkumar 2003). Many communication protocols are designed or optimized for low power operation.
Power mode management techniques involve exploitation of different modes of operation for processors,
memory, storage, and communication circuits (Bhatti et al. 2010; Hoeller et al. 2006; Niu and Quan
2004). For example, such components can often be disabled or switched to power saving states. The
simulation computation can be mapped to a minimal number of processors necessary to meet delay and
throughput needs, and the remaining cores can be powered down to reduce power consumption.
Similarly, communications circuits can be powered down between communications. These techniques
come at a cost, of course, e.g., in terms of increased execution time or longer communication latency.
Many processors provide dynamic voltage and frequency scaling (DVFS) where the processor voltage
and clock frequency can be reduced to trade off power consumption and performance (Freeh et al. 2007;
Ge et al. 2005; Hua and Qu 2003).

There is a substantial literature in power aware design of embedded systems and a growing literature
related to high performance computing. Most of this work focuses on the systems layer described above.
Below we describe work specifically focused on power efficient distributed simulation. This includes
both aspects unique to distributed simulations such as synchronization algorithms, as well as methods
involving the application of general techniques such as power mode management to distributed
simulations. The sections that follow discuss techniques within each of the three layers shown in Figure 1.

5 HARDWARE: COMPUTATION, STORAGE, AND COMMUNICATION

At the hardware level, power consumption for CMOS circuits is broken down into three main
components – power resulting from the current needed to charge capacitive loads as signals change, short
circuit current that occurs momentarily when a CMOS circuit switches, and power due to leakage current
as indicated by the three terms below (Mudge 2001):

 P = ACV2f + tAVIshort f + VIleak
Here P indicates power consumed by the circuit, A indicates the activity of the circuit (not all circuits

switch on each clock), C is the total capacitive load on the circuit, V is the supply voltage, f is the clock
frequency, t indicates the time duration when the short circuit current flows, and Ishort and Ileak are the
short circuit and leakage current, respectively. The first two terms form the dynamic power consumption
component and result from the operation and switching of active circuits. The third forms a static power
consumption component that results from the circuit simply being powered on. In CMOS circuits
dynamic power consumption usually dominates, and for the voltages typically used the clock frequency is
proportional to voltage. This suggests that power is roughly proportional to the clock frequency cubed.

5.1 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) can be used to reduce dynamic power
consumption. From the above discussion it is apparent that reducing the supply voltage V and the clock

725

Fujimoto

frequency f is a way to significantly reduce the dynamic power consumption of the circuit. These
techniques will reduce performance, however, leading to slower running programs. To a first order
approximation, processor speed is proportional to f; more precisely execution time is equal to the number
of machine instructions executed times the average number of clock cycles per instruction (CPI) times the
clock cycle time, which is the reciprocal of f. Dynamic power consumption P as a function of processor
speed s is generally assumed to be P(s) = sa for some a > 1; as suggested by the above discussion, a is
often assumed to equal 3 leading to the well-known cube-root rule, i.e., P(s)=s3, or the speed is
proportional to approximately the cubed root of power (Brooks et al. 2000). For example, reducing power
consumption by 50% results in the processor speed declining by approximately 20%, or execution time
increasing by approximately 25%.

If the goal is to minimize power consumption with no additional constraints, then it is clear the best
approach is to simply use the lowest frequency/voltage setting offered by the hardware, assuming static
power consumption is negligible. A more interesting question is to select frequency/voltage settings to
minimize power while meeting certain runtime performance goals.

Another hardware approach to reducing power consumption is to use unconventional processing
cores, e.g., GPUs, FPGA, or specialized hardware, which are generally more power efficient than general
purpose cores. A third approach discussed in greater detail next is to use power management modes. This
means powering down certain elements of the system to reduce power consumption, e.g., processing
cores or communication circuits. This technique reduces both static and dynamic power consumption.

5.2 Power Mode Management

DVFS effectively reduces power consumption by reducing the frequency and voltage of the CPU at a cost
of slower execution speed. Taken to the extreme, one could simply power down one or more processing
cores to reduce power consumption. This approach is not limited to the processor. Power can be saved by
powering down communication circuits when they are not needed. Hardware for power efficient
execution often provides several modes of operation to support techniques such as this. Manipulating the
operating mode of circuits to reduce power consumption while still maintaining acceptable performance
is referred to as power mode management.

Power mode management can be used, for instance to manage the execution of parallel simulations to
operate within a power cap. Effective use of power mode management techniques requires an
understanding of the relationship between execution time and power in order to achieve the best possible
performance within the given power constraints. Power aware speed up (Ge and Cameron 2007) is
defined as the ratio of the execution time of the system at the specified power level divided by the
execution time at the lowest possible power level. An application with higher power-aware speedup is
more sensitive to change in power levels.
 One study of a parallel discrete event simulation of a telecommunication network is reported in
(Fujimoto et al. 2017). An MPI-based parallel simulation of the NS3 network simulation package was
used in this study. By disabling CPU cores the power consumption can be reduced at a cost of increased
execution time. In addition the board used in this study included a Low Power Core in addition to 4
general CPU cores. Two boards connected to a wired private LAN were used for the experiments. A
series of experiments were completed to evaluate the impact of disabling cores on performance and power
consumption.
 These experiments indicated that utilizing a 5th core in this system, which require use of a second
board, resulted in increased power consumption, but did not produce a corresponding reduction in
execution time. As the number of cores was increased, performance only improved with the introduction
of the 7th core, suggesting using 5 or 6 cores is not advisable from a power perspective. While these
experiments are specific to a particular hardware platform and application, the measurements highlight
the fact that one may make different choices in configuring their application if power consumption is
considered as a cost. Further, these experiments indicated that the lower power core used approximately

726

Fujimoto

82% as much power as the high power (general) core, but the simulation ran 3.5 times slower,
significantly more than that suggested by the cube-root rule discussed earlier.
 A system can conserve power and energy by restricting power consumed by other elements of the
system as well. One such element of interest is the network. Networks are generally over-provisioned
both in terms of bandwidth and availability. In addition to the off-board power consumption of the
network, the on board network/LAN card could also be powered down or turned off to conserve power
and energy consumed by the system. This approach is best suited for synchronous PDES programs that
utilize global synchronization points, e.g., YAWNS, and perform communications in bursts rather than
continuously throughout the computation. Increasing the time between communications to 16 seconds
resulted in utilizing approximately 57% of the power compared to using the minimum sleep period of 20
milliseconds (Fujimoto et al. 2017). However, one constraint in using this technique is the minimum
period between communications. This is introduced by the hardware and/or software requirements of
transitioning from one state to another. Some delay is required for the system to connect back to the LAN
network. The total delay in this study was found to be on the order of 5 seconds.

6 SIMULATION MODEL

The simulation model layer includes the code specific to the application. Task graphs, widely used both in
the distributed simulation and power consumption literature, are a useful representation of the distributed
simulation computation.

6.1 Task Graphs

The computation within each logical process (LP) of a distributed simulation is a sequence of
timestamped event computations, where each computation may (1) modify one or more state variables,
and/or (2) schedule new events. Events within each LP must be processed in timestamp order.

Task graphs are a natural approach to represent distributed simulations and have long been used for
this purpose. Each event computation is referred to as a task, and is represented as a node in the graph.
Let Ei,j represent the jth event in LP i where events within an LP are ordered according to timestamp. Arcs
represent precedence relationships between tasks, i.e., an arc from event Ei,r to Ej,s indicates that the
computation for Ei,r must be completed before the computation for Ej,s can begin.

In a discrete event simulation a precedence relationship exists if:
• Ei,r®Ei,r+1: a precedence relationship exists between successive events within the same LP, or
• Ei,r®Ej,s if event computation Ei,r resulted in generating event Ej,s.
The precedence relationship is transitive. Figure 2(a) shows a task graph for a discrete event

simulation with each box representing an event computation; the event’s location on the horizontal and
vertical axes indicate the event timestamp and the LP processing the event, respectively. For example,
these events might correspond to arrivals of a vehicle at an intersection in a traffic simulation or a traffic
signal change. Arcs between LPs indicate events scheduled by one LP to be processed by another. The
values in each box indicate the event computation subscripts Ei,j as defined above.

In a time-stepped simulation all of the event computations for one time step must be completed before
the event computations in the next time step can begin. Figure 2(b) shows the precedence graph for a
time-stepped simulation.

Precedence graphs can be used to determine the parallelism and minimum execution time of
distributed simulations (Berry and Jefferson 1985). They have also been used extensively to estimate
power consumption of embedded computations, e.g., see (Brown et al. 1997; Dave et al. 1999; Kirovski
and Potkonjak 1997). This is accomplished by mapping each task to the hardware responsible for
completing the task and augmenting the task graph to specify the amount of energy required to complete
the task. As such, task graphs are a useful way to model power consumption of distributed simulations.

727

Fujimoto

For example, in Figure
2(a) if we assume each
event computation requires
one unit of time and one
unit of energy, it is easy to
see that this task graph will
require at least 8 units of
time and 14 units of
energy. Later, we will
show how the task graph
model can be used to
analyze power
consumption.

Note that the above
model does not consider the energy consumed for communications or other operations such as managing
event lists or other data structures. These are accounted for in the simulation engine, as discussed later.

6.2 Model Abstraction

One of the principle means of controlling the amount of power consumed in the simulation model layer is
the abstraction and level of detail used by the model. The impact of the modeling approach on the amount
of computation and memory required is clear. Just as model resolution is a way of managing execution
time, it also presents a means for managing the power consumed by the simulation.
 For example, one empirical study compared the power consumed for two different models of vehicle
traffic: a time-stepped cellular automata (CA) model and a queueing model (Neal et al. 2016). In this
study the CA simulation models the micro level dynamics of traffic flow behavior (Nagel and
Schreckenberg 1992). Each road segment is divided into cells. The state of each cell is either occupied or
empty to indicate if a vehicle currently resides within the cell. The simulation executes in a time-stepped
fashion where the state of each cell is updated each time step in accordance with rules for vehicle
movement. In the queuing model simulation traffic lanes are represented using queues that hold vehicles
occupying a lane. The model state includes information concerning vehicles, intersections, and road
segments. An event-driven execution paradigm is used with the event list implemented using a binary
heap. Event handlers implement new vehicle arrivals and vehicle departures, as well as events modeling
operations within each intersection. The latter includes events for vehicles arriving at, entering, crossing
and departing from the intersection. Other events model traffic signal change events.

The models were configured to simulate a road segment in midtown Atlanta, and driven by
measurement data of the same area. The cellular automata simulation required significantly more energy
than the queueing model. This was attributed to the fact that the CA model required more computation to
update each cell each time step. This more than compensated for the fact that the CA utilized simpler data
structures. While these measurements pertain to a specific implementation of the simulation models, this
example illustrates how the abstraction used in the model impacts power consumption and also highlights
some of the issues one might consider during the development of power efficient simulation models.

6.3 Dead Reckoning

It is sometimes possible to reduce communication in a distributed simulation at the expense of increased
computation. One example is the use of dead reckoning algorithms. Dead reckoning is a technique
developed for real-time distributed simulations to reduce the amount of communications that are required
(Lin and Schab 1994; Miller and Thorpe 1995; Saunders 1991). A local dead reckoning model computes
the estimated position of entities, typically vehicles, modeled on other computers based on information

Figure 2. Task graphs for distributed simulations. (a) event-driven

simulation. (b) time-driven simulation.

728

Fujimoto

reported previously by the vehicle, e.g., its position, direction of travel, speed and acceleration. When the
current position of the remote entity is required, the dead reckoning model is used to estimate its location.

The dead reckoning model’s prediction will become inaccurate if the vehicle’s motion deviates from
that last reported, e.g., if it turns to a new direction or begins to accelerate or decelerate. To limit the
resulting error, the processor simulating the vehicle also monitors the dead reckoning model, and if the
difference between the dead reckoned position deviates from the actual position by more than a defined
threshold, an update message is sent to update the remote dead reckoning models.

Dead reckoning is an example of a technique that reduces inter-processor communications at the
expense of increased computation. Because communication is relatively expensive in terms of power, it
provides a technique to reduce power consumed by the distributed simulation. Further, if the amount of
required communication can be reduced so that there is a significantly long delay between
communications, the communications circuits can be switched off further reducing energy consumption.
This approach is explored in (Shi et al. 2003) where an adaptive dead reckoning algorithm is proposed.
More broadly, techniques such as dead reckoning provide a means for trading off computation and
communications to reduce power consumption.

7 SIMULATION ENGINE

The simulation engine includes functionality such as LP scheduling, synchronization and data distribution
to implement services required by the distributed simulation. We next highlight how LP scheduling can
impact power consumption and discuss the power cost of conservative and optimistic synchronization as
well as approaches to data distribution and communications.

7.1 Logical Process Scheduling

The mapping of the distributed simulation computation to processors can have a significant impact on
power consumption. To illustrate this point, consider a distributed simulation represented as a task graph,
as discussed earlier. Specifically, consider the discrete event simulation shown in Figure 2(a). Assume
each event consumes one unit of energy and requires one unit of time to complete.

Two executions of this task graph over time are shown in Figure 3. In Figure 3(a) each LP is mapped
to a separate processor, and it is assumed that each event computation is performed as soon as its

precedence constraints have been satisfied. For example,
events E1,1, E3,1, and E4,1 are processed in the first unit of
wall clock time, E1,2, E2,1, and E4,2 in the second, etc. The
execution is completed in 8 time units, equal to the
critical path execution time. An alternate execution of the
same computation is shown in Figure 3(b) where LPs 1
and 2 are mapped to processor 1 and LPs 3 and 4 are
mapped to processor 2. Arcs showing the scheduling of
events are omitted to simplify the diagram. This
execution also achieves the minimum, critical path
execution time. Here, we assume an idealized
conservative synchronization algorithm that can identify
when each event can be processed without violating
precedence constraints.

In a distributed simulation execution where battery
life is the primary concern, we see that both executions
consume a total of 14 units of energy, although it is
noted that the two-processor execution requires less
communication between processors, which will result in
less energy consumption.

Figure 3. Energy and power consumption
for two mappings of LPs to processors.

729

Fujimoto

In a parallel execution where the maximum amount of power that can be utilized by the computation
is capped, an analysis of the maximum power consumed by the computation may be useful. The
maximum power using 4 processors is 3 because the maximum number of events that are processed
concurrently is 3. The maximum power consumption in the two-processor case is 2, suggesting that this
mapping can reduce power without sacrificing execution time. While this is clearly a simplified
representation of the computation, this example does demonstrate that the approach to mapping LPs to
processors can impact the maximum power consumption of the computation.

This simple analysis suggests that the mapping of processors to computing resources requires further
consideration in evaluating power consumption for distributed simulations. This is an area that requires
further research. Scheduling algorithms used in other areas, e.g., embedded systems, may be applicable
here. A challenge for distributed simulations is, of course, the precedence relationships are in general not
known prior to the computation, however, the task graphs provide a means to analyze the execution to
derive first order bounds on power consumption.

7.2 Conservative Synchronization

As discussed earlier, distributed simulations require a synchronization algorithm to ensure the distributed
execution yields the same results as a sequential execution. Because synchronization algorithms require a
significant amount of inter-processor communication, one might expect a significant amount of energy
will be required to ensure proper synchronization.

One study compared the power consumed by the asynchronous Chandy/Misra/Bryant (CMB) null
message algorithm (Bryant 1977; Chandy and Misra 1979) and the synchronous YAWNS (Nicol 1993)
algorithm. The energy cost of these conservative synchronization algorithms has been studied in (Biswas
and Fujimoto 2016a, b; Fujimoto and Biswas 2015) as the lookahead in the distributed simulation was
varied. One conclusion from this study was that CMB and YAWNS exhibit different behaviors with
respect to energy consumption. In CMB the energy consumed steadily decreased as the lookahead was
increased, a behavior attributed to creating cycles of null messages, a phenomenon known as lookahead
creep. On the other hand, YAWNS energy consumption remains at a relatively constant level for small to
moderate lookahead values, but then steadily decreased with increased lookahead at relatively high
lookahead values. This was attributed to the ability of YAWNS to immediately jump to the timestamp of
the next unprocessed event if the simulation had low lookahead, circumventing the lookahead creep
problem. When the lookahead is significantly larger than the simulation time between event, to a first
order approximation YAWNS will behave more like a time stepped simulation, and process all events
within a lookahead sized time step. In this mode of operation increasing the lookahead will result in an
increase in the number of events that are processed before the next global synchronization operation,
resulting in a reduction in energy proportional to the lookahead.

Overall, these studies indicated that the synchronization algorithm can consume a significant amount
of energy in executing the distributed simulation. Because the computations required to implement
synchronization algorithms is usually minimal, energy consumption is driven largely by the amount of
communication that is required. As such, the main challenge in creating power-efficient conservative
synchronization algorithms is to minimize the number of messages without unnecessarily blocking LPs.
Reducing the number of synchronization messages tends to also improve the performance of conservative
synchronization algorithms, however, it remains to be seen if selecting the synchronization algorithm to
minimize execution time also leads to one that minimizes energy.

7.3 Optimistic Synchronization

The power overhead associated with conservative synchronization largely concerns the messages that
must be sent to ensure proper synchronization. In optimistic algorithms, the power overhead takes on a
different form. There are several sources of power consumption. These include the power expended to (1)
execute events that are later rolled back, (2) perform state saving tasks, (3) perform rollback

730

Fujimoto

computations, (4) send, receive, and process anti-messages, and (5) compute GVT and other operations
associated with fossil collection that are not present in a sequential execution.
 There has been only a limited amount of work evaluating the power consumption of optimistic
algorithms. One experiment found that the main overhead with respect to power consumption arose from
processing events that were later rolled back (Fujimoto et al. 2017). These measurements also reported
that the percentage of energy required for synchronization can be significant, as much as 40% in these
measurements. These results suggest that the power overhead for Time Warp can be significant, and
additional work to understand and optimize power in optimistic simulations is needed.

7.4 Power Consumption for Communications

Communication is a significant source of power consumption in distributed simulations. Sending
messages generally requires much more power than receiving. One study reported that sending a stream
of data from a cellular phone using 802.11 required approximately five times as much power as receiving
(Fujimoto et al. 2017).

One approach to reducing energy consumption is to aggregate messages in the data stream. If the
simulation must send a stream of update messages, one could aggregate several messages into a single
message, and send one larger message rather than a sequence of smaller messages. This approach, termed
message aggregation, is commonly used in distributed systems in order to reduce communication
overheads. Message aggregation comes at the cost of increasing latency as some messages must be held at
the sender in a buffer while the data is being accumulated. A set of experiments was conducted to
consider the impact of aggregation on energy consumption. One study of this issue showed that the power
required to send a stream of messages could be reduced more than six-fold using message aggregation,
though savings were reduced significantly if the message had to be partitioned across multiple packets in
the communication network (Fujimoto et al. 2017).

7.5 Dynamic Data Distribution Management

Data Distribution Management (DDM) is a set of services defined in the High Level Architecture (HLA)
standard (IEEE Std 1516.3-2010 2010) to disseminate information among the federates (simulators),
based on dynamically changing information such as a vehicle’s location. DDM is based on an abstraction
called the routing space, that is simply an N-dimensional coordinate system. Each message that is sent is
associated with a rectangular update region. Each federate specifies a rectangular subscription region that
indicates the portion of the routing space of interest to the federate. If the update region associated with a
message overlaps a federate’s subscription region, the federate should receive a copy of the message.

Several approaches to implementing the DDM services have been proposed. Perhaps the most direct
is the region-based approach. A multicast group is defined for each publication region. Each federate
simply joins those groups that correspond to publication regions that overlap with its subscription regions
(Boukerche and Dzermajko 2001). A matching computation must be performed, often centrally, to
determine overlaps between subscription and publication regions, in order to populate the multicast
groups. This, of course, requires a certain amount of power to complete the matching computation.
Whenever a publication (subscription) region changes, the new region must be compared against all other
subscription (publication) regions to determine overlaps with the new region. By contrast, the grid-based
implementation partitions the routing space into grid cells, and assigns a multicast group to each cell,
circumventing most of the matching computations, but at the cost of sending additional, unnecessary
messages to federates, thereby wasting power. Other hybrid approaches have been proposed, e.g., see
(Boucherche and Roy 2002; Tan et al. 2000).

Trade-offs between computation and communications in implementing several DDM approaches are
described in (Fujimoto et al. 2017). It is clear that utilizing a grid structure greatly reduces the energy
needed for computation, but at a cost of increased energy for communications. This energy cost can be
significant. Hybrid and dynamic grid schemes were also found to reduce power.

731

Fujimoto

8 CONCLUDING REMARKS

Power is now a very important issue in many areas of computing, but has seen only limited attention by
the modeling and simulation research community. Analysis and development of new techniques to
improve power efficiency in distributed simulations is an open field, with many unresolved questions and
problems. The space of techniques can be viewed in the context of the software stack, encompassing the
simulation application, simulation engine or middleware, and the underlying system. Approaches impact
power consumption in the processor, memory and storage system, and communications network.

The first step in optimizing power in distributed simulations is to understand the relationship among
modeling approaches, synchronization and data distribution algorithms, hardware techniques, simulation
accuracy and reliability, and power consumption. Fundamental understandings will enable the
development and evaluation of new techniques to reduce power, subject to traditional modeling
objectives. In some cases, approaches can build upon other work in parallel and distributed computing in
general. Other efforts will need to focus on aspects specific to distributed simulations.

Work in power consumption in parallel and distributed simulations is in its infancy. There is very
little work to date concerning the development of new energy efficient approaches in key areas such as
synchronization and data distribution. As such, power-efficient parallel and distributed simulation is an
area with many open research questions.

ACKNOWLEDGMENTS

Funding was provided by NSF/AFOSR Grant 1462503 and AFOSR grant FA9550-17-1-022.

REFERENCES

Benini, L., and G. De Michela. 2000. "System-Level Power Optimization: Techniques and Tools." ACM
Transactions on Design Automation of Electronic Systems 5 (2):115-192.

Berry, O., and D. Jefferson. 1985. "Critical Path Analysis of Distributed Simulation." In Proceedings of
the SCS Conference on Distributed Simulation, 57-60.

Bhatti, K., C. Belleudy, and M. Auguin. 2010. "Power Management in Real Time Embedded Systems
through Online and Adaptive Interplay of Dpm and Dvfs Policies." In International Conference on
Embedded and Ubiquitous Computing, 184–191. IEEE.

Biswas, A., and R. M. Fujimoto. 2016a. "Energy Consumption of Synchronization Algorithms in
Distributed Simulations." Journal of Simulation.

Biswas, A., and R. M. Fujimoto. 2016b. "Profiling Energy Consumption in Distributed Simulation." In
Principles of Advanced Discrete Simulation.

Boucherche, A., and A. J. Roy. 2002. "Dynamic Grid-Based Approach to Data Distribution
Management." Journal of Parallel and Distributed Computing 62:366-392.

Boukerche, A., and C. Dzermajko. 2001. Performance Comparison of Data Distribution Management
Strategies. Proceedings of the 5th IEEE International Workshop on Distributed Simulation and Real-
Time Applications.

Brooks, D. M., P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu, J.-D. Wellman, V.
Zyuban, M. Gupta, and P. W. Cook. 2000. "Power-Aware Microarchitecture: Design and Modeling
Challenges for Next-Generation Microprocessors." IEEE Micro 20 (6):26–44.

Brown, J. J., D. Z. Chen, G. W. Greenwood, X. Hu, and R. W. Taylor. 1997. "Scheduling for Power
Reduction in a Real-Time System." In Proceedings of the International Symposium on Low Power
Electronics and Design, 84–87. New York, NY: ACM Press.

Bryant, R. E. 1977. "Simulation of Packet Communication Architecture Computer Systems." M.S. thesis,
MIT-LCS-TR-188, Computer Science Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts.

732

Fujimoto

Chandy, K. M., and J. Misra. 1979. "Distributed Simulation: A Case Study in Design and Verification of
Distributed Programs." IEEE Transactions on Software Engineering SE-5 (5):440-452.

Cho, K.-M., C.-H. Liang, J.-Y. Huang, and C.-S. Yang. 2011. "Design and Implementation of a General
Purpose Power-Saving Scheduling Algorithm for Embedded Systems." In IEEE International
Conference on Signal Processing, Communications and Computing, 1–5. IEEE.

Darema, F. 2004. "Dynamic Data Driven Applications Systems: A New Paradigm for Application
Simulations and Measurements." In International Conference on Computational Science, 662-669.
Springer.

Dave, B., G. Lakshminarayana, and N. Jha. 1999. "Cosyn: Hardware-Software Co-Synthesis for
Heterogeneous Distributed Embedded Systems." IEEE Transactions on Very Large Scale Integration
Systems 7 (1).

Encyclopedia Britanica. 2000. "Energy (Physics)." Accessed Accessed March 26, 2017.
https://www.britannica.com/science/energy.

Freeh, V. W., D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L. Rountree, and M. E. Femal. 2007.
"Analyzing the Energy-Time Trade-Off in High-Performance Computing Applications." IEEE Trans.
Parallel Distrib. Syst. 18 (6):835--848.

Fujimoto, R. 2000. Parallel and Distributed Simulation Systems: Wiley Interscience
Fujimoto, R., M. Hunter, J. Sirichoke, M. Palekar, H.-K. Kim, and W. Suh. 2007. "Ad Hoc Distributed

Simulations." In Principles of Advanced and Distributed Simulation, 15-24. IEEE.
Fujimoto, R. M., and A. Biswas. 2015. "An Empirical Study of Energy Consumption in Distributed

Simulations." In IEEE/ACM International Symposium on Distributed Simulation and Real-Time
Applications.

Fujimoto, R. M., M. Hunter, A. Biswas, M. Jackson, and S. Neal. 2017. "Power Efficient Distributed
Simulation." In ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, ACM.

Fujimoto, R. M., D. Lunceford, E. Page, and A. Uhrmacher (editors). 2002. "Grand Challenges in
Modeling and Simulation." Technical Report 350, Schloss Dagstuhl, Seminar No. 02351.

Ge, R., and K. W. Cameron. 2007. "Power-Aware Speedup." In IEEE International Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007., IEEE.

Ge, R., X. Feng, and K. W. Cameron. 2005. "Performance-Constrained Distributed Dvs Scheduling for
Scientific Applications on Power-Aware Clusters." In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, 34--. IEEE Computer Society.

Hoeller, A., L. Wanner, and A. Fröhlich. 2006. "A Hierarchical Approach for Power Management on
Mobile Embedded Systems." In From Model-Driven Design to Resource Management for Distributed
Embedded Systems, 265–274.

Hua, S., and G. Qu. 2003. "Approaching the Maximum Energy Saving on Embedded Systems with
Multiple Voltages." In IEEE/ACM International Conference on Computer-Aided Design, 26.

Huck, S. 2011. "Measuring Processor Power." Intel Corporation.
IEEE Std 1278.1-1995. 1995. Ieee Standard for Distributed Interactive Simulation -- Application

Protocols. New York, NY: Institute of Electrical and Electronics Engineers, Inc.
IEEE Std 1516.3-2010. 2010. Ieee Standard for Modeling and Simulation (M&S) High Level Architecture

(Hla) -- Interface Specification. New York, NY: Institute of Electrical and Electronics Engineers, Inc.
Jefferson, D. 1985. "Virtual Time." ACM Transactions on Programming Languages and Systems 7

(3):404-425.
Kamrani, F., and R. Ayani. 2007. Using on-Line Simulation for Adaptive Path Planning of Uavs.

Proceedings of the 11th IEEE International Symposium on Distributed Simulation and Real-Time
Applications.

Kirovski, D., and M. Potkonjak. 1997. "System-Level Synthesis of Low-Power Hard Real-Time
Systems." In Proceedings of the Annual Conference on Design Automation, 697–702. New York,
NY: ACM Press.

733

Fujimoto

Lin, K.-C., and D. E. Schab. 1994. "The Performance Assessment of the Dead Reckoning Algorithms in
Dis." Simulation 63 (5):318-325.

Madey, G. R., M. B. Blake, C. Poellabauer, H. Lu, R. R. McCune, and Y. Wei. 2012. Applying Dddas
Principles to Command, Control and Mission Planning for Uav Swarms. Proceedings of the
International Conference on Compuational Science.

Miller, D. C., and J. A. Thorpe. 1995. "Simnet: The Advent of Simulator Networking." Proceedings of
the IEEE 83 (8):1114-1123.

Mudge, T. 2001. "Power: A First-Class Architectural Design Constraint." IEEE Computer 34 (4):52-58.
Nagel, K., and M. Schreckenberg. 1992. "A Cellular Automata Model for Freeway Traffic." J. Physique I

2:2221-2229.
Neal, S., R. M. Fujimoto, and M. Hunter. 2016. "Energy Consumption of Data Driven Traffic

Simulations." In Winter Simulation Conference. edited by T. Roeder, P. Frazier, R. Szechtman, E.
Zhou, T. Huschka, S. Chick, 1119-1130, Piscataway, New Jersey, IEEE.

Nicol, D. M. 1993. "The Cost of Conservative Synchronization in Parallel Discrete Event Simulations."
Journal of the Association for Computing Machinery 40 (2):304-333.

Niu, L., and G. Quan. 2004. "Reducing Both Dynamic and Leakage Energy Consumption for Hard Real-
Time Systems." In International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, 140–148.

Quan, G., and X. Hu. 2001. "Energy Efficient Fixed- Priority Scheduling for Real-Time Systems on
Variable Voltage Processors." In Design Automation Conference, 828–833.

Saewong, S., and R. Rajkumar. 2003. "Practical Voltage- Scaling for Fixed-Priority Rt-Systems." In IEEE
Real- Time and Embedded Technology and Applications Symposium, 106–114.

Saunders, R. 1991. "Formal Expression of Dead Reckoning: Mathematical and Representation
Recommendation." In DIS Workshop.

Shehabi, A., S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G. Koomey, E. R. Masanet, N. Horner,
I. L. Azevedo, and W. Lintner. 2016. "United States Data Center Energy Usage Report." Technical
Report No. LBNL-1005775, Lawrence Berkeley National Laboratory.

Shi, W., K. S. Perumalla, and R. M. Fujimoto. 2003. Power-Aware State Dissemination in Mobile
Distributed Virtual Environments. Workshop on Parallel and Distributed Simulation, 2003/06/01.

Tan, G., Y. Zhang, and R. Ayani. 2000. A Hybrid Approach to Data Distribution Management.
Proceedings of the 4th IEEE International Workshop on Distributed Simulation and Real-Time
Applications.

Unsal, O. S. 2008. "System-Level Power-Aware Computing in Complex Real-Time and Multimedia
Systems." Doctoral Dissertation, Department of Electrical and Computer Engineering, University of
Massachusetts, Amherst.

Wikipedia. 2017. "Battery (Electricity)." Accessed Accessed March 26, 2017.
https://en.wikipedia.org/wiki/Battery_(electricity).

AUTHOR BIOGRAPHIES

RICHARD FUJIMOTO is a Regents’ Professor in the School of Computational Science and
Engineering at the Georgia Institute of Technology. He received a Ph.D. in Computer Science &
Electrical Engineering from the University of California-Berkeley in 1983. He has been an active
researcher in the parallel and distributed simulation field since 1985, and has authored or co-authored 3
books and over 250 technical papers on this subject including 7 award winning publications. He led the
definition of the time management services for the High Level Architecture for modeling and simulation
(IEEE standard 1516). He received the ACM Distinguished Contributions in Modeling and Simulation
Award in 2013. His e-mail address is fujimoto@cc.gatech.edu.

734

