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ABSTRACT

This paper presents an effort to assess how real-time data can be used to re-sequence jobs in a flowshop
where processing times are stochastic and the objective is the minimisation of the makespan. By conducting
extensive simulation experiments, we try to quantify the advantages of collecting real-time data on the actual
completion times of jobs in the shop in order to re-sequence the jobs remaining to be processed. The results
show that the benefit of re-sequencing is greatly influenced by the variability of the processing times on the
shop floor: There is little advantage when the variability is very high but, for low and intermediate variability
levels, re-sequencing provides a way to improve the performance of the initial solution. These results
may serve to establish limits on the advantages of using real-time data for improving initial sequencing
decisions, at least within the boundaries of our experiments.

1 INTRODUCTION

Recent developments in industrial informatics and Information and Communications Technology – such
as Industry 4.0 – seem to anticipate a situation in which the shop floor status in many manufacturing
companies could be instantly available (Chen et al. 2016). The potential challenges and advantages of the
use of this real-time data in production management have been discussed in different contributions, such
as e.g. Waschneck et al. (2017). In this paper, however, we focus on an aspect which, to the best of our
knowledge, has not been addressed so far, i.e. the limits on the use of such real-time data to cope with the
inherent stochastic behaviour of the processing times of many manufacturing processes. More specifically,
we wish to assess whether there are advantages to using information about the jobs already processed in
some machines to modify the schedule of the jobs yet to be processed. Although, in principle, it seems
advantageous to use the new information to modify the existing sequence, such advantages have to be
quantified, as on the one hand it may be challenging to perform a real-time, efficient re-sequencing of the
jobs, and on the other hand, re-sequencing modifies the initial sequence and induces nervousness on the
shop floor. Finally, even if more data is available, re-sequencing still has to rely on estimates regarding the
completion times of the jobs not yet processed, causing its theoretical advantages to be diluted in practice.

In this work, we focus on an specific shop floor layout (the permutation flowshop), and on a specific
scheduling objective (makespan). In a permutation flowshop schedule, all jobs must follow the same route
across all machines, so once a job enters into the shop floor (i.e. in the first machine), then it is processed
according to the same sequence in the rest of the machines. Since the sequence of the jobs does not change
once they enter in the shop, the point in time where the shop floor information can be used is when a job
has completed its processing on the first machine, leaving this machine free for the subsequent jobs. In
this situation, we wish to investigate whether it is more beneficial to maintain the initial sequence, or to
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perform a re-sequencing of the remaining jobs by taking into account the unavailability of the machines
in the shop caused by the processing of the previous jobs. To do so, we carry out a series of simulations
for different settings.

The remainder of the paper is as follows: Section 2 presents the background and formalises out problem.
In Section 3 we present the procedure to carry out the re-sequencing procedure. The simulation experiments
carried out are described in Section 5, while in Section 6 we present the conclusions of our work and point
out future research lines.

2 BACKGROUND AND PROBLEM DESCRIPTION

As mentioned in the previous section, we will focus on the permutation flowshop for the makespan objective.
The choice of the layout and the objective is driven by their predominance both in academia and in practice,
being undoubtedly one of the most researched problems in the OR and MS area (see e.g. Fernandez-Viagas
et al. 2017 for a recent review on the topic).

In the classical permutation flowshop scheduling problem, there are n jobs to be processed sequentially
on a set of m machines. The permutation constraint indicates that the sequence of the jobs is the same for
all machines. Additionally, it is usually assumed that machines are always available, and that there are no
set-up times. For a complete list of the assumptions in the classical permutation flowshop problem, see
e.g. Dudek and Teuton (1964).

Due to the permutation constraint, a sequence of jobs Π specifies a complete solution to the problem.
Let us denote Ci j(Π) the completion time on machine i of job in order j in sequence Π. Then, the maximum
completion time or makespan of the solution Π can be computed using the following recursive expression:

Ci j(Π) = max{Ci−1, j;Ci, j−1}+ pi j ∀i = 1, . . . ,m, j = 1, . . . ,n (1)

where pi j denotes the processing time of job in position j ( j = 1, . . . ,n) on machine i (i = 1, . . . ,m).
Clearly, C0, j = 0 and Ci,0 = 0. Then, Cmax =Cmn.

Among all possible sequences, the goal is to find the one yielding the minimum makespan. This
decision problem is known to be NP-hard for m > 2.

In the stochastic counterpart of the permutation flowshop scheduling problem for the makespan objective,
the processing times are random variables with expected value p̃i j. The objective is here to minimise the
expected makespan. Clearly, since pi j are random variables, so are Ci j, see (1). An estimate of the values
of Ci j – denoted as C̃i j – can be computed using the expected value of the processing times, i.e.:

C̃i j(Π) = max{C̃i−1, j;C̃i, j−1}+ p̃i j ∀i = 1, . . . ,m, j = 1, . . . ,n (2)

also C̃0, j = 0 and C̃i,0 = 0.
The stochastic flowshop scheduling problem has been much less studied than the classical counterpart,

and it is much more complex. Apart from a dominance property by Makino (1965) for the (almost trivial)
two-jobs case, no exact solution is available without making specific assumptions regarding the processing
times’ distribution. More specifically, for an exponential distribution of pi j and m = 2, Talwar (1967)
proposes an exact procedure – known as Talwar’s rule – for the problem that was later proved to be optimal
by Cunningham and Dutta (1973).

For other distributions, no polynomial-time procedure has been found. For m = 2, three heuristics are
proposed by Baker and Trietsch (2011) based both in Talwar’s rule and in Johnson’s rule (Johnson 1954)
for the deterministic flowshop, all of them with similar (near optimal) performance. For the general m
machine case, Baker and Altheimer (2012) propose three constructive heuristics based on adaptations of
the CDS (Campbell et al. 1970) and NEH (Nawaz et al. 1983) heuristics to this problem. Although the
computational experiments carried out by the authors show that these heuristics have a similar and near
optimal performance, these findings are questioned by Framinan and Perez-Gonzalez (2015), who find
that, in many cases, the confidence interval of the results was too wide to safely support these statements.
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Furthermore, in their experimentation, Framinan and Perez-Gonzalez (2015) found that the performance of
deterministic scheduling procedures do not differ very much to that of specific stochastic procedures, and
that these differences decrease as the processing times become more variable (in terms of increasing their
coefficient of variation). A result in line with these findings is stated in Juan et al. (2014), who develop a
high-performing simheuristic under the assumption that high-quality solutions for the deterministic version
of the problem are likely to be high-quality solutions for the stochastic version. A conclusion of these
two last contributions is that deterministic procedures for flowshop scheduling for the makespan objective
perform consistently well for the stochastic counterpart if the mean processing times are used as input
for the deterministic procedure. Finally, Wang et al. (2015) propose a two-stage simulation-based hybrid
estimation of distribution algorithm for the problem, although the authors do not compare the performance
of their proposal with that of deterministic procedures.

In view of this excellent performance of the deterministic procedures in the stochastic setting, another
issue of interest is to study whether these deterministic procedures can be combined with real-time data at
hand so their performance can be increased. More specifically, whenever job in position j in sequence Π

has completed its processing on the first machine of the flowshop, this machine is available for the next
job. In such situations, two options are possible:

• To proceed with the next job in Π, that it, to enter job in position j+1 in the first machine. We
will refer to this option as to no re-sequencing, as it results in sequencing the jobs according to the
initial sequence Π.

• To re-sequence the jobs in positions j+1 to n in Π to take into account the possible early/tardy
completion of the preceding jobs with respect to the initial sequence. Clearly, re-sequencing the
remaining jobs is equivalent to solving a decision problem with machine availability constraints.
In the first machine, these availability is caused by the actual completion time of job in position
j, whereas for the remaining machines 2, . . . ,m is an estimated availability based on the expected
completion time of job in position j in this machine, even though it incorporates some information
regarding the actual completion times of the jobs. We refer to this option as to re-sequencing.

There are potential merits in both options: On the one hand, re-sequencing uses the available (real-time)
data to cope with the uncertainty of the shop floor. On the other hand, deterministic scheduling based on
average processing times performs extremely well for the stochastic flowshop, as shown by Framinan and
Perez-Gonzalez (2015). Furthermore, re-sequencing may introduce excessive nervousness in the scheduling
process with perhaps little practical advantage, given the fact that, although using some additional data,
the computation of the completion times of the remaining jobs is still based on estimates.

There are several contributions dealing with the use of real-time information for scheduling decisions.
Ovacik and Uzsoy (1994) study the advantages of using dispatching rules that incorporate real-time shop
floor information. Cowling and Johansson (2002) investigate, for a single machine setting, the trade-off
between rescheduling (i.e. rebuilding a full scheduling from scratch) and schedule repair (i.e. making
localised changes to an existing scheduling) in the presence of real-time information. However, note that
our research deviates from the majority of the copious body of literature addressing rescheduling decisions
(see e.g. Vieira et al. 2003) at least in two aspects: First, the stochastic nature of processing times is not
usually considered a so-called rescheduling factor (i.e. the unexpected event that triggers the rescheduling
process) in the rescheduling literature, and second, we the re-sequencing procedure is not triggered by any
unexpected event, but on a regular basis whenever a new job has to enter into the shop. Although some
works also consider the completion time of a job in a machine as the event to trigger the rescheduling (see
e.g. Ovacik and Uzsoy 1994, or Church and Uzsoy 1992), we are not aware of a work that analyses the
boundaries of the potential advantages of re-sequencing with respect to a static, deterministic sequencing.

A final remark is that, clearly, re-sequencing does not come at zero computational costs, as in practical
terms means that a new sequence has to be found in near real-time. However, although extremely important
in practice, in this research we will set aside this issue and assume that the time can be ‘frozen’ so a true
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re-optimisation of the partial sequence can be conducted. By doing so, we aim to establish the best case
regarding the re-sequencing option, as it may turn out that, under certain conditions, it is not profitable
to re-sequence even if we could afford very long decision intervals. Note that some work exist (Upasani
et al. 2006) on problem reduction procedures that could be applied to reduce the required computational
effort, or on the combination of dispatching rules with global optimisation procedures (Barua et al. 2005).

3 RESEQUENCING USING THE AVAILABLE INFORMATION

As discussed in the previous section, upon the completion of the processing of a job in the first machine of
the flowshop, the jobs to be yet processed can be re-sequenced so the objective function (the makespan)
is minimised. Since some jobs are already being processed in the shop, this re-sequencing problem has to
take into account the availability of the machines 2, . . . ,m, therefore in order to provide the re-sequencing
problem with the required data, the availability of the machines have to be computed. More specifically,
let ai( j) be the availability of machine i after the processing of job in position j in the first machine. This
availability can be computed in the following manner:

• For the first machine (i = 1), a1( j) is given by the real completion time of job in position j on the
first machine, i.e. :

a1( j) =C1 j.

• For the rest of the machines (i = 2, . . . ,m), two sub-cases can be distinguished:
– If, by the time the job in position j is finished on machine 1, machine i has completed the

processing of job in position j−1 (i.e. if a1( j)>Ci, j−1), then the expected availability is given
by:

ai( j) = max{Ci, j−1;ai−1( j)}+ p̃i j i = 2, . . . ,m. (3)

Naturally, Ci,0 = 0.

It is clear that ai( j)≥ ai−1( j), therefore as in the case a1( j)>Ci, j−1 it follows that ai( j)>Ci, j−1,
and Equation (3) can be re-written as simply:

ai( j) = ai−1( j)+ p̃i j i = 2, . . . ,m. (4)

– In contrast, if machine i has not completed the processing of job in position j−1, we must
estimate the completion time of this job. To compute this estimate, let us denote by k the
position of the last scheduled job that is completed in machine i at time given by a1( j), i.e.
Ci,k ≤ a1( j). This is the last scheduled job for which we have all realized completion times
for machines 1,2, . . . , i. Let us define C̃l,k = Cl,k for l = 1, . . . , i. For the subsequent jobs in
position r (r = k+1, . . . , j), their estimated completion times are:
∗ For the first machine, note that all jobs in positions r = k+ 1, . . . , j− 1 have completed

their processing (otherwise job j cannot have completed its own processing), therefore:

C̃1,r =C1,r ∀ r = k+1, . . . , j. (5)

∗ For the remaining machines (l = 2, . . . , i), the completion times of job in position r have to be
estimated if their real completion times fall behind a1( j). Two cases can be distinguished:
if Cl,r ≤ a1( j) then job in position r has completed its processing time in machine l,
therefore C̃l,r =Cl,r. In contrast, if Cl,r > a1( j) then the job in position r has not completed
its processing on machine l, but its completion time can be estimated using previous
estimates of the completion times, i.e. max{C̃l,r−1,C̃l−1,r}+ p̃lr. Note, however, that this
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latter expression may provide a value lower than a1( j) which does not not reflect the real
situation, as we know that the processing time of this job has not completed at time a1( j).
Therefore, we can assume that at least this value should be greater or equal than a1( j).
Equation (6) summarises these options:

C̃l,r =

{
Cl,r if Cl,r ≤ a1( j)
max{a1( j);max{C̃l,r−1;C̃l−1,r}+ p̃lr} otherwise.

(6)

Therefore,

ai( j) = C̃i, j.

This procedure for computing the ai( j) values can be integrated into the simulation experiment described
in the next section.

4 SIMULATION PROCEDURE

In order to assess the differences in makespan value between re-sequencing and not re-sequencing jobs
whenever a new job is to be processed on the first machine of a stochastic flowshop, we use discrete event
simulation with an integrated optimisation procedure. More specifically, the starting point of the simulation
is given by the execution of a deterministic optimisation procedure which attempts to find the best sequence
of all jobs using their average processing times. Once this sequence is obtained, the first job in the sequence
enters the first machine and the simulation starts. The list of events is given by the completion of a job in
the first machine. Every time an event occurs – a job is completed on the first machine –, an optimisation
procedure is executed to find the best sequence of the remaining jobs according to the information available
at this simulation time. Then, the job to be processed first according to this simulation procedure enters
the first machine and the simulation time is advanced until the next event. This procedure is repeated until
all jobs have been completed.

The simulation with the integrated optimisation procedure has been coded using C#. The high-level
flowchart is given in Figure 1. The detailed procedure is as follows:

1. A sequence is found to approximately minimize the makespan. This sequence is obtained assuming
a deterministic behaviour of the flowshop, i.e. p̃i j the mean processing times of the jobs on each
machine are employed to solve the corresponding deterministic permutation flowshop scheduling
problem. To ensure a good solution, the IG (Iterated Greedy) algorithm of Ruiz and Stützle (2007)
is employed, with a generous amount of computation time (30 seconds). This algorithm is known
to be among the best methods for the problem under consideration, so – particularly for the small
instances in the testbed – we can be quite confident that the makespan is optimal or close to the
optimal (deterministic) value. The parameter values employed in the IG are the same as in Ruiz
and Stützle (2007). Let us denote the so-obtained sequence by Πd := (π1, . . . ,πn)

2. The actual processing times of the jobs in the machines pi j are sampled from a lognormal distribution
of mean p̃i j and a standard deviation σ = cv · p̃i j, where cv is the coefficient of variation (see details
in Section 5.1).

3. We set Πr := {π1}, and for j = 1, . . . ,n−1, perform the following actions:
(a) The realized completion times Ci j of job in position j in Πr are computed according to Equation

(1) for job j, i.e.:

Ci j = max{Ci−1, j;Ci, j−1}+ pi j i = 1, . . . ,m. (7)

where C0, j = 0 and Ci,0 = 0.
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Figure 1: Flowchart of the simulation procedure.

(b) The machine availability ai( j) after processing job in position j are obtained as described in
Section 3.

(c) The problem of minimising the makespan of jobs in positions j+1, . . . ,n in Πr under the machine
availability constraints ai( j) is solved, and solution Ω( j) := (ω1, . . . ,ωn− j) is obtained. The
job w1 is then appended to Πr (i.e. Πr := Πr ∪{w1}). To solve this problem, we adapt the
IG algorithm by changing the objective function to take into account the availability of the
machines. More specifically, Equation (2) is modified as follows:

C̃ik(Π) = max{C̃i−1,k;C̃i,k−1}+ p̃ik ∀i = 1, . . . ,m k = j+1, . . . ,n. (8)

where C̃0,k = 0 and C̃i, j = ai( j).
The so-modified IG algorithm is allowed to run for 30 seconds, as in the initial iteration.

4. The remaining job in Ω(n−1) is appended to Πr.
5. Compute both Cmax(Πd) (no re-sequencing) and Cmax(Πr) (re-sequencing) to compare the results.

5 COMPUTATIONAL EXPERIENCE

In this section we describe the experiments carried out. In Section 5.1 we discuss the design of the
experiments, while in Section 5.2 we present the results of the experiments.

5.1 Design of the Experiments

The procedure described in Section 4 is applied to the testbed of Taillard (1993), that contains 120 flowshop
scheduling instances with different numbers of jobs and machines. The processing times in the instances
have been chosen so that the instances are difficult to solve in the sense that a lengthy tabu search procedure
yields solutions which are relatively far from the lower bound. Out of these 120 instances, the first 60
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Table 1: Summary of results: mean and standard deviation of the Average Relative Percentage Deviation
(ARPD) for the different problem sizes and coefficient of variations.

n 20 50
cv resch m 5 10 20 5 10 20 Total

0.5 No-resq Av 3.03631 2.69330 2.05026 2.85829 2.37480 2.38391 2.56614
St.Dv 4.15700 3.72463 3.39908 3.66534 3.13044 2.96241 3.53951

Reseq Av 1.54765 2.21034 2.03682 1.24106 1.46985 1.38986 1.64926
St.Dv 3.10714 3.61550 2.98644 2.23291 2.42288 2.40480 2.85458

1 No-resq Av 4.59810 4.36203 3.50662 3.41475 3.42024 3.46833 3.79501
St.Dv 7.18744 6.31877 5.69000 5.52147 5.03964 4.57784 5.79781

Reseq Av 3.40808 2.91028 3.62562 2.98166 3.04347 2.16599 3.02252
St.Dv 5.78661 4.79477 5.22471 4.45963 4.59805 3.53344 4.79874

2 No-resq Av 6.11961 4.86935 4.97551 4.59468 5.38615 4.87318 5.13641
St.Dv 10.07137 7.29695 7.96069 7.03268 7.82329 7.80416 8.06251

Reseq Av 4.20276 4.53836 4.75846 4.81568 4.05375 4.08187 4.40848
St.Dv 8.12120 7.55553 7.94396 7.44265 7.20930 6.39909 7.46227

ones have been selected for our experimentation. Aside from the enormous computation times required
for the simulation of the re-sequencing procedure in the biggest instances (see below), we have opted for
this subset of instances in order to ensure that the IG procedure is able to find very good solutions within
the allocated CPU time. n ∈ {20,50} and m ∈ {5,10,20} in these instances, with 10 instances of each
problem size.

The processing times in the instances are assumed to follow a log normal distribution, which has
two parameters: mean µ and standard deviation σ . This distribution has been widely employed to model
stochastic processing times (see e.g. Baker and Trietsch 2011, Baker and Altheimer 2012, or Framinan
and Perez-Gonzalez 2015). Furthermore, we can easily control the variability of the processing times by
setting different levels of coefficient of variation cv = σ

µ
. More specifically, we set cv ∈ {0.5,1,2}, which

are assumed to represent a low, medium, a large variability respectively in manufacturing shop floors (see
Hopp and Spearman 2008). In this manner, the processing times given in Taillard’s tested are interpreted
as the mean value of these processing times (µ = p̃i j).

The computational effort carried out involves solving 30 replications of 60 problem sizes, half of them
with 20 jobs, and the other half with 50 jobs. Applying the re-sequencing procedure to each one of the
instances requires invoking of the IG algorithm n−1 times with a time limit of 30 seconds, which makes
a total equivalent computation time of 21.25 days for each coefficient of variation tested.

5.2 Results

The results are summarised in Table 1 in terms of the Average Relative Percentage Deviation (ARPD),
where the RPD of instance i for a solution Π is computed as:

RPD(Π) =
Cmax(Π)−min{Cmax(Πd);Cmax(Πr)}

min{Cmax(Πd);Cmax(Πr)}
·100 (9)

where the no re-sequencing and re-sequencing solutions are denoted as Πd and Πr respectively. The
results are shown with 5 decimal digits according to procedure for reporting point-estimate digits by Song
and Schmeiser (2009), as it has been found that low-order digits are meaningless for a threshold of 0.1.

From Table 1 it can be seen that, on average, re-sequencing yields lower ARPD values for all coefficients
of variation across all problem sizes. This fact is illustrated in Figure 2, where the 95% confidence intervals
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Table 2: Summary of ANOVA.

Sum of square type III fd Quadratic mean F Sig.
Corrected model 16405.797a 35 468.737 14.238 0.000

Intersection 127034.092 1 127034.092 3858.702 0.000
n 460.278 1 460.278 13.981 0.000
m 154.481 2 77.241 2.346 0.096
cv 12783.888 2 6391.944 194.157 0.000

reseq 1753.010 1 1753.010 53.248 0.000
n×m 17.617 2 8.809 0.268 0.765
n× cv 78.142 2 39.071 1.187 0.305

n× reseq 2.599 1 2.599 0.079 0.779
m× cv 31.190 4 7.797 0.237 0.918

m× reseq 130.138 2 65.069 1.976 0.139
cv× reseq 17.561 2 8.780 0.267 0.766

a. Square R= 0.044 (Adjusted square R = 0.041)

for the aggregated data are shown. These results indicate that the difference between re-sequencing and
no re-sequencing is statistically significant.

However, the lowest ARPD values are not consistently lower for all problem sizes, so an Analysis of
Variance (ANOVA) is carried out to check which factors influence the results. The main results of the
ANOVA are shown in Table 2. The factor that most influences the results is the coefficient of variation,
followed by the re-sequencing/no re-sequencing option. The number of jobs has a moderate influence,
whereas the number of machines cannot be considered relevant in statistic terms. To illustrate these results,
Figure 3 shows that, for low and medium variability (cv = 0.5 and cv = 1), the difference between re-
sequencing and no-resequencing is stastically significant, whereas for a high degree of variability (cv = 2),
it is not. Still, for cv = 2, the ARPD when re-sequencing is around 16% lower than if no re-sequencing is
performed.

Regarding the influence of the number of jobs to be scheduled, Figure 4 shows the values and the
95% confidence intervals dissagregated according to the number of jobs. It can be seen that the differences
increase with the number of jobs, which speaks for the higher suitability of re-sequencing for scenarios
with a higher number of jobs.

Finally, it is worth highlighting that, for almost all problem sizes and coefficient of variations, the
standard deviation of the ARPD is lower when re-sequencing is performed than if re-sequencing is not
carried out, the only exception being the case where cv = 2 and n = 20 and m = 10, or cv = 2 and n = 50
and m = 5.

6 CONCLUSIONS

This paper presents some exploratory results on the value of using real-time data for conducting re-sequencing
decisions, focusing in the case of the permutation flowshop with the objective of minimising the makespan
where the processing times are assumed to be stochastic. To do so, we compare the expected performance
of a (possibly optimal or near-optimal) sequence obtained assuming a deterministic setting with that of
a procedure which uses the real-time data available. This information is captured at the time that a job
has completed its processing in the first machine of the flowshop to re-sequence the jobs that have not yet
entered the shop. To do so, several simulations including different levels of variability in the processing
times, number of jobs and number of machines have been carried out.

Despite the preliminary nature of the research, some conclusions can be highlighted:
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Figure 2: 95% Overall confidence interval plots.

• When variability of the processing times is low to medium (a coefficient of variation between 0.5
and 1 in our research), re-sequencing improves the performance in the shop floor, reducing the
ARPD values around 25%. This improvement is statistically significant. When the processing time
variability is very high (a coefficient of variation of 2 in our experiments), there are no statistically
significant differences between re-sequencing and not re-sequencing, even if the mean and the
standard deviation of ARPD are lower if re-sequencing is performed. This good performance of
the deterministic procedure may be caused by variance pooling.

• The expected performance of re-sequencing does not seem to be affected by the number of machines
in the shop and/or the number of jobs to be scheduled, at least within the limits of our experiments.
However, it is affected by the number of jobs, indicating a higher benefit from re-sequencing when
the number of jobs is high.

The above conclusions have a number of implications for schedulers and decision makers:

• Investments in gathering real-time data at the scheduling level may pay off depending basically
on the variability of the shop floor and, to a lesser extent, on the number of jobs to be scheduled.
While there is a range of low/middle variability where this information can be used to provide a
more efficient schedule, this is not the case for very high variability. Still, even in the latter case,
re-scheduling serves to provide more robust sequences, as the standard deviation of the results is
lower.

• Stochastic modelling is sometimes used to capture the fact that there are no accurate estimations
of the processing times. In view of the results obtained when the variability is very high, it would
be advisable to devote time and resources to provide accurate processing times before deploying
an (optimisation-based) scheduling system, as the latter may not reap the expected benefits in the
case of highly variable processing times.

Finally, a number of possible avenues worth of research include the following:
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Figure 3: 95% Confidence interval plots for different coefficient of variations.

• Here we have limited to a specific layout and objective function. It will be interesting to check
whether the conclusions obtained also extend to different settings and objectives. Particularly, due
date related objectives seem to be very interesting, as the objective function would be a combination
of stochastic (processing times) and deterministic (due dates) data, so it may result in a different
behaviour than the one obtained for the makespan.

• In the flowshop setting, sometimes is possible to use non-permutation solutions, which would provide
more points of decision for re-scheduling (i.e. n ·m−1 as compared to n−1 in our experiments)
and a more extensive use of available data can be done.

• For the settings with low/medium variability where re-sequencing pays-off, it would be interesting
to extend the analysis to the case where the re-sequencing decision can be taken only in a limited
number of instants, and/or to develop selective re-sequencing procedures so the re-optimisation is
not always carried out every time a job is completed in the first machine.

• Finally, in view of the required running time of the IG – which is unrealistic in many settings
–, it would be interesting to analyse the effect of re-sequencing using faster – albeit of poorer
performance – heuristics, or whether it is profitable to freeze some jobs in the sequence to give the
IG enough running time.
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