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ABSTRACT 

Discrete event simulation is an established methodology for investigating the dynamic behavior of complex 

manufacturing and logistics systems. Traditionally, simulation experts conduct experiments for 

predetermined system specifications focusing on single model aspects and specific analysis questions. In 

addition to that, the concept of data farming and knowledge discovery is an ongoing research issue that 

consists of broad scale experimentation and data mining assisted analysis of massive simulation output data. 

As an extension to this approach, we propose a concept for investigating the robustness of complex 

manufacturing and logistic systems which are often very sensitive to variation and noise. Based on 

Taguchi’s loss function, we developed a concept including data farming and visual analytics methodologies 

to investigate sources of variation in a model and the factor values that make a configuration robust. The 

concept is demonstrated on an exemplary case study model. 

1 INTRODUCTION 

Data farming and knowledge discovery in simulation data are popular and ongoing issues in current 

simulation methodology research. The concepts comprise broad scale simulation experimentation and the 

use of data mining algorithms in order to uncover unknown relationships and effects in the model to gain 

useful information, leading to a better understanding of the system’s behavior and an increased decision 

support (Feldkamp, Bergmann, and Strassburger 2015b). Data farming can also be used for robustness 

evaluations, which enable the investigation of how prone a system is to be effected by noise and the finding 

of robust configurations. In the context of production and logistics simulations, finding robust 

configurations is often a critical issue when simulation models are used for planning manufacturing and 

logistics systems. Robustness means setting the controllable parameters in such a way that variance in the 

noise has a minimal effect on a given output parameter. Variation through noise can emerge from various 

sources, for example fluctuations in customer demand can lead to variation in the mixture of jobs that are 

dispatched in the system. This effect can increase dramatically especially at the lower tiers of the supply 

chain which is commonly known as the bullwhip effect. In this paper, we present an approach for robustness 

investigations as an extension to our approach on knowledge discovery in simulation data, based on 

Taguchi’s loss function in combination with multidimensional visual analytics. 

The remainder of this paper is structured as follows. In section 2 we introduce the related work on data 

farming, knowledge discovery, and robustness analysis. Section 3 discusses the concept for robustness 

analysis in manufacturing simulations. A case study in Section 4 demonstrates the benefits of this approach 

followed by concluding remarks and a discussion of future work in section 5. 
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2 RELATED WORK 

2.1 Data Farming and Knowledge Discovery in Simulation Data 

Data farming describes a methodology for using a simulation model as data generator and efficient 

experimental design to maximize data yield and therefore information gain (Elmegreen, Sanchez, and 

Szalay 2014; Horne and Meyer 2005) The farming metaphor describes how the data output yield can be 

optimized by experimental design like a farmer that cultivates his land to maximize his crop yield (Sanchez 

2014). New approaches in design of simulation experiments manage the balance between broad scale 

parameter combination and variation on the one hand and manageable data volume abandoning inefficient 

𝑛k design patterns (Kleijnen et al. 2005). 

Based on that, Feldkamp et al. (2015a) developed a method for finding hidden patterns and relations in 

large quantities of simulation output data based on broad scale experimental design and visual aided 

analysis called knowledge discovery in simulation data. Based on using data farming concepts for covering 

a large bandwidth of input factor values and therefore possible model behavior, data mining methods are 

applied onto this quantity of data. Knowledge can be gained through visual representations of data mining 

results combined with visualization of input/output relations. The actual data analysis of the generated 

output data and its relation to simulation input data is built around interactive visual inspection. 

Visualization in general is an important tool when an interpretation of data is required (Thomas and Cook 

2005) and therefore dedicated techniques are commonly applied in almost any simulation study. Common 

visualization techniques applied in the context of discrete event simulations are animations, time-plots of 

outputs and graphs of certain performance indicators in a confidence interval obtained from replicating 

runs (Law 2014). 

The approach we presented in previous papers goes beyond those commonly applied techniques by 

creating visualizations as the key foundation in the simulation data analysis process (Feldkamp et al. 2016; 

Feldkamp, Bergmann, and Strassburger 2015b). This is based on the research area called visual analytics. 

Visual analytics can be defined as “an iterative process that involves information gathering, data 

preprocessing, knowledge representation, interaction and decision making” (Keim et al. 2008). It combines 

the strengths of machines, e.g., processing huge amounts of data, with those of humans, especially pattern 

recognition and drawing conclusions. As such, visual analytics combines methods from knowledge 

discovery in databases (KDD), statistics and mathematics as driving forces behind automatic data analysis 

with human capabilities to perceive, relate, and conclude (Fayyad, Piatetsky-Shapiro, and Smyth 1996). 

Unlike traditional simulation data visualization, data preprocessing is essential. In recent work we showed 

the application of clustering algorithms on simulation data (Feldkamp, Bergmann, and Strassburger 2015b), 

but other data mining tools like regression analysis are also applicable (Kallfass and Schlaak 2012). In this 

paper, we incorporate robustness measures for data analysis based on loss functions. In the next subsection, 

we give a brief review on the technical background of this topic. 

2.2 Taguchi’s Loss Function for Finding Robust Configurations 

Genichi Taguchi, who originally came from a quality engineering background, developed a methodology 

to assess decision alternatives not only based on their outcome value, but also on the variability around that 

outcome against noise. Put another way, the best system or process configuration might not always be the 

one with the best resulting mean, but is the one that is most robust against variation in the noise. This is 

derived from a viewpoint of the relationship of factors and the underlying product or process that is shown 

in Figure 1. Noise factors are considered as tolerances that cannot be controlled, but can cause a variability 

in the process that leads to a deviation between the target value m and the actual response f. Through an 

optimal setting of control factors, the variance in the response can be minimized.  
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Figure 1: Block diagram of a product/process (Park et al. 2006). 

Taguchi created formulas that calculate the quality loss caused by deviation from a desired value 

(Taguchi 1988, 1995). This worldview is a way of variance reduction. In a broader sense it can be seen as 

a data compression measure to assess the effect of noise on the reliability of the underlying system (Ben-

Gal 2005). Taguchi’s work on robustness for quality engineering had a great impact and also a lot of 

controversies among statisticians (Box 1988; Nair et al. 1992). Until today it is commonly applied in various 

applications like engineering, electric power or biotechnology (Konduk and Ucisik 1999; Rao et al. 2008; 

Song et al. 2017). 

 Table 1 shows three types of loss functions. Here, �̅� is the average loss for a given system configuration 

over all noise configurations, 𝑘  is a fixed constant called the quality loss coefficient that is used to 

monetarize the quality loss, �̅� and 𝜎2 represent the mean and variance of an output value for each system 

configuration (pure 𝑦 representing the output for each experiment). Depending on the characteristics of the 

desired output parameter, different loss functions have to be applied. The nominal-the-best loss function 

aims to reduce the variability around a desired output target value 𝜏 and therefore sanctions output values 

above and below this target, for example the required output voltage of an electrical circuit. The smaller-

the-better function aims to minimize a given output, for example cost, stress or energy consumption. On 

the other hand, the larger-the-better loss function is used to maximize an output value like reliability, 

strength or efficiency. Real world examples from manufacturing engineering are minimizing radiation 

leakage from a microwave oven, or maximizing the bond strength of a weld point, respectively (Ben-Gal 

2005; Phadke 1989). A more in-depth review on the subject of Taguchi method and other robust design 

concepts can be found in (Park et al. 2006). 

Table 1: Loss functions for different purposes (Phadke 1989). 

Type of Quality Loss Function Formula 

Nominal-the-best �̅� = 𝑘[𝜎2 + (�̅� − 𝜏)2] 

Smaller-the-better �̅� = 𝑘[𝑦2 + 𝜎2] 

Larger-the-better �̅� = 𝑘 [∑(1 𝑦2⁄ )] 𝑛⁄  

 

Taguchi’s approach was transferred and applied from real world experiments to simulation experiments in 

several publications, since robustness design and analysis is a recurring subject in simulation methodology 

research. Sanchez outlined an approach for integrating the concept of robustness with response surface 

metamodeling for optimizing discrete event simulation models (Sanchez 1994; Sanchez 2000). 

Dellino et al. adopted a similar approach for simulation-based optimization of robustness issues using 
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response surface methodology and kriging metamodels (Dellino, Kleijnen, and Meloni 2009). While 

metamodels usually aim to minimize experimental effort, Horne et al. already emphasized the usability of 

Taguchis loss function in alignment with the concept of data farming for finding robust solutions in warfare 

simulations (Horne et al. 2014). In our approach, we aim to combine robustness analysis based on Taguchi’s 

loss functions with large scale experiment design and visually aided knowledge discovery methods for 

manufacturing simulations. In the next section, we therefore provide a basic concept for this purpose.  

3 CONCEPT FOR ROBUSTNESS ANALYSIS IN MANUFACTURING SIMULATIONS 

Making manufacturing systems robust against variances in the product mixture is an recurring and 

important issue. To solve this problem, we incorporated the concept of process robustness outlined in the 

previous section with our proposed data farming and knowledge discovery approach using broad scale 

experimentation design and data mining algorithms. We assume that a manufacturing system needs to be 

robust in multiple performance parameters. Since our concept incorporates the execution of a big number 

of simulation runs with a big number of possible input factor value combinations, it is likely that those 

desired configurations exist in the simulation data base. The main challenges is to find those configurations 

and to investigate which input factor values lead to the desired robustness, therefore the analysis of data is 

an essential part and is of critical importance. 

In reference to the existing knowledge discovery in simulation data process, the first step is the 

definition of factors, hence, one must define factors that are assumed to affect the output of the system. For 

a robustness evaluation, it is furthermore necessary to classify factors into decision and noise factors. The 

decision factors are those that would be controllable to some extend in a real world system. Each 

combination of decision factor values is considered as a system configuration. The noise factors are not 

controllable and are the source of variation in the system (besides optional stochastic effects). In our case, 

we consider the incoming jobs and therefore the mixture of products in the manufacturing system as the 

noise as to which we want the manufacturing system to be robust against. 

In the second step, we define two independent experiment design tables for each of the factor classes. 

For the decision factors, the common experiment design methods used in data farming research can be 

utilized, for example the nearly orthogonal latin hypercube (NOLH), which is much more efficient than a 

default nk-design (Vieira et al. 2011). The design of the product mixture on the other hand is much more 

challenging. Although the number of experiments for the product mix does not grow exponentially with 𝑛𝑘 

since factors are not independent from each other, it still grows factorially with k for an increasing number 

of products in the mixture and the resolution of step size from 0% to 100% (Ledi et al. 2013). In a full 

factorial design with five products, we would have (5 + (100/5))! ((100/5)! (5 − 1)!) = 265.650⁄  

experiments given a 5% percent step size. Therefore, full factorial coverage of product mixes obviously is 

not possible for increasing k. To reduce the number of experiments, a simple approach is to use a data 

farming design method like NOLH and normalize the sum of each row to one. However, this method must 

be used with caution, since it can reduce the desired properties of an experimental design like balancing the 

distribution of factor values and the absence of correlation between input factors (orthogonality). 

Implementing constraints in space filling designs like latin hypercube is an tremendously challenging task 

and ongoing research topic (Golchi and Loeppky 2016; Petelet et al. 2010). For our purpose of proof of 

concept, the prior mentioned approach is sufficient for our case study model presented in the next section.  

In step three, after arranging the experimental designs, both designs are crossed (crossed design), 

resulting in a final experimental design of every combination of system and noise configurations. The 

resulting experimental design can become very large, so a parallel execution of experiments and high 

performance computing is needed. The advantage of this approach is that after the experiments are 

conducted, we can arrange the result data into a matrix-like table that shows how each system configuration 

performs for each noise factor configuration or product mixture, respectively. Figure 2 left side shows this 

approach schematically.  
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Figure 2: Matrix of crossed arrays for robustness evaluation. 

Each cell of the matrix represents one simulation experiment. Cells can then be filled with their 

corresponding robustness value of a selected output parameter x according to the chosen loss function. If 

multiple replications have been conducted, either the columns have to be expanded with the numbers of 

replications or each cell is filled with the average loss over all replications from one experiment. For each 

row, we can determine the average loss representing the robustness of each system configuration. The 

robustness against individual noise configurations may also be interesting to investigate. Additionally, if 

we analyze the matrix vertically, we can also evaluate the possibility of each noise configuration to create 

variance in the system’s output. In a complex manufacturing system, we assume that there are several output 

measures of interest that need to be robust against external variance. Therefore, the configuration matrix is 

actually multi-dimensional, which is shown in Figure 2 on the right side. In the focus of interest is finding 

configurations that are robust among all of the selected output parameters. In a simple approach, multiple 

robustness parameters can be extended with weights and summed up within a simple use-value analysis 

(UVA) that aggregates the robustness values of all output parameters to a single number. However, we do 

not recommend this approach since it has many disadvantages and does not justify the requirements for 

analyzing complex systems. For example, UVA lacks any form of sensitivity and setting weights correctly 

can be very difficult. For a more in-depth-analysis, we propose an interactive visually guided analysis 

supported by data mining, which we already demonstrated to be very suitable for the inspection of 

multidimensional simulation result data in our recent work (Feldkamp et al. 2016). 

The main advantage of this approach is being able to find the configurations that offer the most 

beneficial tradeoff between output parameters in a way that a simple UVA cannot provide. For this purpose, 

we developed a two-step process, that is built around visually aided analysis: First, grouping system 

configurations into classes of similar robustness groups using classification algorithms. These algorithms 

can label the simulation experiments according to their class affiliation. Simulation experiments in the same 

class belong to system configurations that have similar values in their corresponding robustness dimensions. 

In the next step we use supervised learning algorithms that can train data models from that data according 

to the class labels and provide insights on which input factor values leads to distinct classes, preferably 

those with decent robustness values. Knowing how to set input factor values accordingly to get to a desired 

class label allows conclusions on how to make the system robust. 

In the next section, we demonstrate the process of finding robust configurations through data farming 

by presenting a prototypical case study. 
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4 CASE STUDY 

4.1 Model Description and Design of Experiments 

For a proof of concept, we developed a simulation model of an assembly line that was implemented in 

Siemens Plant Simulation. Figure 3 shows a 2D and 3D-layout of this model. Here, five different part types 

are loaded onto workpiece carriers that are transported on a conveyor. Parts are both automatically 

processed on assembly stations and manually handled on up to five workplaces. At the end of the line, there 

is a manual quality inspection before parts get unloaded from their carrier and leave the system. The mixture 

of parts can vary, but arriving parts are kept in a buffer until they are cleared to get mounted on a free 

carrier. Some stochastic effects arise through machine reliability and a small proportion of parts that fail 

the quality assurance and are rescheduled for workplace manufacturing.  

 

 

Figure 3: 2D and 3D view of the assembly line model. 

The goal here is to make the line robust against the product mixture in multiple output parameters, 

namely throughput, workplace and carrier utilization, and job cycle time. A given number of decision 

factors can therefore be derived from the model’s specification, which are shown in Table 2.  

Table 2: Decision factors for the simulation experiments. 

Factor name Scale Description Margins 

LoadingTime Continuous Duration for mounting parts 10-60s 

UnloadingTime Continuous Duration for unmounting parts 10-60s 

ArrivalTime Continuous Interval time for job clearance 100-300s 

ClearanceStrategy Categorical 
Sorting strategy for jobs  

{fifo, lot size of: 5/10/unlimited} 
1-4 

BufferXCap Discrete Capacity for buffers (one factor for each) 1-100 

#Workplaces Discrete Number of manual assembly work places 1-4 

#Carriers Discrete Number of work piece carriers 1-100 

WP_ProcTimeVar Continuous Allowed tolerance for workplace process time 100-300s 

QA_ProcTimeVar Continuous Allowed tolerance for QA process time 100-300s 
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From these decision factors we derived 512 experiments in a NOLH-design. Additionally we created 40 

different configurations for the product mixture from a prebuilt Latin Hypercube design. Finally both 

designs were crossed with each other and replicated five times. This resulted in 102.400 simulation runs. 

The final experiment design has been split into multiple files in order to be distributed onto ten machines. 

Result data was written into flat CSV-files and collected and aggregated through a dedicated. Computation 

of data including data mining and visualizations was performed in MATLAB and R.  

4.2 Discussion of Results 

As mentioned in Section 3, arranging system and noise configurations in a matrix-like table creates a 

profound overview on how each system configuration performs regarding any given output parameter. For 

an intuitive visual review, a heat map based on this matrix has been created as shown in Figure 4. This heat 

map shows exemplarily the loss values for the output parameter throughput. The system configurations 

(matrix rows) have been sorted ascendingly by their total loss, so the most robust system configurations are 

on top. This heat map can be zoomed in and out in order to interactively review individual system and noise 

configurations. 
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Figure 4: Heat map of loss for output parameter Throughput (green: small, red big loss). 

In our prototypical production line, we assume that not only the throughput, but also other output 

parameters need to be robust against variation in the product mixture. The throughput should be nominal 

against 550 per day (throughput_550), the average cycle time should be minimized (avg.cycleTime) and 

the utilization of workplaces (WP_Util) and carriers (carrier_Util) should both be maximized. Therefore, 

all three different loss functions shown in Table 1 of Section 2.2 have been used here. Table 3 shows the 

total loss of each output dimension for the first five system configurations. It shows that the loss of each 

dimension is weakly correlated, so reviewing configurations and finding those that satisfy the desired 

robustness in all dimensions is difficult.  
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Table 3: Total loss of system configuration 1 - 5 for four different dimensions. 

System Conf. Loss(Throughput_550) Loss(Avg.CycleTime) Loss (WP_Util.) Loss(Carrier_Util) 

1 43806 1121391459 7,74 1,0045454 

2 25523 614664824,7 2,33 1,0104155 

3 7899 218944083,8 1,05 1,0053417 

4 88430 94480746,12 1,01 1,0337554 

5 201925 36723420,57 7,43 1,1315381 

 

To support the review of system configurations, we used a clustering algorithm that classifies the 

simulation experiments according to their configuration’s loss. This means simulation experiments in the 

same cluster are very similar regarding their robustness in the four selected output parameters. Figure 5 

shows the result of the clustering. Simulation experiments have been grouped into ten clusters, which are 

indicated through different colors. The brown colored cluster (Cluster 2) consists of those simulation 

experiments that have the most suitable robustness among all selected dimensions. In all of the sub diagrams 

in Figure 5, the loss in cluster two is rather small. Though some clusters have even better loss values in 

some dimensions, cluster two serves the best tradeoff among all dimensions and is therefore the target 

cluster for further inspection. 
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Figure 5: Clustering of output dimensions. 

In next step of the analysis, we need to inspect the corresponding input factor values of simulation 

experiments in each cluster, especially in the target cluster. Input factor values that are very dominant in a 

cluster indicate a causal relationship between factors values and cluster allocation. For selected input factors 

that are supposed to be most influential to the loss as predicted by a correlation analysis, we investigate 

their distribution among each distinct cluster in a radar plot, which can be seen in Figure 6. The plots in this 

figure mark the median and quartiles for each parameter. In between the quartiles are 50% of all 

observations or simulation experiments to be precise. So if quartiles lay close together, the corresponding 

parameter value is dominant in the given cluster. On the other hand, if quartiles are very broad so that a 

factor value is rather equally distributed among a cluster, the effects of this factor to a certain cluster 

allocation is presumed to be small. In our given target cluster (Cluster 2), one can see that especially the 

factors ArrivalTime and #Workplaces have distinct values that are dominant. Unfortunately, one cannot 
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read off specific factor values from these radar plots. Also, we cannot draw any conclusions whether the 

allocation of a simulation run to cluster 2 depends on specific combinations of factor values. 
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Figure 6: Radar plots of selected input factors for each cluster. 

For a further inspection of the specific numbers and factor value relations, we therefore trained a binary 

decision tree in order to build a model that can map the relation between input factors and clusters in detail. 

The nodes of the tree represent a specific input factor value, the leafs or classes of the tree represent the 

clusters. Hence, each tree branch represents an if-then-rule that describes how to get to a certain cluster. A 

visualization of the tree is shown in Figure 7. 
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Figure 7: Visualization of the decision tree model. 

The decision tree was fitted to the full data set. Overfitting issues can be ignored because the tree model 

is not going to be used for classifying unknown and unlabeled data, because all experiments have been 

already carried out at broad scale. The tree can be interactively traversed top down and each branch can be 

reviewed. The higher the position of node in the tree, the more importance it has for the split decision’s 

entropy. For example, the number of workplaces, or having three or more workplaces, respectively, is the 

most important factor value for cluster allocation and therefore system robustness. We highlighted a specific 

tree branch that leads to the target cluster: ‘At least three workplaces and 10 work pieces carriers, and the 

allowed tolerance in the process time of the quality assurance station has to be less than 160 seconds’ is a 
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configuration that leads to a system that is robust against variance in the product mixture in all desired 

output parameters. 

To validate our findings, we created a query implementing the rule specified above and applied it on 

all experiments in the simulation database. Figure 8 shows mean-variance plots exemplarily for the output 

parameters throughput and average cycle time on all system configurations. Those configurations, that 

match the queried experiments are highlighted colorfully. In some configurations, very severe variance can 

be found, which means that the system is very sensitive to variation in the product mix. Therefore not 

relying on the mean only but considering the variance of configurations is indeed very important. The 

implemented rule derived from the decision tree fits our proposed requirements on the output dimensions 

very good, with a balanced tradeoff between them 

 

 

Figure 8: Mean/variance plots of selected output parameters. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we demonstrated how a visual analytics based knowledge discovery process for 

manufacturing simulation robustness analysis can be performed. This approach brings an additional 

viewpoint into the existing robustness analysis research. Having the possibility to analyze large amount of 

data yields a better insight into the behavior on the system. Traditional approaches for robustness analysis 

focus on only one dimension of robustness, so our approach allows a new level of sensitivity  because we 

are able to investigate multiple dimensions simultaneously and evaluate the relations between them. 

Furthermore, our approach might be more appealing to people who are not “simulation experts”, since an 

interactively designed and visually aided analysis process is more user-friendly. Future research is needed 

for deriving visualization methods and tool sets that are especially suited for visual analytics in the context 

of manufacturing simulation data, or even discrete event simulation data in general. For data farming and 

visual analytics approaches to become commonplace, a tight integration of the demonstrated methods with 

commonly applied simulation packages is needed. Another challenge is the experimental design of product 

mixtures. Creating design methods that are efficient and still deliver features like orthogonality and 

balancing is still an ongoing research topic. 
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