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ABSTRACT 

Machine Learning (ML) has demonstrated great potentials for constructing new knowledge, or improving 

already established knowledge. Reflecting this trend, the paper lends support to the discussion of why and 

how should ML support the practice of modeling and simulation? Subsequently, the study goes through a 

use case in relation to healthcare, which aims to provide a practical perspective for integrating simulation 

models with data-driven insights learned by ML models. Through a realistic scenario, we utilise ML 

clustering in order to learn about the system’s structure and behaviour under study. The insights gained by 

the clustering model are then utilised to build a System Dynamics model. Recognizing its current 

limitations, the study is believed to serve as a kernel towards promoting further integration between 

simulation modeling and ML. 

1 INTRODUCTION 

Systems modeling can be contemplated as the science of complexity. As described by (Meadows 2008), 

systems inherently exhibit adaptive, dynamic, goal-seeking, self-preserving, and sometimes evolutionary 

behaviour, making a system more than simply the sum of its parts. The process of learning about systems 

of high complexity can therefore be a challenging task. 

From a different perspective, systems can now be dealing with extraordinary amounts of data (i.e. Big 

Data). It should be taken into account that systems involved with such Big Data scenarios place further 

burdens on the modeling process, which can go beyond human capabilities in many aspects. For instance, 

a system’s knowledge may need to be learned or extracted from huge amounts of data, which may be 

accumulating with a high velocity as well. Viewed this way, the complexity of systems can also be 

interpreted in terms of the complexity of data encompassing the system’s knowledge. 

In this respect, this study endeavours to investigate the feasibility of utilising Machine Learning (ML) 

techniques in order to understand, and learn about the underlying structure or behaviour of systems. Our 

fundamental view is that system models can be developed based on knowledge learned by ML models in 

tandem with mental models-driven knowledge. The study specifically focused on the System Dynamics 

(SD) approach, as an exemplary method widely used for systems modeling. Developed by Jay Forrester 

in the 1950s, the SD approach aimed to introduce a set of tools that enable to understand the structure and 

dynamics of complex systems. Over decades, SD has successfully established a large community in 

academia and industry, and continued to become an instrumental artefact for finding appropriate 

strategies and policies by elucidating the dynamic behaviour of systems. 

The paper can be viewed as organised into two main parts as follows. The first part initiates a 

discussion regarding the process of learning about systems from the perspective of feedback loops. That 

discussion was aimed to serve as an opening to the rationale behind our arguments. Afterwards, the 

second part, starting from Section 6, provides a more practical standpoint based on a use case in relation 
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to healthcare. The use case was mainly adopted in order to present realistic scenarios, where systems 

modeling can be supported by data-driven insights gained through ML. 

2 MOTIVATION: HOW CAN ML ASSIST LEARNING ABOUT SYSTEMS? 

In an early insightful analysis, (Sterman 1994) asserted that:   

The challenge is how to move from generalisations about accelerating learning and systems thinking 

to tools and processes that help us understand complexity, and design better policies. 

Sterman was notably alluding to the importance of developing assistive tools that can support the process 

of learning about systems, and understanding their complexity. In this sense, the key impetus for the study 

was that ML should be further considered as a valid path for that task, especially with the significant 

momentum gained by data-driven analytics over the past years. To focus the study’s objectives, a set of 

motivational questions were specifically addressed as listed in Table 1. Through the paper we 

endeavoured to discuss these questions, and provide practical examples that can demonstrate how ML can 

support the practice of modeling and simulation (M&S). 

Table 1: Motivational questions. 

Question Motivation 

Q1) How can ML be employed to assist the 

conceptualisation of a system? 

Utilising ML as an assistive tool within the process of 

learning about the structure or behaviour of systems. 

Q2) Is it possible to integrate mental models 

with ML models in a way that supports the 

learning process to develop based on a more 

data-driven manner? If so, how? 

The limitations of our mental models raise a need to 

consider more relatively unbiased reasoning methods 

for exploring and describing systems, and designing 

the corresponding models. 

Q3) Which ML techniques can be appropriate 

for the perception of a system’s structure, or 

the behaviour involved within a problem? 

Exploring the possible approaches/methods (e.g. 

supervised or unsupervised learning) to avail of ML 

for the purpose of learning about systems. 

Q4) Can the integration of ML lead to a 

higher level of confidence in simulation 

models, indicated by the accuracy of ML 

models?  

The predictive accuracy of ML models can be more 

measurable. This may in turn extend the confidence in 

simulation models designed based on insights from 

ML models in tandem with mental models. 

3 RELATED WORK 

In an era marked by data-driven knowledge, the M&S community has been reconsidering the emerging 

opportunities and challenges to the field. For instance, (Taylor et al. 2013) introduced the term “Big 

Simulation” for describing one of the grand challenges to the M&S research community. Big Simulation 

describes issues of scale for Big Data input, very large sets of coupled simulation models, and the analysis 

of Big Data output from these simulations, all running on a highly distributed computing platform. In a 

thought-provoking study, (Tolk 2015) envisioned that the next generation of simulation models will be 

integrated with ML, and Deep Learning in particular. The study argued that bringing M&S, Big Data, and 

Deep Learning together can create a synergy allowing to significantly improving services to other 

sciences. Similarly, other studies such as (Pruyt 2014) and (Pruyt 2017) interestingly turned the attention 

to the potentials of integrating SD models with Big Data, or other disciplines related to Data Science.  

However, literature obviously lacked pragmatic studies that practically demonstrate the integration of 

simulation models and ML, to the best of our knowledge. We believe that the M&S community needs 

much further studies that encourage and popularise that integration, and its potential benefits. 
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4 BACKGROUND: THE FEEDBACK LOOP CONCEPT 

To set a context, we initially intended to drive the discussion through the concept of feedback loop. The 

feedback concept has been an essential component for the SD approach, and systems modeling in general. 

This section aims to briefly review how that concept was perceived within the context of systems. 

4.1 The Feedback Loop in System Dynamics 

The feedback loop concept has its roots in different disciplines that go back further beyond the 

development of SD. (Richardson 1983) provided a comprehensive historical review of that concept, and 

how it was endorsed in a number of sciences. The review argued that the feedback concept has evolved 

and matured as a blend of ideas from different sources of subjects including: i) Engineering, ii) Biology, 

iii) Mathematical models of biological and social systems, and iv) Social sciences. Richardson 

interestingly presented examples of feedback loops in engineering that dated back to 250 B.C. 

From the perspective of the SD approach, the concept of feedback has been embraced as a 

fundamental idea within systems modeling. (Forrester 1960; 1961; 1964) kept asserting the importance of 

feedback loops within systems, and that all decisions are developed within the context of feedback loops. 

As (Forrester 1968) described it, a feedback loop is a closed path connecting in sequence a decision 

controlling an action, a state of the system, and information about the state, which returns to the decision-

making point. Figure 1(a) sketches the feedback loop in its simplest form. 

Further articulations of the feedback loop were compiled by (Sterman 1994). Sterman discussed 

issues pertaining to feedback loops, and illustrated by examples its significance in a broader context. 

Equally important, Sterman’s work endorsed the inevitable influence of mental models while perceiving 

information from feedback loops, and making decisions. Figure 1(b) re-portrays the feedback loop in 

view of existing premises derived from mental models. Furthermore, Figure 1(c) demonstrates that 

feedback from the real world can also cause changes in our mental models.  

 

 
(a)  (b) 

 
(c) 

Figure1: The feedback loop concept. 

4.2 Limitations of Mental Models 

In his landmark textbook (The Fifth Discipline), (Senge 1990) described mental models as the deeply 

ingrained assumptions, generalisations, or even images that affect how we understand the world, and how 

we take action. From the very beginnings of SD development, (Forrester 1961; 1971) highlighted the 

unavoidable limitations of our mental models. Forrester emphasised that the mental model is fuzzy, 

incomplete, and imprecisely stated. However, (Sterman 1994) argued that most people do not appreciate 

the “ubiquity and invisibility” of mental models. In this regard, Sterman identified a set of mental models-

related barriers to learning feedback as follows: i) Misperceptions of feedback, ii) Flawed cognitive maps 

of causal relations, iii) Erroneous inferences about dynamics, iv) Unscientific reasoning, v) Judgmental 

errors and biases, and vi) Defensive routines and interpersonal impediments to learning. 

It can be understood that the above-mentioned barriers are mostly attributed to the nature of human-

based reasoning predicated on biased perception of information. Our initial view was that more machine-

oriented assistive methods (e.g. ML) may constitute a key factor to mitigate such limitations. 
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5 OUR APPRAOCH: MENTAL MODELS AIDED BY MACHINE LEARNING MODELS 

“We are flooding people with information. We need to feed it through a processor. A human must 

turn information into intelligence or knowledge” – Grace Hopper. 

In the sense of that quote by Grace Hopper, one of the early computing pioneers, our approach mainly 

aimed to support mental models with data-driven knowledge learned by ML. The key idea hinges on the 

premise that mental models can be assisted by ML models trained to make predictions on a particular 

aspect of the system’s structure, or behaviour being modelled. It is assumed that changes in the sates or 

conditions of a system can be inferred, at least partially, by ML models.  

As illustrated in Figure 2, new data (i.e. feedback) can be generated by new system’s states. Based on 

data-driven feedback, ML models can be trained to predict the future behaviour of the system. Moreover, 

ML models can be continuously re-fitted to echo feedback loops, and reflect new system’s conditions. In 

this manner, the new system state can be learned based on ML models in tandem with mental models. The 

under-consideration argument is that relatively unbiased, or less biased, data-driven predictions can help 

improve the understanding of systems, and in turn more accurate decisions can be made. 

 
Figure 2: Approach overview.  

6 USE CASE: MODELING FLOW OF ELDERLY PATIENTS 

For the purpose of demonstrating the applicability of our approach, a case study was developed in relation 

to healthcare. The following sections elaborate the case setting, and the development of the ML and SD 

models. The main goal of the use case was to provide a practical scenario where SD models can be 

designed or adjusted in accordance with new system conditions learned by the aid of ML.  

6.1 Case Description 

The use case was developed within a healthcare context, with a particular focus on hip fracture care in 

Ireland. Hip fractures are a major cause of injuries and morbidity among the elderly. As acknowledged by 

numerous studies (e.g. (Melton 1996)), hip fractures were observed to be exponentially increasing with 

age, despite the existence of rate variability from country to another. Further, the care of hip fractures has 

a considerable importance, whereas the Ireland’s Health Service Executive (HSE) identified hip fractures 

as one of the most serious injuries resulting in lengthy hospital admissions and high costs (HSE 2008). 

The typical patient’s journey is described as follows. Initially, a patient is usually received at the ED. 

The primary surgery is performed after admission to an orthopaedic ward. Subsequently, the patient can 

possibly undergo various assessments based on falls history and fragility. Eventually, the discharge 

destination is mainly decided as: i) Home, or ii) Long-stay care facility (e.g. nursing home). 
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6.2 Data Description 

We acquired a dataset from the Irish Hip Fracture Database (IHFD). The IHFD repository is the national 

clinical audit developed to capture care standards and outcomes for hip-fracture patients in Ireland. The 

dataset particularly included records about elderly patients aged 60 and over. The data comprised about 

8K records over three years (2013-2015). Figure 3(a) plots a histogram of the age distribution of patients, 

while Figure 3(b) shows the gender percentages. It is noteworthy that a particular patient may be related 

to more than one record in case of recurrent fractures. However, we were unable to determine the 

proportion of recurrent cases whereas patients had no unique identifiers, and records were completely 

anonymised for privacy purposes. 

The dataset records contained ample information about the patient’s journey. Specifically, a typical 

patient record included 38 data fields such as gender, age, type of fracture, date of admission and LOS. A 

thorough explanation of the data fields was available via the official data dictionary (HSE 2015).  

  

 
(a) Age distribution. 

 
(b) Gender percentages. 

Figure 3: The distribution of patients’ age and gender in the dataset.  

6.3 Purpose of the Model 

We aimed to develop an SD model that can depict the flow of elderly hip-fracture patients from 

admission to discharge. The model can be utilised to understand and estimate the potential demand of 

care against the capacity of healthcare facilities. Specifically, the model focused on the utilisation of 

healthcare facilities in terms of:  i) Inpatient length of stay (LOS), and ii) Discharge destinations. To focus 

the purpose of the model, the questions of interest are stated as below: 

 

1. What is the expected consumption of hospital resources with regard to the inpatient LOS? 

2. What is the expected proportion of elderly patients discharged to home, or long-stay care? 

 

6.4 Selection of Machine Learning Technique 

As per the questions posed in Section 2, we initially aimed to investigate the possible ML techniques that 

can be used to assist the process of problem conceptualisation. In this regard, unsupervised ML 

techniques (e.g. clustering) present adequately for perceiving the system’s structure or behaviour as 

follows. The SD models typically deal with aggregate entities (e.g. population of patients), and not 

individual entities, or agents. Those aggregate entities are represented as “stocks”, which characterise the 

state of the system and generate the information upon which decisions and actions are made (Sterman 

2000). In a relatively similar manner, clustering seeks to realise the segmentation of a heterogeneous 

population into a number of more homogeneous subgroups (Aldenderfer and Blashfield 1984). Viewed 

this way, the suggested homogeneous groups (i.e. clusters) may correspond to particular stocks in the SD 

model. In addition, clustering is an effective method for exploring potential underlying structures in the 

system without making any prior assumptions that might be biased. 

29% 

71% 

Males Females
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6.5 Discovering Patient Clusters 

As explained, ML clustering techniques can hold potentials for learning about systems. In this respect, the 

study employed clustering to realise the segmentation of patients from a data-driven viewpoint. The 

following sections explain the data pre-processing procedures, and clustering experiments. 

6.5.1 Data Pre-processing 

i) Outliers Removal: According to (NOCA 2014), the mean and median LOS for hip- fracture patients 

were reported as 19 and 12.5 days respectively. Therefore, we considered LOS values longer than 60 days 

as outliers, which represented about 5%. Figure 4 plots the LOS histogram. 

ii) Feature Scaling: Several studies (e.g. (Patel and Mehta 2011)) argued that large variations within the 

range of feature values can affect the quality of computed clusters. Therefore, the features were rescaled 

to a standard range using the min-max normalisation method. 

iii) Feature Extraction: In a report published by (British Orthopaedic Association 2007), six quality 

standards for hip fracture care were emphasised. Those standards generally reflect good practice at key 

stages of care including: i) All patients should be admitted to an orthopaedic ward within 4 hours, and ii) 

All patients should have surgery within 48 hours of admission. The raw data did not include fields that 

explicitly captured such standards. However, they could be derived based on the date-time values of 

patient arrival, admission and surgery. In this way, two new features were added named as “Time to 

Admission (TTA)” and “Time to Surgery (TTS)”. However, only the TTS was eventually included, 

whereas the TTA contained a significant amount of missing values. 

iv) Feature Selection: The K-Means algorithm is originally applicable to numeric features only, where a 

distance metric (e.g. Euclidean distance) can be used for measuring similarity between data points. For 

this reason, we considered the numeric features only. Specifically, the model was trained using the 

following features: i) LOS, ii) Age, and iii) TTS. 

 
Figure 4: The distribution of inpatient LOS within the dataset.  

6.5.2 Clustering Experiments 

The partitional clustering approach was embraced using the widely prevalent K-Means algorithm. The 

problematic question while approaching a clustering task is how many clusters (K) may exist? In our 

case, the number of clusters was experimented with K ranging from 2 to 7. Initially, the quality of clusters 

was inspected based on the within cluster sum of squares (WSS) (Figure 5). In light of that, it could be 

initially suggested that three or four clusters of patients can likely exist within the dataset. 

In order to determine the most appropriate number of clusters, the suggested clusters were projected 

into two dimensions based on the Principal Component Analysis (PCA), as shown in Figure 6. Each sub-

figure below represents the output of a clustering experiment using a different K. Initially with K=2, the 

output indicated a promising tendency of clusters, where the data space is obviously separated in two big 

clusters. Similarly for K=3, the clusters were still well-separated. However, the quality of clusters started 

to decline when K=4 onwards. Eventually, it turned out that there were three clusters that best separated 

the dataset into coherent patient cohorts. We availed of the Azure ML Studio to train the clustering 

model. The cluster visualisations were produced by the R-package ggplot2 (Wickham 2009). 
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Figure 5: The sum of squared distances within clusters. 

   

   
Figure 6: Visualisation of clustering experiments with the number of clusters (K) ranging from 2 to 7. 

6.5.3 Learning Data-Driven Insights from Clusters 

In this section, we start exploring the discovered clusters mostly through visualisations. Our intention was 

to reveal potential correlations or insights, which can assist with the SD model design. The clusters were 

examined with respect to patient characteristics (e.g. Age), outcomes (e.g. LOS), and important care-

related factors (e.g. TTS).  In Figure 7(a), the inpatient LOS is plotted with respect to the three discovered 

clusters of patients. At first glance, it is obviously observable that the patients of Cluster3 had a much 

longer LOS rather than Cluster1 and Clusters2. On the other hand, Cluster1 and Cluster2 shared a very 

similar distribution of the LOS variable, apart from a few outliers in Cluster2. 

Second, we examined the clusters with respect to the TTS. As before-mentioned, the TTS is 

considered as one of the quality standards for hip fracture care. Once again, the patients of Cluster3 were 

observed for having a relatively longer TTS than those patients of Cluster1 and Cluster2. Likewise the 

LOS, Cluster1 and Cluster2 experienced a quite similar distribution of the TTS. Figure 7(b) plots the TTS 

variation against the three clusters of patients. 

For its considerable emphasis within elderly care, the clusters were also explored regarding the 

patient age. In our context, the possibility of sustaining hip fractures can increase significantly by ageing. 

It turned out that Cluster1 and Cluster3 tended to have relatively older patients rather than Cluster2. 

Figure 7(c) plots the age distribution within the three clusters. Eventually, the clusters were inspected 

with regard to discharge destinations. Discharge destinations can be generally classified into: i) Home, or 

i) Long-stay care facility. Patients discharged to long-stay care can likely spend prolonged periods of 

residential care. As per Figure 8, there was a pronounced variation between the clusters in this regard. 
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(a) LOS. 

 
(b) TTS. 

 
(c) Patient age. 

Figure 7: The variation of the LOS, TTS, and age variables in the patient clusters. 

 
(a) Cluster1. 

 
(b) Cluster2. 

 
(c) Cluster3. 

Figure 8: The variation of discharge destinations in the patient clusters. 

6.6 SYSTEM DYNAMICS MODELING 

6.6.1 Initial SD Model 

The initial model provided a bird’s-eye view of the care scheme of hip fracture with respect to the 

questions of interest. The model focused on capturing the dynamic behaviour in relation to the continuous 

growth of ageing, and the consequent implications on the incidence of hip fractures among the elderly. 

The main actors within the model were defined as follows: i) Elderly patients, ii) Acute hospital, and iii) 

Discharge destinations including home or long-stay care facilities.  

Two different inflow rates were used for male and female patients, as defined by (Dodds, Codd, 

Looney and Mulhall 2009). The model included a single reinforcing loop implied by the elderly patients 

of a fragility history, who are susceptible to re-sustain hip fractures, or fall-related injuries at least. At this 

stage, the model did not consider the different characteristics of patients learned by the ML clustering 

experiments. Figure 9 illustrates the initial SD model. 

 
Figure 9: Initial SD model. 
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6.6.2 Cluster-Based SD Model 

The SD model was re-designed in light of the knowledge learned by clustering experiments. In particular, 

the model was disaggregated into 3 different stocks representing the discovered clusters of patients. 

Furthermore, the model behaviour was mainly set based on the cluster analysis. For instance, the first and 

second clusters were considered to undergo the same TTS delay (i.e. TimeToSurgery1), while the third 

cluster was set a different delay (i.e. TimeToSurgery2). Likewise, each cluster was associated with a 

specific discharge destination-related fraction. 

Equally important, the inflow of elderly patients was structured based on the age groups within the 

clusters. In particular, both of the first and third clusters were modelled to contain more elderly patients 

(i.e. aged 80-100), while the second cluster was associated with less elderly patients (i.e. aged 60-80). 

This reflected the age distribution within the clusters, as sketched previously in Figure 7(c). For the 

purpose of simplicity, the model did not include the case of recurrent patients, which caused a reinforcing 

loop in the initial model. Figure 10 sketches the cluster-based model. 

 
Figure 10: The cluster-based SD model. 

6.6.3 Simulating Data-Driven Feedback 

In order to demonstrate the effect of data-driven feedback learned by ML, we applied a hypothetical 

scenario of care improvement. The scenario was intended to simulate a hypothetical change in the system 

behaviour as follows. It was assumed that a new policy was introduced starting from the year 2014 

towards improving the patient’s journey. The new policy aimed to maintain the hip-fracture care 

standards by keeping the TTA and TTS within 4 hours and 48 hours respectively. In accordance with the 

new policy, the average inpatient LOS was assumed to decrease by 20% and 30% in 2014 and 2015 

respectively. Further, the proportion of patients discharged to long-stay residential care was assumed to 

decrease by 5% and 10% in 2014 and 2015 respectively. In order to reflect the new policy, the patient 

records of the years 2014 and 2015 were synthetically altered. For instance, the LOS was reduced by 20% 

for patients discharged in 2014.  

Subsequently, the clustering model was retrained in view of the policy changes. The new clusters are 

demonstrated in Figure 11. It turned out that the new policy led to fewer clusters of patients. Specifically, 

the finest separation of clusters was realised when K=2. The new clusters were re-explored with respect to 

the LOS, TTS, and patient age as plotted in Figure 12. Based on the new patient clusters, the SD model 

was re-designed. The updated SD model corresponded to knowledge updates learned by the ML 

clustering model. Figure 13 sketches the updated SD model. 
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Figure 11: Visualisation of clustering experiments after applying the new care policy. 

 
(a) LOS. 

 
(b) TTS. 

 
(c) Patient age. 

Figure 12: The variation of the LOS, TTS, and age variables in the new clusters. 

 

 
Figure 13: The updated cluster-based model. 

7 DISCUSSION 

We believe that the developed scenario largely addressed the motivational questions listed in Table1. 

First, the clustering model was employed effectively for the purpose of understanding the system 

structure, where the SD model stocks actually represented the three discovered clusters of patients. 
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Moreover, the variations within the clusters in terms of patient characteristics (e.g. age), or care-related 

factors (e.g. TTS) assisted with shaping the model behaviour. Furthermore, it can be argued that the SD 

model was constructed with an established confidence based on the clustering model. The well-validated 

quality of clusters along with the compelling visualisations could support the rationale behind the SD 

model design in terms of structure and behaviour as well. Thus, the use of ML could have led to lowering 

the epistemic uncertainty usually attributed to the subjective interpretation of system knowledge by 

modelers, or simulationists, as explained by (Oberkampf 2002). 

In our case, the clustering model played an appropriate role while trying to explore possible systemic 

structures based on a pure data-driven standpoint. However, other ML techniques may be more 

appropriate within different situations, or other simulation approaches. 

8 STUDY LIMITATIONS 

A set of limitations are acknowledged as follows. The presented use case may not have been the best 

exemplary scenario to demonstrate the potentials of integrating simulation modeling and ML. We believe 

that a typical Big Data scenario can better present the benefits of that integration.  

Another relevant issue of concern, the patient clustering was based on a mere data-driven standpoint. 

Adding a clinical perspective (e.g. diagnosis, procedures) may group patients differently. 

9 CONCLUSIONS AND FUTURE DIRECTIONS 

The integration of mental models with data-driven insights learned by Machine Learning (ML) models 

can yield potential benefits for the practice of modeling and simulation. One benefit is lowering the bias 

of mental models, which can in turn increase the confidence in simulation models. In this regard, the 

study attempted to practically demonstrate how ML can assist with building simulation models. 

Looking into the future, more sophisticated ML techniques can be effectively used in order to distil 

the knowledge underlying further complex systems. For example, it would be interesting to investigate 

how simulation models can be integrated with Deep Learning (DL). DL (LeCun, Bengio and Hinton 

2015) received wide attention within the ML research for its capacity that dramatically improved the 

state-of-the-art in hard problems such as visual object recognition, or speech recognition. Using multiple 

processing layers, DL allowed models to learn data representations with multiple levels of abstraction. 

In the systems world, there are similar complex problems that might be quite intractable to be 

analytically described or perceived (e.g. biology systems). We conceive that Deep Neural Networks 

(DNN) can be utilised to help understand such complex systems, and better predict their behaviour. 

Furthermore, the DNN can be incrementally trained on a timely basis by the arrival of new data that echo 

new states of the system. In this manner, the DNN training can capture and update the system’s 

knowledge in a semi-automated manner. This can extend further opportunities for modeling dynamic 

systems that inherently exist within rapidly changing environments.  
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