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Numerical Simulation of Chemical Kinetics With a Two-Stage Method

for Solving Implicit Systems

Annomayus. B XMMHYECKON KHHETUKE M B JPYTHX BAXHBIX MNPUIOKEHUIX
BO3HUKaeT 3amaya Komm gma  kectkod cucteMbl OJY  Hepa3peleHHbIX
OTHOCHUTENBHO NPOU3BOAHOM. [IoCTpOeH nByXcTamniiHbli L-ycTOMYMBEIN METO THIIA
PozenOpoka, npegHasHaueHHBIN I pelieHrs HesBHBIX kecTkux cuctem OJ[Y. Ha
OCHOBE 3TOro MeToja CcHOopMyIHMpOBaH aJITOPUTM HHTETPUPOBAHUSI MEPEMEHHOIO
mara. [IpuBeieHsl pe3yabTaThl pacueToB, MOATBEpkAatore 3PHEeKTUBHOCTh HOBOTO
aJrOpUTMa.

Knrouesvie cnosa. HesiBHas cucrteMa, Mmetos Po3eHOpoka, KOHTPOJIb TOUHOCTH.

Abstract. In chemical kinetics and other important applications there often arises
the Cauchy problem for a stiff system of ODEs unresolved with respect to derivative.
The two-stage L-stable Rosenbrock type method is derived. On the base of the
method the integration algorithm of alternating stepsize is designed. It is aimed at
solving implicit stiff systems of ODEs. Numerical results confirming the efficiency
of new algorithm are given.
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Introduction
On modelling dynamic processes in chemical kinetics, electric circuits, and
other areas there arises the Cauchy problem for stiff systems of differential equations
unresolved with respect to derivative [1-5]:

F(x,x',t)=0, x(t,) =x,, t, <t <t,, (1)
where x and F represent real-valued N-dimensional vector-functions, ¢ is an
independent variable. Modern numerical methods usually require the following form
of the problem [1, 6-7]

x'=f(t,x),x(t) =x,, t,<t<t, ()
Transforming problem (1) to form (2) usually causes additional expenses per

each integration step due to decomposing matrix F, =0F(x,y,t)/dy. At that, F,

often is singular. Resolved problem (2) is, as a rule, stiff.

The most known algorithms aimed at solving problem (1) are based either on
implicit multistep numerical formulas [1, 2] or implicit one-step Runge-Kutta
schemes [8]. In paper [9] there studied deriving non-iterative (m, k)-schemes for
problem (1) solution. These schemes are similar in terms of structure to the
Rosenbrock type scheme offered in this paper. Many practical problems are described
by so called hybrid systems [7]. Such problems are defined by regimes which
alternate each other at some points. These points are given by event functions g(x)
which depend on unknown solution x(¢). In such a situation multistep methods may
be inefficient because at each regime alternation whole information about the
approximate solution at previous points is lost.

Rosenbrock type methods have got widely spread on solving stiff problems.
This is due to easy implementation and rather good accuracy and stability properties.
It is natural to resolve problem (1) and provide L-stability of a numerical scheme at
the same time to increase the efficiency of calculations. Here is derived the two-stage

L-stable second order method for solving implicit problems. The difference between



new method and traditional Rosenbrock type methods is that former, in addition,

numerically computes the solution derivative.

1. Rosenbrock Type Methods for Resolved Problems
For solving problem (2) Rosenbrock type methods take the form

i1 J=1

m i—1
xn+1 = xn +zpiki 3ani = hf(tn +Cih’xn +ZB(/ij9 (3)

where k;, 1<i< N, represent stages of a method, % 1is the integration stepsize,
D, =1-ahf], 1 is the identity matrix, f' =0f(¢,,x,)/0x denotes the Jacobi matrix

of system (2), a, ¢;, p,, B, I<i<N, 1< j<i-1, represent numerical coefficients

jio
defining accuracy and stability properties of (3). Nowadays the Rosenbrock type
methods are treated more widely — each method involving the Jacobi matrix is related
to the family of Rosenbrock type schemes or non-iterative methods [1]. For a
nonautonomous problem two-stage method (3) has the form

X1 = X, + D1k + Dy,

D,k = hf (x,), Dk, = hf (x, + B,k ).
With the following coefficients

p=By =a=1-05V2,p,=1-a=05J2

numerical schemes (4) is order 2 and, in addition, L-stable. For accuracy control of

(4)

(4) we can apply the inequality [10]

[y =k [< €
where ¢ is the defined tolerance, ||-|| denotes some norm in R". To evaluate
increments k,, 1<i<2, it is necessary to solve two linear systems of algebraic

equations. This is usually performed applying LU-decomposition.

2. Methods of the Rosenbrock type for implicit systems

Using notation x' =y problem (1) can be written in the form



X'=y,F(x,y,t)=0,t, <t <t,. (5)
It is the Cauchy problem for a system of DAEs with initial conditions x(z,) = x, and
v(t,)=y,. Latter condition can be obtained, for example, solving problem
F(x,,y,t,)=0 by the relaxations [10]. Below we assume the existence and
uniqueness of the solution of problem (1) of (5). Also, it is assumed that function F
is sufficiently differentiable at each step and matrix
D, =F, +ahf),
is nonsingular. Here, a i1s a numerical coefficient, / is the integration stepsize,

F;lxzaF(xn’yn’tn) F _aF(xnﬂyn’tn)
o0x oy

Now, m-stage Rosenbrock type method applied to problem (1) or (5) takes the form
[4]:

Xyt =X, + 2 Pk Y, =, + D Pk,
i=1
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where a, p;, and B, are numerical coefficients, F, =0F(x,,y,.t,)/0t. Obviously,

(6)

applying formulas (6) to solve (2) we get Rosenbrock type methods (3). On solving

problem (5) scheme (6) numerically computes the solution derivative. Since y, is
evaluated approximately, it is assumed that || F, ||<C-h”. Here F;=F(x,,¥y.%,),

|-|| denotes some norm in R”, C is a constant not depending on the integration

stepsize, p represents order of a method. Below we assume that £, is nonsingular

over each interval [7

no n+1]



3. Two-stage Second Order Method

To solve (5) consider two-stage formula of the form

Xpn =X, + Dk + ks, v, =y, + ki + ki,
anlx:h'|:F;1y.yn_ahEﬂ_F(‘xn’yn9tn):"
1
Y — =
kl _ah (kl hyn)9

an; = thy (yn +B2lkly)_ah2E1t B
_hF(‘xn +Byki, p, +Baki 1, +l321h)>
1

K = K =h(y, + Bk ) |

(7)

Expand stages k; .,k ,k;, and k; in the Taylor series in terms of 4 and

substitute in the first formula of (7). Performing comparison between resulting
expression for approximate solution and the Taylor series for the exact solution we
obtain the second order conditions for scheme (7), i.e.
1
p1+p2=1,[321p2=5—a. (8)

Expanding F,,, = F(X,,;,V,.1.,,;) in the Taylor series and allowing for order

n+l
conditions (8), get

2_ —_—
R =t 2B DBt j2s. ) + O

where function @(z) does not depend on the integration stepsize. The requirement

F

n+l

=O(h*) leads to relation
a’—2a+05=0. 9)
The given condition provides L-stability of scheme (7) applied to the Dahlquist
equation x'=Ax, where A represents a complex number, Re(A)<0. Equation (9)
has two real roots a, = 1-0.5v2 and a, =1+ 0.5v2. On solving resolved problems

usually former is chosen because in this case the coefficient in the main term of local



truncation error is less. It follows from numerous calculations that on solving implicit

systems a, is also preferable.

In paper [11] it is shown that applying L-stable inner (intermediate) numerical
schemes increases the efficiency and reliability of calculations. The intermediate

scheme
Xnrp = X +By k0
is L-stable, if B,, =a. Using this and allowing for order conditions (8) we derive

coefficients of L-stable method (7) of order 2, i.e.

p =By =a=1-052, p,=1-a=052. (10)

4. Accuracy Control of Calculations
Accuracy control of calculations for scheme (7) can be carried out by analogy

with [5], 1.e. at each step it is necessary to check the following inequality

Iy =k [ <e, (11)
where k' and k; have already been defined in (7), € is the defined tolerance, norm
IC, | was computed by the formula ||, |= {22350 &1/ x |+r). If | x;, |< 7, then in i -th

component there controlled absolute error - €, otherwise — relative error €.
Since the solution derivative in numerical formula (7) 1s evaluated

approximately, in addition to (11) we check the following inequality
|D;'F, || <. (12)

In calculations we used norm || & || of the form||§, |= max | E] |.
1<i<N

Numerical Results
The Chemical Akzo Nobel Problem was chosen to test new two-stage method
that is called iros2 below. The origin of the problem is described in [12]. The

problem is given by a stiff system of 6 non-linear DAEs of index 1. It is of the form



M%:f(y), y(0) = yy, ¥'(0) = y;, with y e R®,0<¢<180.

The matrix M is of rank 5 and given by

1 00 0 0O
O 1 00 0O
0O 01 0 0O
M =
0O 001 00
0O 0001 O
0O 000 0O
and function f by
1

f1=—2r1+rz—r3—r4,f2=—54—n—5%+ﬁn,f3=ﬁ—rz+rg,

fa=—n+n-2n,fi=n-n+r,f,=K -y y,— Vs

where 7, and F), are auxiliary variables given by

k
=k yza’”z=kz-y3-y4,rs:Ez'yl'yw’ﬁ:ks-yl-yfars=k4-y§-\/y2,
p(C02)
Fo=kid.| 22220
in ( H y2

Calculations were performed using the following parameters
k, =18.7,k, =0.58,k, =0.09,k, =0.42 ,K =34.4 ki4=3.3,
K =115.83,p(C0O,)=09,H =737.
The initial vectors are
¥ = (0.444,0.00123,0,0.007,0,K, - v, - ¥ou)' > vy = f(3,)-

For negative values of y, function f can not be evaluated and the integration
stepsize is reduced until the inequality y, >0 is satisfied.

According to [12] the reference solution was computed by PSIDE on a Cray

C90, using double precision, rtol = atol = 107". At the end of the integration interval

it is of the form



y, =0.1150794920661702 , y, =0.1203831471567715-1072,
v, = 0.1611562887407974, y, =0.3656156421249283-10°,

ys =0.1708010885264404-107", y, =0.4873531310307455-107°.
Calculations were performed on Intel(R) Core(TM) 15-3317U CPU @

1.70GHz using numerical Jacobi matrix. Parameter » in norm was set to 1 so that
relative and absolute tolerances were equal. Computational costs for the Chemical

Akzo Nobel Problem simulation are given in the Table 1.

Table 1. Computational costs for the Chemical Akzo Nobel Problem

Solver rtol atol scd steps f dec
iros2 1072 1072 2.51 27 66 33
1073 1073 3.03 50 102 51

The scd values represents the minimum number of significant correct digits in the

numerical solution at the end of the integration interval, i.e.

scd = —log(|| relative error at the end of the integration interval ||,

Numbers of right part evaluations and decompositions are denoted by f and dec,
respectively. At that, right parts computed to get numerical Jacobi matrices are not

taken into account.

Conclusion

The greatest efficiency of the derived algorithm is reached on performing

calculations with low accuracy £<107>. This is due to low order of numerical
formulas involved in solver iros2. The efficiency of new algorithm may be increased
through freezing the Jacobi matrix (i.e. applying same Jacobi matrix over several
integration steps). This can reduce computational costs due to evaluating and
decomposing the Jacobi matrix. Furthermore, note that deriving reliable non-iterative

algorithms that have high accuracy and efficiency is possible using methods based on

(m, k)-methods of high order [9].
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