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ABSTRACT 

This paper studies social influence (i.e., adoption of belief) using agent-based simulation and regression 
models. Each agent is modeled by a linear regression model. Agents interact with neighbors by 
exchanging social beliefs. It is observed that if individual belief is linear in neighbors’ beliefs, system-
level belief and aggregated neighbors’ beliefs can also be described by a linear regression model. 
Analysis is conducted on a simplified 2-node network to provide insight into the interactions and results 
of general models. Least squares estimates are developed. Explicit expressions are obtained to explain 
relationship between initial belief and current belief.  

1 INTRODUCTION 

This study is motivated mainly by the question: When linear-regression-based agents interact and 
exchange beliefs, can the system-level belief still be linearly regressed on agents’ aggregated beliefs?  

The system under study is a network of n interconnected agents, each of which is modeled by a linear 
regression model, yi = b0 + b1x1i +… bmxmi + εi, where yi is the level of belief of Agent i and xji is Agent i’s 
jth neighbor’s belief. Each agent has exactly m neighbors. At each time step, Agent i uses this equation to 
determine its belief based on the beliefs of its neighbors. This new level of belief will in the next time step 
influence the belief of other agents who connect to it. All agents follow the same interaction procedure. 
After letting them interact for a long period of time, we are interested in the validity of the system level 
regression model, Y = B0 + B1X1 +… BmXm + E, where Y is sum of all yi’s and Xj is the sum of all xji’s. In 
other words, we wish to know whether complex interactions between regression models can still maintain 
“linearity” at the system level.  

Using agent-based simulation, we find that the regression model Y = B0 + B1X1 +… BmXm + E is 
significant. We reduce the model to a 2-node network and obtain the least squares estimates for the 
regression model. Finally, we develop explicit expressions to describe the interaction dynamics (i.e., 
relationship) between the current belief and initial beliefs. 

One implication of the results is that under the assumptions made, one can adequately model system-
level belief using simple linear regression model rather than sophisticated statistical models or algorithms. 
Having a simple linear regression model not only simplifies the analysis of the system-level belief but 
also allows rich analytical results already developed in regression analysis to be applied to the study of 
social influence.  

Section 2 briefly discusses related topics and literature. Section 3 presents the agent-based model and 
regression surrogate. Section 4 conducts experiments on the agent-based model. Section 5 performs an 
analysis on a simplified 2-node network. Section 6 concludes the paper and presents future work. Proofs 
of major theorems are given in Appendix A.  
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2 BACKGROUND 

This study spans several areas, including agent-based simulation, regression analysis, social influence, 
and social network analysis. Agent-based simulation is a rapidly growing area with a number of 
applications (Chan et al. 2010, Macal and North 2010). In social network analysis, one research focus is 
the study of properties of various types of social network models, (de Sola Pool and Kochen 1978, 
Bollobas 2001, Newman 2010). We refer to the cited references for more details on these two areas.  

2.1 Social Influence 

“Social influence occurs when an actor adapts his behavior, attitude, or belief, to the behaviors, attitudes, 
or beliefs of other actors in the social system,”p.26 of Leenders (2002). Research and studies abound in 
this area. Leenders (2002) used network autocorrelation model with weight matrix to study social 
influence. Christakis and Fowler (2008) examined the spreading of smoking behavior in a social network. 
Kearns et al. (2009) conducted an experiment to study how social influence leads to collective decision-
making. 36 human subjects arranged in a social network were asked to vote for either red or blue. They 
are allowed to see the votes of their network neighbors. Financial incentives were given if consensus is 
reached within one min of the voting process. Through the experiments, the authors were able to observe 
how different network structures and individual behavior influence the outcome of voting. They found 
that 55 out of 81 experiments ended in global consensus within one minute. They also showed that power 
law networks can reach consensus faster than random graphs.  

Other related areas and domains include diffusion of ideas and technological innovations, effects of 
“word of mouth”, marking, etc. Researchers are also interested in finding ways to optimally spread an 
idea or behavior through a network. For example, Kempe et al. (2003) developed an approximated 
algorithm to finding the best subset of nodes to maximize the spreading of influence. This problem is 
formally addressed by Borgatti (2006), who named it the key player problem (KPP). KPP is to find a key 
player set of size k which is maximally connected to all other nodes excluding this key player set Borgatti 
(2006). Many methods have been proposed to solve KPP efficiently. These methods include the 
aggregated centrality method (Friedkin 1991, Krebs 2002), entropy method (Ortiz-Arroyo and Hussain 
2008), greedy algorithm (Borgatti 2006), and semi-definite programming (SDP) based methods (Wu et al. 
2017).   

2.2 Regression Analysis 

Regression analysis is no doubt a widely applied method in many domains (Kutner et al. 2005). Using 
regression models as surrogate models, Papadopoulos and Azar (2016) built an agent-based simulation 
model for building performance simulation. They used the agent-based model to simulate energy use 
attributes to obtain energy consumption estimates and to evaluate uncertainty in energy usage of a 
building. With the increasing popularity of agent-based simulation, it is expected to see more marriages 
between agent-based simulation and regression analysis. The present paper is one example of such 
marriage. 

In the social influence area, regression analysis is also a popular tool. For example, Vries et al. (1995) 
used regression analyses to study the impact of social influences on smoking behavior. Using a stepwise 
regression method, they identified that intention, perceived behavior and pressure are significant 
contributors for the actual and future adolescent smoking behavior. With the help of regression analyses, 
the authors were able to provide recommendations for improving smoking prevention programs. For 
example, it was suggested that smoking prevention programs also take into account social pressures and 
influences. Investigating social influences on the sexual behavior of youth, Romer et al. (1994) applied 
regression analyses to show that parental monitoring makes a difference in sexual activity of youth, while 
peer group influence correlates with the rate at which sexual activity progressed with age. Using 
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regression analyses, Ornek and Esin (2017) found that psychological health problems of adolescent 
workers are related to poor working conditions. Another example of social influence study using 
regression analysis is by Crockenberg (1981), who showed that social support is an important predictor 
for secure attachment between infant and mother, especially for irritable babies. 

3 AGENT-BASED AND REGRESSION MODEL 

3.1 Agents  

The agent-based model used in this paper is a social network with n-node, each of which is randomly 
connected to exactly m nodes (i.e., neighbors). In this paper, we select m = 3. Each node is represented by 
a linear regression model shown below: 

 
 yi = bi0 + bi1xi1 + bi2xi2 + bi3xi3 + ²i, 

 
where yi denotes the level of belief of Agent i, xij’s are the levels of belief of Neighbor j, j = 1,..,3, bi0 

is the internal belief, bij’s are the multipliers of neighbors’ belief, ²i is the random noise. 

3.2 Interaction and Simulation Procedure 

At each iteration, Agent i queries its three neighbors’ beliefs. The result of the query is the replacement of 
xij by yj, the belief of the jth neighbor. This replacement models Agent i’s adoption of its neighbors’ belief. 
Moreover, because this replacement will monotonically increase yi, at the end of each iteration each yi 
needs to be normalized by dividing it by the sum of all yi’s. We also note that the update of each yi is done 
by using the beliefs of neighbors at the previous time step; and all yi’s are updated at each time step. 
Therefore, the order of the updates for all yi’s does not matter. The simulation procedure is described in 
Table 1.  

Table 1: Agent-based Simulation Procedure. 

Step 0: 
Generate bij ~ U(0, 1), xij ~ U(0, 1), εi ~ N(0, 1), i = 1,…,n, j = 1, 2, 3 and  
Compute: 
   yi = bi0 + bi1xi1 + bi2xi2 + bi3xi3 + εi       (1) 

 
Step 1:  

For each Agent i, set xij = yj, j = 1, 2, 3, 
Generate εi ~ N(0, 1), and  
Compute yi = bi0 + bi1xi1 + bi2xi2 + bi3xi3 + εi  

 
Step 2: 

For each Agent i, perform normalization: yi = yi=
Pn

j=1 yj  
 
Step 3: 

Repeat Steps 1 and 2 for 100 times 
 

3.3 Global Regression 

At the global level, the whole system can also be described as a regression model: 
 

1397



Chan 
 

 Y = B0 + B1X1 + B2X2 + B3X3 + Εi  (2) 
 
where Y denotes the system level of belief, Xj’s are the aggregated belief of Neighbor j, j = 1,..,3 (the 

average of them can be considered as the mean belief of neighbors), B0 is the belief when there are no 
neighbor interactions, Bj’s are the multipliers of neighbors’ belief, Ei is the random noise. Here, the 
system level and aggregated belief of neighbors, Y and Xj’s, are obtained by summing up all, respectively, 
yi and xij, that is: 

 

 Y =

nX
i=1

yi; i = 1; : : : ; n, 

 Xj =

nX
i=1

xij; j = 1; 2; 3, 

 
We are interested in whether system-level regression model is statistically valid under the individual-

level interactions among neighbors as described in Table 1.  

4 EXPERIMENTS 

Experiments are performed for n = 100, 500, 1000. All parameters are randomly generated as shown in 
Table 1. Step 0 to Step 3 (with Steps 1 and 2 repeated 100 times) in Table 1 constitutes one run of the 
simulation. To obtain estimation of the regression model, the simulation procedure (Steps 0 to 3) is 
repeated 100 times, giving 100 independent observations.  

In particular, at the end of a simulation run (at time 100), the sum of yi’s and the sum of xij’s, j = 1, 2, 
3 are recorded, that is, (

Pn

i=1 yi, 
Pn

i=1 xi1, 
Pn

i=1 xi2, 
Pn

i=1 xi3). This is repeated 100 times, resulting in 
100 observations for use to estimate B0, B1, B2, and B3 of Eq.(2) using the least squares method.  

Running the simulation and fitting the regression equation Eq.(2) to the outputs yields the regression 
estimates in Table 2. The residual plots and Q-Q plots are given in Figure 1. 

It can be seen from Table 2 and Figure 1 that the linear regression models are significant. All the 
coefficients are also significant (the p-values of the coefficients are all < 0.001). No curvilinear 
relationships are observed. Therefore, interactions among agents do not seem to produce significant non-
linearity between the global belief and neighboring beliefs. 

Table 2: Regression Results of Agent-based Simulation. 

n B0 B1 B2 B3 R2 p-value 
100 28.450 0.749 0.600 0.656 0.925 < 2e-16 
500 166.231 0.617 0.681 0.552 0.926 < 2e-16 

1000 286.037 0.717 0.715 0.539 0.924 < 2e-16 
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      n = 100           n = 500 

 
            n = 1000    

Figure 1: Residual and Q-Q Plots of Regressions. 

5 ANALYSIS OF 2-NODE NETWORK 

To get some insights into the simulation and regression results, this section focuses on a simple 2-node 
network and analyzes the interactions between the two nodes and the consequences of the interactions. 
The 2-node network can be used to as a basic building block for both modeling and approximating the 
general n-node network. The following notation is needed to describe the dynamics of the interactions.  

 

y
(t)
i    : response variable of Agent i at time t, i = 1, 2  

x
(t)
i1   : independent variables of Agent i at time t, i = 1, 2  

St   : total response of both Agents 1 and 2 before normalization at time t  
 

5.1 Global Level 

We first examine the system-level regression model. The main objective is to examine the relationship 
between the total beliefs at time t and the aggregated beliefs of neighbors. In particular, we obtain the 
least squares estimates for the system-level regression model.  

Before normalization, y(t)
1 = b10 + b11y

(t¡1)
1  and y(t)

2 = b20 + b21y
(t¡1)
2 . Therefore, we have: 

 

 St = b10 + b20 + b11y
(t¡1)
1 + b21y

(t¡1)
2   (3) 
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Let X(t)
1  be the aggregated belief of the 1st neighbor, that is, X(t)

1 = y
(t¡1)
1 + y

(t¡1)
2 . We would like to 

estimate the following regression model:  
 

 Yt = b
(t)
0 + b

(t)
1 X

(t)
1 + E1  (4) 

 

where Yt, b
(t)
0 , and b(t)

1  are the system-level belief, internal belief, and multiplier of neighbor belief, 

respectively, and E1 » N(0; ¾2
E). Obviously, Eq.(3) and Eq.(4) are different unless b11 = b21 = b

(t)
1 , 

which is not true. Therefore, given a set of N observations of X(t)
1  (i.e., y(t¡1)

1k  and y(t¡1)

2k ; k = 1; : : : ; N ), 

we wish to find estimates of b(t)
0 , and b(t)

1  such that the least squares error of Eq. (4) is minimized. This is 
the result in Theorem 1 in the following. 

 

Theorem 1 Given data y(t¡1)

1k  and y(t¡1)

2k ; k = 1; : : : ; N  time t – 1, the least squares estimates of b(t)
0  

and b(t)
1 of regression Eq.(4) are: 

 

 
c
b
(t)
0 = b10 + b20 +

μ
b21 ¡

c
b
(t)
1

¶
y

(t¡1)
1 +

μ
b11 ¡

c
b
(t)
1

¶
y

(t¡1)
2  (5) 

 

 
c
b
(t)
1 =

Pn

k=1

h
(b21 + 1)

³
y

(t¡1)

1k ¡ y
(t¡1)
1

´
+ (b11 + 1)

³
y

(t¡1)

2k ¡ y
(t¡1)
2

´i
Pn

k=1

h³
y

(t¡1)

1k ¡ y
(t¡1)
1

´
+

³
y

(t¡1)

2k ¡ y
(t¡1)
2

´i2  (6) 

 

where the sample means of y(t¡1)

1k  and y(t¡1)

2k  are 
 

 y
(t¡1)
1 =

PN

k=1 y
(t¡1)
1

N
 and y

(t¡1)
2 =

PN

k=1 y
(t¡1)
2

N
. 

 

5.2 Regression to Initial Belief 

To investigate the dynamics of interaction, this sub-section develops explicit equations to describe the 
relationship between initial beliefs (at time 0) and current belief (at time t). They are described in the 
following theorem. 

 
Theorem 2 In a 2-node network, the two regression equations and the sum of responses at time t can 

be described as the following: 

 St =

Pb t¡1
2
c+1

j=0 ®
(t)

jQt¡1

l=0 Sl

 (7) 

 y
(t)
1 =

Pb t¡1
2
c+1

j=0 ¯
(t)

1jQt

l=0 Sl

 (8) 
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 y
(t)
2 =

Pb t¡1
2
c+1

j=0 ¯
(t)

2jQt

l=0 Sl

 (9) 

where S¡1 = 1, and  
 

®
(t)
j =

8>><>>:
b
j
11b

j
21

Qt1¡2j¡2

l=0 Sl [(b10 + b20)St¡2j¡1 + (b10b21 + b20b11)] ; j = 0; 1; : : : ; b t¡1
2
c

b
j
11b

j
21

³
x

(0)
11 + x

(0)
21

´
; j = b t¡1

2
c+ 1; when t is odd

b
j
11b

j
21

h³
b10 + b20 + b11x

(0)
11 + b21x

(0)
21

´i
; j = bt¡1

2
c+ 1; when t is even

 

 

 ¯
(t)
1j =

8>><>>:
b
j
11b

j
21

Qt¡2j¡2

l=0 Sl (b10St¡2j¡1 + b20b11) ; j = 0; 1; : : : ; b t¡1
2
c

b
j
11b

j
21x

(0)
21 ; j = b t¡1

2
c+ 1; when t is odd

b
j
11b

j
21

³
b10 + b11x

(0)
11

´
; j = b t¡1

2
c+ 1; when t is even

 

 

 ¯
(t)
2j =

8>><>>:
b
j
11b

j
21

Qt¡2j¡2

l=0 Sl (b20St¡2j¡1 + b10b21) ; j = 0; 1; : : : ; b t¡1
2
c

b
j
11b

j
21x

(0)
11 ; j = b t¡1

2
c+ 1; when t is odd

b
j
11b

j
21

³
b20 + b21x

(0)
21

´
; j = b t¡1

2
c+ 1; when t is even

 

 
Theorem 2 indicates that the belief at time t has a complex relationship with the initial beliefs. In 

addition, it also alternates between odd and even times. This is due to the fact that there are only two 
nodes in the network and they exchange their beliefs every time step. The expressions in Theorem2 
capture the entire interaction effect from the beginning of interaction till the end of observation. 

6 CONCLUSION AND FUTURE WORK 

This paper presents a preliminary study on social influence via agent-based simulation and regression 
analysis from an engineering perspective. It is found that system-level belief and neighbor beliefs can be 
statistically described by a linear regression model. A more in-depth analysis is conducted on 2-node 
network, where least squares estimates are obtained. While linear relationship seems to hold at the 
system-level, the relationship between the initial belief and current belief evolves in a more complicated 
manner as shown in the developed expressions.  

Both the agent-based simulation model and analytical expressions can be generalized to obtain more 
general results. For example, agents can have different number of neighbors, and an agent may have 
stochastic adoption of neighbors’ beliefs. It is also interesting to see how the 2-node analytical 
expressions be extended to describe 3-node (or n-node) network.  
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From the least squares equation, the estimate of b(t)
1  is 

 

c
b
(t)
1 =

Pn

i=1

³
X

(t)

i ¡X(t)

´³
S

(t)

i ¡ S(t)

´
Pn

i=1

³
X

(t)

i ¡X(t)

´2

=

Pn

i=1

h
y

(t¡1)
1i + y

(t¡1)
2i ¡

³
y

(t¡1)
1 + y

(t¡1)
2

´i h
y

(t)
1i + y

(t)
2i ¡

³
y

(t)
1 + y

(t)
2

´i
Pn

i=1

h
y

(t¡1)

1i + y
(t¡1)

2i ¡
³
y

(t)
1 + y

(t¡1)
2

´i2

=

Pn

i=1

h
y

(t¡1)

1i + y
(t¡1)

2i ¡
³
y

(t¡1)
1 + y

(t¡1)
2

´i
Pn

i=1

h
y

(t¡1)
1i + y

(t¡1)
2i ¡

³
y

(t)
1 + y

(t¡1)
2

´i2

h
b10 + b11y

(t¡1)
2i + b20 + b21y

(t¡1)
1i ¡

³
b10 + b11y

(t¡1)
2 + b20 + b21y

(t¡1)
1

´i
=

Pn

i=1

h
y

(t¡1)
1i + y

(t¡1)
2i ¡

³
y

(t¡1)
1 + y

(t¡1)
2

´i h
b21

³
y

(t¡1)
1i ¡ y

(t¡1)
1

´
+ b11

³
y

(t¡1)
2i ¡ y

(t¡1)
2

´i
Pn

i=1

h
y

(t¡1)

1i + y
(t¡1)

2i ¡
³
y

(t)
1 + y

(t¡1)
2

´i2

=

Pn

i=1

h
(b21 + 1)

³
y

(t¡1)

1i ¡ y
(t¡1)
1

´
+ (b11 + 1)

³
y

(t¡1)

2i ¡ y
(t¡1)
2

´i
Pn

i=1

h³
y

(t¡1)
1i ¡ y

(t¡1)
1

´
+

³
y

(t¡1)
2i ¡ y

(t¡1)
2

´i2
 

 

With 
c
b
(t)
1 , the least squares estimate of b(t)

0  is  
 

 

c
b
(t)
0 = Y ¡ bbt

1X
(t)

= y
(t)
1 + y

(t)
2 ¡

c
b
(t)
1

³
y

(t¡1)
1 + y

(t¡1)
2

´
= b10 + b11y

(t¡1)
2 + b20 + b21y

(t)
1 ¡

c
b
(t)
1

³
y

(t¡1)
1 + y

(t¡1)
2

´
= b10 + b20 +

μ
b21 ¡

c
b
(t)
1

¶
y

(t¡1)
1 +

μ
b11 ¡

c
b
(t)
1

¶
y

(t¡1)
2

6 

 
                        □ 
 
 

Proof of Theorem 2 
The proof is by induction. First, when t = 0, the two regression models are initialized as: 
 

 
y

(0)
1 = b10 + b11x

(0)
11

y
(0)
2 = b20 + b21x

(0)
21
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The sum of them gives the total response: 
 

 S(0) = b10 + b20 + b11x
(0)
11 + b21x

(0)
21  

 
Normalizing both responses yields: 
 

 
y

(0)
1 =

³
b10 + b11x

(0)
11

´
=S0

y
(0)
2 =

³
b20 + b21x

(0)
21

´
=S0

 

 
At time t = 1, the two agents interact and exchange their beliefs by setting x(1)

11 = y0
2 and x(1)

21 = y0
1, 

resulting in: 
 

 
y

(1)
1 = b10 + b11y

(0)
2

y
(1)
2 = b20 + b21y

(0)
1

 

 
Replacing y(0)

1  and y(0)
2  by their expressions gives: 

 

 
y

(1)
1 =

³
b10S0 + b11b20 + b11b21x

(0)
21

´
=S0

y
(1)
2 =

³
b20S0 + b21b10 + b21b11x

(0)
11

´
=S0

 

 
Their sum is 
 

 S1 =
h
(b10 + b20) S0 + (b10b21 + b20b11) + b11b21

³
x

(0)
11 + x

(0)
21

´i 1

S0

 

 

Once again, normalizing y(1)
1  and y(1)

2  gives: 
 

 

y
(1)
1 =

³
b10S0 + b11b20 + b11b21x

(0)
21

´ 1

S0S1

y
(1)
2 =

³
b20S0 + b21b10 + b21b11x

(0)
11

´ 1

S0S1

 

 
Repeating the whole procedure for t = 2 yields: 
 

 

S2 =[(b10 + b20)S0S1 + (b10b21 + b20b11)S0 + b11b21 (b10 + b20)+

b11b21

³
b11x

(0)
11 + b21x

(0)
21

´i 1

S0S1

 

 

y
(2)
1 =

³
b10S0S1 + b11b20S0 + b10b11b21 + b2

11b21x
(0)
11

´ 1

S0S1S2

y
(2)
2 =

³
b20S0S1 + b21b10S0 + b11b20b21 + b2

21b11x
(0)
21

´ 1

S0S1S2
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All S1, S2, y(1)
1 , y(2)

1 , y(1)
2 , and y(2)

2 , satisfy Eqs. (7), (8), and (9). Now, suppose when t = t1, we have 
 

 St1 =

b
t1¡1

2
c+1X

j=0

®
(t1)

j   

 y
(t1)
1 =

b
t1¡1

2
c+1X

j=0

¯
(t1)
1j   

 y
(t1)
2 =

b
t1¡1

2
c+1X

j=0

¯
(t1)
2j   

 
where ®(t1)

j , ¯(t1)
1j , and ¯(t1)

2j  follow Eqs. (7), (8), and (9), respectively, that is: 
 

®
(t1)

j =

8>><>>:
b
j
11b

j
21

Qt1¡2j¡2

l=0 Sl [(b10 + b20)St1¡2j¡1 + (b10b21 + b20b11)] ; j = 0; 1; : : : ; b t1¡1
2
c

b
j
11b

j
21

³
x

(0)
11 + x

(0)
21

´
; j = b t1¡1

2
c+ 1; when t1 is odd

b
j
11b

j
21

h³
b10 + b20 + b11x

(0)
11 + b21x

(0)
21

´i
; j = b t1¡1

2
c+ 1; when t1 is even

 

 

 ̄
(t1)
1j =

8>><>>:
b
j
11b

j
21

Qt1¡2j¡2

l=0 Sl (b10St1¡2j¡1 + b20b11) ; j = 0; 1; : : : ; b t1¡1
2
c

b
j
11b

j
21x

(0)
21 ; j = b t1¡1

2
c+ 1; when t1 is odd

b
j
11b

j
21

³
b10 + b11x

(0)
11

´
; j = b t1¡1

2
c+ 1; when t1 is even

 

 

 ̄
(t1)
2j =

8>><>>:
b
j
11b

j
21

Qt1¡2j¡2

l=0 Sl (b20St1¡2j¡1 + b10b21) ; j = 0; 1; : : : ; b t1¡1
2
c

b
j
11b

j
21x

(0)
11 ; j = b t1¡1

2
c+ 1; when t1 is odd

b
j
11b

j
21

³
b20 + b21x

(0)
21

´
; j = b t1¡1

2
c+ 1; when t1 is even

 

 

When t = t1 + 1  and suppose t1 is odd, plug y(t1)
1  and y(t1)

2  into y(t1+1)
1 = b10 + b11x

(t1+1)
1  and 

y
(t1+1)
2 = b20 + b21x

(t1+1)
2  by replacing respectively x(t1+1)

1  by y(t1)
2  and x(t1+1)

2  by y(t1)
1 , giving:  
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y
(t1+1)
1 = b10 + b11

24b
t1¡1

2
cX

j=0

b
j
11b

j
21

t1¡2j¡2Y
l=0

Sl (b20St1¡2j¡1 + b10b21) + b
j
11b

j
21x

(0)
11

35 1Qt1
l=0 Sl

=

24b10

t1Y
l=0

Sl +

b
t1¡1

2
cX

j=0

b
j
11b

j
21

t1¡2j¡2Y
l=0

Sl (b11b20St1¡2j¡1 + b10b11b21) + b
j
11b

j
21b11x

(0)
11

35 1Qt1
l=0 Sl

=

"
b10

t1Y
l=0

Sl + b11b20

t1¡1Y
l=0

Sl + b10b11b21

t1¡2Y
l=0

Sl : : : + b
b

t1¡1

2
c

11 b
b

t1¡1

2
c

21 b20b11S0

+b
b

t1¡1

2
c

11 b
b

t1¡1

2
c

21 b10b11b21 + b
b

t1¡1

2
c+1

11 b
b

t1¡1

2
c+1

21 b11x
(0)
11

¸
1Qt1

l=0 Sl

=

24b
t1¡1

2
cX

j=0

b
j
11b

j
21

t1¡2j¡1Y
l=0

Sl (b10St1¡2j + b20b11) + b
b

t1¡1

2
c+1

11 b
b

t1¡1

2
c+1

21

³
b10 + b11x

(0)
11

´35 1Qt1
l=0 Sl

 

Finally, normalizing y(t1+1)
1  by y(t1+1)

1 =St1+1 and noting that b t1¡1
2
c = b t1

2
c when t1 is odd, yields: 

 

 y
(t1+1)
1 =

b
t1+1¡1

2
c+1X

j=0

¯
(t1+1)
1j  

where  
 

 ¯
(t1+1)

1j =

(
b
j
11b

j
21

Qt1¡2j¡1

l=0 Sl (b10St1¡2j + b20b11) ; j = 0; 1; : : : ; b t1
2
c

b
j
11b

j
21 (b10 + b11x11) ; j = bt1

2
c+ 1

 

 
Similarly, when t1 is even, the above derivation can be repeated to show the remaining case of Eq.(8). 

Applying the same procedure, one can also prove the cases for y(t1+1)
2  and St1+1. This completes the 

proof.                         □ 
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