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ABSTRACT 

The Discrete Event System Specification (DEVS) formalism has become an engine for advances in 

modeling and simulation technology. Many extensions of the DEVS formalism have been developed 

across the years in order to solve different types of situations. However, when the acceptance of input 

events and the generation of output events are related to model capabilities, the current formalisms come 

up with complex modeling solutions. This paper presents a new simulation formalism called Routed 

DEVS (RDEVS) in which routing information is used to manage directed events. The behavior supported 

by the new formalism is useful to create simulation models of web application architectures. However, it 

could also be applied to other contexts. The RDEVS formalism is based on DEVS and is closure under 

coupling (i.e. models can be built hierarchically). The formal specification of RDEVS formalism and a 

briefly description of its framework implementation are presented in this work. 

1 INTRODUCTION 

The Discrete Event System Specification (DEVS) is a modeling formalism based on systems theory that 

provides a general methodology for hierarchical construction of reusable models in a modular way. Since 

its introduction in late 70s (Zeigler 1976), the formalism has been used to simulate several systems related 

with multiple domains, including mobile applications (Kim et al. 2016), social networks (Bouanan 2015), 

supply chain management (Godding and Sarjoughian 2003; Gholami et al. 2014), and software 

engineering (Bogado, Gonnet, and Leone 2014; Risco-Martín et al. 2016; Blas, Gonnet, and Leone 2017). 

 The core of DEVS includes a modeling and simulation (M&S) framework structured in three main 

components: model, simulator and experimental frame (Zeigler, Praehofer, and Kim 2000). The model 

describes the system specification, structure, and behavior. The simulator refers to the computational 

system that executes the instructions detailed in the model. The experimental frame represents the 

conditions under which the system is observed, building the experimentation and validation context to be 

used on the model. Each component is specified as an individual element in order to maintain its 

independence. Keeping independency between components provides multiple benefits to the framework, 

such as: the same model can be executed by different simulators, or several experiments can be changed 

to study different situations (Bogado, Gonnet, and Leone 2014). Given that components need to interact 

with each other in order to accomplish their functions, the framework include a set of relationships that 

allow to define these interactions. These relations include the modeling relation and the simulation 

relation. While the modeling relation determines when a model can be said to be a valid representation of 

a source system within an experimental frame, the simulation relation specifies what constitutes a correct 

simulation of a model by a simulator (Wainer and Mosterman 2010). 
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 Over the years, DEVS has finding an increasing acceptance in the model-based simulation research 

community becoming one of the preferred paradigms to conduct modeling and simulation enquiries 

(Wainer and Mosterman 2010). Following the approach proposed in the M&S framework, new variants, 

extensions and abstractions have been developed using the core of concepts defined by the original 

formalism. Several authors have improved the formalism capabilities in response to different situations, 

giving useful solutions to a wide range of simulation problems. Some of these solutions include Cell-

DEVS (Wainer 2004), Dynamic Structure DEVS (Barros 1995), Fuzzy-DEVS (Kwon et al. 1996), Min-

Max-DEVS (Hamri, Giambiasi, and Frydman 2006), Parallel DEVS (Chow and Zeigler 1994), and 

Vectorial DEVS (Bergero and Kofman 2014). Moreover, the separation of concerns in the 

model/simulator components included in the M&S framework allowed researchers to develop alternative 

simulations algorithms in order to complement the existent solutions (Kim, Kim, and Park 1998; Muzy 

and Nutaro 2005; Shang and Wainer 2006; Liu 2010; Liu and Wainer 2010). So, it is evident that the 

DEVS formalism grows along with the evolution of the problems treated with discrete event simulation 

techniques. As problems complexity increase, new mechanisms are required to deal with them. 

 Cloud computing (CC) has recently emerged as a new paradigm for hosting and delivering services 

over the internet (Zhang, Cheng, and Boutaba 2010). Conceived as a new discipline of software 

engineering, CC presents a new set of problems that must be solved using new or improved techniques. 

That is the case of web applications (WA). Actually, the main research topics related to WA involve 

different areas, such as: requirements elicitation (Valderas and Pelechano 2011, Breaux and Rao 2013), 

architectural evaluation (Kossmann, Kraska, and Loesing 2010; Wallis, Henskens, and Hannaford 2010) 

and testing (Artzi et al. 2010; Nguyen, Kästner, and Nguyen 2014; Li, Andreasen, and Ghosh 2014). In 

this context, this paper proposes a DEVS adaptation called Routed DEVS (RDEVS) designed to support 

the simulation of WA components in order to study its behaviors. This new formalism defines a set of 

models that use routing information to identify the events source and destinations. According to this 

information, models allow to determine the acceptance of input events before executing their instructions. 

Also, models are capable to send output events to a specific group of receptors or the same event to 

different receptors according to its actual state. Although the proposal is centered on WA, the RDEVS 

formalism can be also applied to similar problems from other contexts (e.g. mobile applications and 

systems-of-systems). 

 The remainder of this paper is organized as follows. Section II describes the CC environment, 

highlighting the WA context and the problems detected when WA community requires discrete event 

simulation models. Section III presents the RDEVS formalism including the models formal specifications. 

Section IV proves the closure under coupling of the RDEVS formalism in order to guarantee the 

hierarchical composition of the models. Section V introduce the software framework developed to support 

the RDEVS formalism. Finally, Section VI is devoted to conclusions and future work. 

2 RELATED WORK 

CC is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be 

rapidly provisioned and released with minimal management effort or service provider interaction (Mell 

and Grance 2011). Usually, CC architectures are designed using the layered architecture pattern. Blas et 

al. (2016a) have proposed a five layers architecture (adapted from literature) in which end users interact 

with WA located at the application layer. This layer is at the top of the proposed architecture and allows 

consumers access to applications installed on the data-centers of a cloud provider. Then, WA 

architectures should be deployed on this layer.  

 The software architecture design can be considered the earliest design specification of any software 

product. Since this design is composed of a set of components and its connections, it can be used as a 

vehicle to predict and estimate the final behavior of a software product (Roldán, Gonnet, and Leone 2013; 

Li, Liang, and Avgeriou 2013; Bogado, Gonnet, and Leone 2014). Applying this approach at CC level, an 
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integrated approach to analyze the behavior of WA can be built by combining architectural designs and 

simulation techniques. If the set of available elements to specify a WA architecture is defined (e.g. using a 

metamodel), a simulation model can be build applying a systematic transformation from each 

architectural component into a simulation model. Then, designers could evaluate different WA 

architectures over the same infrastructure before moving to the next step of the development process. 

Also, they could analyze the impact of architectural changes over the final product quality and make 

recommendations based on this evaluation. Given that WA systems are discrete event systems, the DEVS 

formalism can be used to define such simulation models. Then, WA architectures can be studied using 

discrete event simulation models. A full description of this approach was presented in a previous work 

(Blas, Gonnet, and Leone 2016b). 

 A quick analysis of the DEVS simulation models proposed in (Blas, Gonnet, and Leone 2016b),  

reflects immediately the complexity of their structure. Bass et al. (2012) defines software architecture as 

the structure, or structures, of the system, which comprise software elements, the externally visible 

properties of those elements, and the relationships among them. According to this definition, software 

architectures illustrates a set of components linked by connections. These connections are based on the 

software elements relationships required to solve all possible requests. Then, connections are derived 

from the components interaction that have place when software needs to solve a specific request. So, the 

connections specification is defined at the architectural level but its definition is attached to the request 

types involved in the software. When the software architecture is used as unique source of the software 

specification to build a simulation model, the final simulation model reflects all connections without 

knowing which components are required to solve a specific request type. Then, the simulation models 

instantiated during the transformation process must manage the complexity of the requests flows. This is 

the approach used by Blas et. al (2016b). However, although this is a good approach, is not scalable. 

When the number of architectural components grow, the configuration of the simulation models involved 

in the transformation becomes a problem since the designer must know the flows of the requests. Clearly 

a new mechanism, that allows to manage this type of behavior inside the models without increasing the 

complexity of the structure, is required. 

 To this purpose, the following sections introduce an adaptation of DEVS formalism called Routed 

DEVS (RDEVS) in which the models are capable to manage the flow of events using their state 

information. The core of the RDEVS formalism is to abstract the events flow in order to simplify the 

simulation models. For example, in the WA context (if input events represent different end-user requests 

that navigate inside the architectural components) the RDEVS architectural model will manage the flow 

of each request type using the set of connections specified at architectural level. The RDEVS internal 

models will reflect the behavior of the architectural components that can decide to accept/deny requests 

using routing information. Then, by using the RDEVS formalism, simulation models will have the 

knowledge to determine the requests treatment. Since RDEVS is an adaptation of DEVS formalism, the 

new approach can use DEVS simulators to execute RDEVS models. 

3 ROUTED DEVS FORMALISM 

The Routed Discrete Event System Specification (RDEVS) formalism is an extension of the DEVS 

formalism based on the premise that a simulation model must process only the set of events that comes 

from authorized senders and have been sent specifically to it. To guarantee this premise, the formalism 

requires that each simulation model has an unique identifier that defines its existence as part of the 

routing process. A simulation model will accept input events if and only if: i) the sender identifier is of an 

authorized model; ii) the model identifier is included in the set of possible receptors of the event. Then, all 

events of RDEVS include the information required to identify its sender and all possible receptors. 

 The RDEVS formalism defines three types of models: essential, routing and network. Each model 

represents an abstraction level used to define different elements required as part of the routing process 

definition. 
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3.1 RDEVS Essential Model 

Essential model specifies the behavioral description of a simulation model that represents a component 

involved in the routing process. Formally, essential models are defined in the RDEVS formalism, as an 

atomic model of the DEVS formalism, by the structure 

 

M = < X, S, Y, δint, δext, λ, τ > 
 

where 

 X ≡ set of input events, 

 S ≡ set of sequential states, 

 Y ≡ set of output events, 

 δint: S → S ≡ internal transition function, 

 δext: Q  X → S ≡ external transition function, where  

  Q = { (s,e) | s Є S, 0 ≤ e ≤ τ(s) } ≡ total state set, 

  e ≡ time elapsed since last transition, 

 λ: S → Y ∪ ø ≡ output function, 

τ: S → Ro,∞
+  ≡ time advance function. 

3.2 RDEVS Routing Model 

The routing model defines the basic simulation model where the routing process takes place. In order to 

accept/deny input events and redirect output events, the model includes a set of elements that depict the 

routing information. It uses the behavioral specification of an essential model in order to define its own 

specification over the routing process. That is, the routing model encapsulates the description of an 

essential model with the routing specification required to determine the occurrence of the events. Multiple 

routing models can use the same essential model definition with different routing information in order to 

create different routing processes. 

 Formally, routing models are defined by the structure 

 

R = < 𝜔, E, M > 
 

where 

 ω = ( u, W, δr ) ≡ routing information, where 

  u Є N0 ≡ model identifier,  

W = { w1, w2,…, wp | w1, w2,…, wp Є N0 } ≡ set of source model identifiers that represents the 

allowed routing models of R (from which can receive events), 

  δr: SM → T ≡ routing function used to direct output events, where SM is the state of M and  

   T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } ≡ set of destination model identifiers, 

 E = < XE, SE, YE, δint,E, δext,E, λE, τE > ≡ essential model used by R, 

 M = <XM, SM, YM, δint,M, δext,M, λM, τM> ≡ DEVS atomic model that specifies the routing process, where 

XM = { ( x, h, T ) | x Є XE, h Є N0, T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ set of identified input 

events, with 

   x ≡ input event defined in E, 

   h ≡ sender model identifier, 

   T ≡ set of target model identifiers, 

  SM = SE ≡ set of sequential states, 

YM = { ( y, h, T ) | y Є YE, h Є N0, T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ set of identified output 

events, with 

   y ≡ output event generated by E, 
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   h ≡ sender model identifier (that is, the u value), 

   T ≡ set of target model identifiers, 

  δint,M: SM → SM = δint,E ≡ internal transition function, 

δext,M: QM  XM → SM ≡ external transition function that only accepts events that have been sent to 

R from some allowed model (when u belongs to the set of target models T and the source 

identifier h is included in W) or from an external source (when u=0 and W=ø), defined as 

 

δext,M(s,e,x') = {

δext,E(s,e_c+e,x)                                             if (u Є T ˄ h Є W) ˅ (u = 0 ˄ W = ø)

                                    with x'=( x ,h ,T ) and setting e_c=0 after the execution 

s                                                                                                                     otherwise 

                            updating the elapsed time accumulated value as e_c=e_c+e

 

 

  with  

   QM = { (s,e) | s Є SM, 0 ≤ e ≤ τM(s) } ≡ total state set, 

   e ≡ time elapsed since last transition, 

  λM: SM → YM ∪ ø ≡ output function that generates identified events, defined as 

 

λM(s) = ( λE(s), u, δr(s) ) 
 

  τM: SM → Ro,∞
+  ≡ time advance function. 

3.3 RDEVS Network Model 

Network model describes a complex simulation model with an specific objective that requires 

send/receive identified events over a routing process. Its definition includes a set of routing models and, 

indirectly, the couplings between them in order to identify its influences. It also requires two translation 

functions in order to match the events from other models with the identified events used in the model. 

Then, a RDEVS network model can interact with (one or more) RDEVS network models or, simply, with 

DEVS models, according the purpose of the simulation. 

 Formally, network models are defined by the structure 

 

N = < X, Y, D, { Rd }, { Id }, { Zi,d }, Tin, Tout, Select > 
 

where 

 X ≡ set of input events, 

 Y ≡ set of output events, 

D ≡ set of model identifiers (routing model references), where d Є N0, ∀d Є D, 

For each d Є D, Rd is a routing model, defined as 

 

Rd=< ωd, Ed, Md > 
 

 where ud = d, 

For each d Є D ∪ { N }, Id is the set of influences over d where d ∉ Id, 
For each i Є Id, Zi,d is a translate function between events of i and events of d, where 

 Zi,d = Tin        if   i = N, 

 Zi,d = Tout      if   d = N, 

 Zi,d: YM,i → XM,d  if   i ≠ N ˄ d ≠ N, 

Tin: X → { ( x, h, T ) | x Є X, h Є N0, T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ input translation function 

that takes an input event and returns an identified input event, where 
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 x ≡ input event defined in N, 

 h = 0 ≡ sender model identifier where zero indicates that the event came from an external source, 

 T ≡ set of target model identifiers that must process the input event, 

Tout: { ( y, h, T ) | y Є Y, h Є N0, T = { ( t1, t2,…, tk ) | t1, t2,…, tk Є N0 } } → Y ≡ output translation 

function that takes an identified output event and returns an output event, where 

 y ≡ output event allowed in N, 

 h ≡ sender model identifier, 

T = ø ≡ set of target model identifiers (empty set indicates events sent to an external destination),  

Select: 2
D
 → D ≡ function for tie-breaking between simultaneous internal transitions. 

4 ROUTED DEVS CLOSURE UNDER COUPLING 

According to Zeigler (2000), a system formalism is closed under coupling if the resultant of any network 

of systems specified in the formalism is itself a system in the formalism. The proof of this property is a 

very important key in a system formalism because it ensures the hierarchical composition of the models. 

That is, it allows to build models recursively with any arbitrary levels of hierarchy in a modular manner. 

 To prove that RDEVS formalism is closed under coupling and, therefore, models can be built in 

hierarchical manner, is necessary to obtain: 

 

 The equivalent RDEVS routing model from the RDEVS network model (Proof #1). 

 The equivalent RDEVS essential model from the RDEVS routing model (Proof #2). 

 

 If both models can be obtained, the hierarchical composition will be allowed because a network 

model (treated as its behaviorally equivalent to a routing model) will be able to become component of 

larger network models. The same will happen with the routing model and its essential model, since the 

routing model (treated as its behaviorally equivalent to the essential model) will be able to be use as part 

of larger routing models. Then, by transitivity, a dynamic system specified by a network model will be 

behaviorally equivalent to an essential model and will be able to be use as part of larger routing models. 

 Sections 4.1 and 4.2 detail the equivalences required to ensure RDEVS closure under coupling. 

4.1 Proof #1: RDEVS Network Model to RDEVS Routing Model 

The network model described by the structure 

 

N = < X, Y, D, { Rd }, { Id }, { Zi,d }, Tin, Tout, Select > 
 

where each d Є D references a routing model Rd defined as 

 

Rd= < ωd, Ed, Md > 
 

defines an equivalent routing model structured as 

 

R = < 𝜔, E, M > 
 

in which: 

 

 ω = ( u, W, δr ) = ( 0, ø, δr ) | δr: SM → T ˄ T = ø ≡ routing information that represents R as 

equivalent model of N. Zero is used to identify the new model. Since N uses the translation 

functions to determine events sources and destinations, W and T are specified as an empty set. 

Following this configuration, the R model acts as an external source to other models.  
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 E = < XE, SE, YE, δint,E, δext,E, λE, τE > ≡ essential model used by R in which: 

o XE = X ≡ set of input events of E defined as the set of input events of N. Given that R and 

N are equivalent and R is composed by E, the inputs must be the same. 

o SE = iЄDQi | Qi = { ( si, ei ) | si Є SM,i, 0 ≤ ei ≤ τM,i(si), ∀i Є D ≡ set of sequential states of E 

specified as the product of the Qi sets defined for each model that compose N. Each Qi is 

defined as an ordered pair that contains the state and the elapsed time of the Ri model. 

o YE = Y ≡ set of output events of E defined as the set of output events of N. As in the input 

events, the outputs must be the same. 

o δint,E(s) = s’ ≡ internal transition function of E that transforms different parts of the state, 

where the state of the E model is defined following the SE definition as s = (…,( sj, ej ),…) 

and s’ = (…,( s’j, e’j ),…). Given that the state of E is defined using the set of models 

included in N, an internal transition of E may involve simultaneous internal transitions of 

multiple components. Then, considering that the imminent components are collected 

according to the time value σ in a set structured as 

 

   IMM(s) = { i Є D | σi = τE,i(s) } 

   

one model i
*
 must be selected in order to execute its internal transition. This selection can 

be done using the tie-breaking function of N. Then i
*
 = Select(IMM(s)) and, therefore, the 

imminent internal transition to be executed belongs to the Ri* model. However, the 

execution this transition will bring the execution of all external transitions of the 

components influenced by Ri*. So, the state transformation is specified as 

 

 s'j= {

δint.M,j(sj)                                                                                  if j=i*

δext,M,j(sj,ej+τE(s),xj)              if i*∈ Ij ˄ xj≠ø with xj=Zi*,j(λM,i*(si*))

sj                                                                                          otherwise

 

 

 while the elapsed time transformation is defined as 

 

e'j= {
0                   if ( j=i* ) ˅ ( i*∈Ij ˄ xj≠ø )

ej+ τE(s)                                 otherwise.
 

 

o δext,E(s, e, x) = s’ ≡ external transition function of E that modifies the set of state pairs that 

belongs to Ri models linked to N inputs, where the state of E is defined following the SE 

specification as s = (…,(si, ei),…) and s’ = (…,(s’i, e’i),…). Considering that components 

are collected in a set C = { i Є D | N Є Ii ˄ xi ≠ ø }, then 

 

si
*= δext,M,i(si,ei+e,xi)                     with xi= ZN,i(x), ∀ i ∈ C  

 

so the state transformation is defined as 

 

(si
' ,ei

') = {
(si

*,0)         if ( N ∈ Ii ˄ xi ≠ ø )
(sd, ed+e)                 otherwise.

 

 

o λE(s): SE → YE ∪ ø ≡ output function of E that generates an output event if and only if the 

model that is going to execute its internal transition (that is, i
*
 model) is linked the 

outputs of N, specified as 
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 λE(s) = {
Zi*,N (λM,i*(si*))       if N∈Ii*

ø                           otherwise.
  

 

o τE: SE → Ro,∞
+  ≡ time advance function of E that select the most imminent event time of 

all the components included in N (i.e. finding the smallest remaining time σ until internal 

transition of all the simulation models included in N). This function is defined as τE(s) = 

min { σi = σM,i(si) – ei | i Є D }. 

 M = < XM, SM, YM, δint,M, δext,M, λM, τM > ≡ DEVS atomic model that specifies the routing process 

of R. M definition is depicted at routing model level, specifying the routing process using 

components of E as M elements. Then, the equivalence transformation of N into R, it cannot 

change this specification. M must follow its definition using the components of E defined above. 

4.2 Proof #2: RDEVS Routing Model to RDEVS Essential Model 

The routing model described by the structure 

 

R = < ωR, ER, MR > 
 

with MR = < XM,R, SM,R, YM,R, δint,M,R, δext,M,R, λM,R, τM,R >, defines an equivalent essential model structured as 

 

M = <X, S, Y, δint, δext, λ, τ> 
 

in which X = XM,R, S = SM,R, Y = YM,R, δint is derived from δint,M,R definition, δext is derived from δext.M,R, λ = 

λM,R and τ = τM,R.  

 According to this equivalence proof, each component of the MR model that composes a RDEVS 

routing model can be directly mapped to a new model component that defines a RDEVS essential model. 

This equivalence is valid because both models (M and MR) are based on the structure of a DEVS atomic 

model. Since the specification of MR uses the content of ωR and ER, all the information required to 

execute the routing process will be also included in M. 

5 ROUTED DEVS SOFTWARE FRAMEWORK 

A software framework implementation of the RDEVS formalism was developed in order to provide a 

modeling and simulation environment to fully support the implementation of routing structures over 

discrete event systems. Given that RDEVS is based on the DEVS formalism, RDEVS models can be 

executed using the DEVS simulation algorithm and experimental frame. Then, RDEVS implementation 

can extend existent implementations of DEVS formalism. 

 In this context, the proposal was to develop the RDEVS software framework (RDEVS_SF) as an 

extension of DEVSJAVA (ACIMS 2005). The set of Java classes implemented involve several concepts 

related to RDEVS formalism, such as: 

 

 EssentialModel.java, NetworkModel.java and RoutingModel.java to define the types of models 

detailed as part of RDEVS. 

 RoutingFunction.java and RoutingFunctionElement.java to define the δr required as part of the 

routing information in RDEVS routing model. 

 IdentifiedEvent.java to define the structure of all the events manipulated by the simulator. 

 TranslationFunction.java, InputTranslationFunction.java and OutputTranslationFunction.java to 

define the processes required in RDEVS network model to adjust external events. 
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 In order to use the DEVS simulation algorithm and the graphical tools available, some of the classes 

defined in RDEVS_SF were hierarchically related to DEVSJAVA classes. This dependency allows to use 

DEVS Suite (ACIMS 2009) as graphical environment for RDEVS models defined in RDEVS_SF. Figure 

1 shows a screenshot of a basic example implemented in RDEVS_SF where: i) project explorer shows the 

set of classes implemented as part of the designed framework; ii) DEVS Suite is used to depict models 

structures. 

 

 

Figure 1. Simulation model example implemented in RDEVS_SF. 

6 CONCLUSIONS AND FUTURE WORK 

The DEVS formalism gives several benefits when is used to develop simulation models related to 

software engineering. However, when architectural designs must be mapped into simulation models, the 

complexity of managing the events flow becomes a problem. In this paper, an adaptation of DEVS was 

described in order to provide a scalable solution to this problem. The RDEVS formalization and its 

closure under coupling are the main properties of the formalism presented in this work. Also, a brief 

description of the software framework implemented to support the formalism proposed has been included. 

 Although RDEVS was developed to solve a specific modeling problem detected when web 

applications architectures are mapped to simulation models, it can be applied to other contexts. Similar 

problems are exhibit at mobile applications, hardware architectures, communication protocols and 

systems-of-systems. When the events flow is independent of the components behavior, the designer can 

use RDEVS to support the modeling task with a proper separation of concerns (that is, the events flow 

manage and the components behavior). While essential models represent the behavior of the components, 

the routing and network models set up the context in which the routing process is allowed. Since an 

essential model can be used as part of different routing models, an unique behavior specification can be 

replicated in multiple instances with different destinations. Although this problem can be solved using the 

DEVS formalism, the final models will be much complex since each model will have to manage the 

events flow individually. 
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 Since RDEVS essential models are equivalent to DEVS atomic models, considering the closure under 

coupling of RDEVS formalism, is possible to combine RDEVS models with DEVS models. Then, more 

powerful simulation models can be built by combining both formalisms. Additionally, existent DEVS 

models can be used as part of RDEVS models. The same approach can be applied to other DEVS 

extensions that can be reduced to DEVS atomic models.  

 Given the independence of components identified as part of the M&S framework proposed in DEVS, 

the RDEVS models can be executed using DEVS simulation algorithm. However, the design of an 

adapted algorithm that takes advantage of the routing properties is proposed as future work. 
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