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ABSTRACT 

Statistical efficiency has been a focus of research since the inception of discrete-event simulation modeling 

and analysis, with origins perhaps twenty years before the first Winter Simulation Conference. We review 

important work in the design of simulation experiments, variance reduction through dependence structures, 

and efficient rare-event simulation. The focus is on the early developments, although some recent 

innovations also receive mention. 

1 INTRODUCTION AND ORIGINS 

This paper is motivated by the 1969 Winter Simulation Conference paper “Statistical Methods for 

Improving Simulation Efficiency” by Donald P. Gaver, Jr. (Gaver 1969) and the paper “Variance Reduction 

Techniques for Digital Simulation” by James R. Wilson (Wilson 1984). These early papers provide a 

framework for methods of statistical efficiency applied in the discrete-event simulation context. Both 

categorize the set of methods into a few groups. We identify these groups as methods for design of 

simulation experiments (sample size, screening, efficient experiment designs); variance reduction 

/dependency induction (correlation induction via common and antithetic random variates, and control 

variables); and rare events (stratified and importance sampling, Russian Roulette, splitting). In many cases 

we cite Winter Simulation Conference papers: often the first work appeared there. Each of these areas is 

discussed in the sections below. First we present more detail on the historical context, which predates the 

Conference by as much as twenty years. 

 The origins of statistical efficiency in simulation depended on the convergence of three activities in the 

late 1940s and early 1950s: the drive to understand atomic fusion and fission via Monte Carlo models, the 

advent of digital computers, and recent developments in applied probability and statistics, including rare-

event-probability estimation, queueing models, Monte Carlo methods, time series analysis, and the design 

of experiments. Monte Carlo studies to understand fission used analog computers in the 1940s, and 

continued with the first digital computer, ENIAC. The ENIAC architecture had significant problems (no 

memory storage, programming by patch cords), which led John von Neumann to propose a modern 

architecture for a digital computer (EDVAC) in the 1940’s. After the conclusion of World War II, he 

returned to the Institute for Advanced Study in Princeton, where he oversaw a Princeton team, led by Col. 

Herman Goldstein, that produced the IAC Princeton Computer in collaboration with RCA Laboratories, 

also in Princeton. This computer was housed in the basement of the Institute for Advanced Study in 
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Princeton and was used for fusion simulations, freeway traffic modeling and evolutionary studies; see IAS 

Computer (1953). The von Neumann architecture was implemented in various forms at about the same time 

in other laboratories around the U.S. Nicholas Metropolis led a Los Alamos team to implement the 

architecture for fusion simulation studies as the Mathematical And Numerical Integrator And Calculator: 

MANIAC. 

 

 

Figure 1: John von Neumann and the MANIAC computer, 1952 (Princeton2017). 

Almost simultaneously to the digital computer development, there were advances in statistical 

efficiency for Monte Carlo methods by Herman Kahn 1948-52, published in Kahn and Harris (1949), Kahn 

(1950, 1954), and Kahn and Marshall (1953); and other work by Hammersley, Morton and Maulden 

(referenced in Harling 1958). Also, there were contemporaneous advances in time series analysis (Wiener 

1949; Jenkins 1954), control variates (Fieller and Hartley 1954) and response surface methodology (Box 

and Wilson 1951) that are cited in early simulation analysis papers such as Burdick and Naylor (1966) and 

Fishman and Kiviat (1967). 

RAND research contracts with the Air Force supported the early development of many methods of 

statistical efficiency. In an early RAND report, Kahn (1954) presents concepts of stratified and importance 

sampling, splitting, and control variates in a Monte Carlo setting. The RAND activity diffused to many 

other locations. Richard Conway spent time at RAND, working with Harry Markowitz, and later returning 

to Cornell to take courses in design of experiments, ranking and selection, decision theory and sequential 

methods from Jack Kiefer, Robert Bechhofer, Jacob Wolfowitz and Lionel Weiss. Given Conway’s 

influence on many in our field, including Bill Maxwell, Phil Kiviat, and Lee Schruben, he might be 

considered a key progenitor of methods for statistical efficiency in simulation. He participated in perhaps 

the first discrete-event-simulation symposium which focused primarily on applications, including inventory 

systems, bus terminals, airport waiting lines, shop scheduling, financial models (Conway’s presentation) 

and enterprise-wide systems modeling (Alberts 1957). He along with his students published an early 

discussion of issues in simulation, including common random numbers, response surface methodology, and 

batch means (Conway, Johnson, and Maxwell 1959). In a later publication (Conway 1963), he reviews 

statistical efficiency issues in initialization of runs for system comparisons (common initial conditions, 

common sequences of events) and for spaced batch means (recommending 10-20 batches) for single-run 

variance estimation of continuous-time statistics. Autocorrelation for discrete-time statistics is 

demonstrated. 

 George Fishman was another early developer of methods of statistical efficiency for simulation, and 

his work has been influential for many of the field’s early researchers, including Bob Sargent, Lee 

Schruben, Jim Wilson, and others (“Computer Simulation Archive Home | Computer Simulation Archive” 

2017).  George Fishman joined Philip Kiviat at RAND, and worked there in 1964-65 on the development 

of efficient methods for simulation output analysis, at the request of Murray Geisler, chair of the Logistics 

Department. Kiviat was working with Markowitz on the development of the SIMSCRIPT simulation 
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language. Fishman was influenced by his economics training at MIT and Stanford, while Kiviat was 

influenced by Bechhofer at Cornell and Markowitz.  Much of this early work on statistical analysis of 

simulation models is compiled in Fishman’s book Concepts and Methods in Discrete Event Digital 

Simulation (Fishman 1973). 

Hammersley and Handscomb (1964) summarize many variance reduction methods, including antithetic 

and control variates, stratified, sampling, and more. By the first WSC, the “Conference on Applications of 

Simulation using the General Purpose Simulation System (GPSS), in 1967, the area of statistical efficiency 

in simulation had more than ten years of development. Nelson and Schmeiser’s decomposition approach to 

variance reduction presents a unifying perspective at the early period of variance reduction research. 

Nelson’s 1985 Winter Simulation Conference tutorial references Purdue technical reports containing the 

research findings (Nelson and Schmeiser 1985; Nelson 1985). In another important unifying work, Peter 

Glynn and Ward Whitt provide a comprehensive theoretical characterization of efficiency as of twenty-five 

years ago, at the end of this early period of methodological development (Glynn and Whitt 1992). They 

define estimation efficiency of a mean output measure as 1/((output mean squared error)×(total simulation 

run length)). 

We now explore each of the focus areas in more detail: design of simulation experiments (Section 2), 

variance reduction/dependency induction (Section 3), and rare-event techniques (Section 4). We 

concentrate on the historical origins, but in some cases important contributions are relatively recent. We 

are only able to present a small window on the vast accomplishments of many researchers over many 

decades, and we apologize for omissions of key work that we either missed or lacked room to include. 

2 THE DESIGN OF SIMULATION EXPERIMENTS 

The importance of careful experiment design was identified in the earliest years of our field. An early paper 

by Donald Burdick and Thomas Naylor provides a framework for the design and analysis of simulation 

experiments (Burdick and Naylor 1966).  

1. Problem Formulation 

2. Data Collection and Processing 

3. Formulation of a Mathematical/Probability Model 

4. Estimating Model Parameters 

5. Evaluation of Model and Parameter Estimates 

6. Computer Program Specification, Coding and Verification 

7. Computer Model Validation 

8. Experimental Design 

9. Analysis of Simulation Data. 

Predating the first Winter Simulation Conference, this framework retains relevance today, and places the 

design of experiments in the context of the overall process for a simulation study. This section highlights 

historical contributions in three areas: sample-size selection for estimating effects, screening designs, and 

efficient multivariate designs. Designs for optimization are topics that are not included in this review. 

Experimental effort in discrete-event simulation differs from effort in physical experiments. The 

development of design-of-experiments techniques originated in an agricultural setting, where effort was 

usually proportional to the number of samples in the experiment, a product of the number of experimental 

conditions, and the number of replications. There was a fixed timeframe, a season, for experimentation. For 

simulation experiments, the experimental effort depends on the number of samples times the computational 

effort per sample in the single-processor case, and the number of processors times the average or maximum 

computational effort per processor in the multiple-processor case. Further, since the data are dynamic, it is 

possible to compute the interesting quantities using a single sample, if autocorrelation is properly taken into 

account. 

There has been much progress since Frank’s comment in the 1968 conference (Frank 1968): “More 

often than not, the analyst is more concerned with ‘debugging’ than analysis. When he does finally pass 

160



Barton, Nakayama, and Schruben 

 

through the mystical state of model validation, he performs further black magic by experimenting in a 

manner that would disgust any student of statistics.” Good early references for the design of simulation 

experiments are Fishman (1973) and Kleijnen (1974). 

2.1 Sample Size for Estimation 

We consider first the simple case of estimating a mean for an output measure of a simulation. Fishman and 

Kiviat (1965) use spectral methods to characterize the variance of a sample mean resulting from a single 

long run. The variance of the sample mean is a function of the spectral density at zero frequency. They 

compare sample sizes required for equivalent-precision estimates of mean queue length using a single long 

run vs. multiple replications with initialization-bias deletion. For the example studied, they found that the 

replication approach required up to 50% more computing effort. This work was extended to determine 

sample size requirements for confidence intervals of specified width in (Fishman 1967; Fishman and Kiviat 

1965, 1967; Fishman 1968a). Heidelberger and Welch (1981) use regression to estimate the spectral density 

at zero frequency more efficiently than Fishman and Kiviat's method. 

Hauser, Barish and Ehrenfeld (1966) examine sample size for single runs using autocorrelation 

estimates via a two-stage approach (requiring stopping and restarting the run). They also determine the 

required number of batches in a batch-means procedure using either a two-stage or a sequential approach. 

Fishman (1971) proposes a sample-size method based on an autoreressive moving average (ARMA) model 

for the output series. Some systems exhibit statistically independent behavior across regenerative periods, 

such as the periods between times when the system is empty and idle. Sample sizes for regenerative 

estimation are discussed in early papers by Kabak (1968) and Crane and Lemoine (1976). Fishman (1978) 

explores sample-size issues for batch means. A sequential batch-means procedure with provable properties 

was presented at the 1976 Winter Simulation Conference and is detailed in Law and Carson (1979). For 

statistically efficient estimation, Schmeiser (1982) shows that the number of batches should lie typically 

between 10-30. Nelson (1989) recommends 30-60 batches when used with one to five control variates 

(Nelson 1989). Sample sizes for batch means and overlapping batch means continues to be studied, with 

relatively recent results in (Song and Chih 2008; Tafazzoli et al. 2008; Tafazzoli, Steiger, and Wilson 2011). 

While computer simulation models admit advantageous strategies not possible with physical 

experiments, practical implementation of strategies have been incompatible with software capability, 

particularly in the early years. Frank, in the first Proceedings, notes the difficulty in stopping and restarting 

a GPSS model in mid-run (Frank 1968). Similar practical difficulties arise with estimation via the 

regenerative method. 

The work on statistical efficiency of estimates from one run or from multiple replications, and 

associated sample-size issues has been a focus of simulation research since Conway, Johnson and Maxwell 

(1959). While the variance of the sample mean for a single run can be greater or less than that for the same 

effort split into multiple replications, the mean squared error is generally less (Cheng 1976). The difference 

in efficiency between a single run and a small set (say 10) of replications with the same total effort is 

generally small, however (Whitt 1991). 

Before consideration of estimation, experiments are necessary for verification and validation of the 

simulation model. A comprehensive summary of research in design of verification and validation design 

appears in (Kleijnen and Sargent 2000). 

2.2 Sample Size for Comparing Two or More Systems 

Early sample size procedures for comparing systems were based on existing statistical methods. Conway, 

Johnson, and Maxwell (1959) discuss a sequential procedure for the following hypotheses formulation to 

compare the means 𝜇1 and 𝜇2 of two systems (Sobel and Wald 1949; Bechhofer 1955): 

H1: 𝜇2 − 𝜇1 ≥ 𝑎, 

H2: −𝑎 < 𝜇2 − 𝜇1 < 𝑎, 
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H3: 𝜇2 − 𝜇1 ≤ −𝑎
 

Fishman (1968b) presents one of the earliest studies particularly relevant for simulation 

experimentation. Since the sample size corresponds approximately to computing effort, and runs can be 

made sequentially, he identifies efficient two-stage methods for system comparisons that employ unequal 

run lengths for the systems, with or without common random numbers. The result is a reduction in 

computing effort of up to 45%. 

Statistically efficient methods for ranking and selection were suggested by Conway (1963), and 

reaffirmed by Burdick and Naylor (1966). Edward Dudewicz (1976) presents a sample-size rule for 

ranking-and-selection procedures to guarantee a probability of correct selection given a standard deviation 

of the output, the number of systems, and the threshold difference. Goldsman, Nelson, and Schmeiser 

(1991) address sample size determination both for selecting the best system and for multiple comparisons 

against the best. The paper was reprised in the 2007 Winter Simulation Conference as a Landmark Paper. 

2.3 Multivariable Experiment Design 

From the earliest years of investigation into efficient statistical methods, multivariable problems were of 

interest. Conway, Johnson, and Maxwell (1959) note: “Simulation is just a type of experimental 

investigation. … It will be indeed unfortunate if these new areas do not profit by the lessons and methods 

of older experimental sciences. … While in principle simulation can be used to investigate the effect of any 

factors, conditions, procedures and interactions of which the investigator can conceive, in practice this 

results in factorial experiments whose dimensions dwarf the most powerful computer and the most lavish 

budget, so that the experimental designs actually used are rather modest.” 

The earliest publications for multivariable simulation experiment designs drew directly from standard 

statistical methods. Jacoby and Harrison (1962) describe a large number of multivariable designs 

appropriate for simulation studies. These include fractional-factorial, nested and compacted hypercubes, 

random balance designs, Plackett-Burman and other orthogonal designs, split-plot designs, and sequential 

bifurcation designs. A. L. Frank suggests factorial and response surface designs in a paper published in the 

first Winter Simulation Conference proceedings (Frank 1968). Early work by Corynen (1975), Mihram 

(1972), Fishman (1973), and Kleijnen (1974) present mathematical formalisms for the design and conduct 

of multivariable simulation experiments, taking into account the special nature of experiments using 

computer models. Biles (1979) is an early comprehensive review of simulation experiment design that was 

presented at the 1979 Winter Simulation Conference. Important references for choosing sample size for 

multivariable experiments are (Kleijnen 1987; Nelson 1992); the first is Kleijnen’s text and the second is a 

Winter Simulation Conference paper. 

2.4 Screening 

The need for efficient screening designs in simulation was recognized well before the first Winter 

Simulation Conference. Jacoby and Harrison review fractional-factorial, random balance and sequential 

bifurcation experiment designs for settings where the number of simulation runs must be small relative to 

the number of input variables (Jacoby and Harrison 1962). Kleijnen (1975) suggests resolution III and IV 

designs as well as group-screening methods. Montgomery and Weatherby (1979) is a detailed description 

of fractional-factorial and supersaturated designs for screening that was presented at the 1979 Winter 

Simulation Conference. This work contains a bibliography of important early research in screening and in 

simulation experiment design more generally. 

While sequential bifurcation was identified early on as an important screening method and 

demonstrated by Jacoby and Harrison (1962), interest by the discrete-event community was relatively late. 

Bettonvil and Kleijnen (1997) present a slight variation of this method for deterministic simulation based 

on Bettonvil’s 1990 thesis. Russell Cheng (1997) extends their method to the stochastic setting. Hong Wan, 
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Bruce Ankenman and Barry Nelson modified the method to incorporate tests for significance and power, 

calling the modification controlled sequential bifurcation (Wan, Ankenman, and Nelson 2006). For the 

case when the signs of effects are not known, a two-phase approach beginning with a fractional factorial 

design (FF-CSB) can be effective. This was presented at the 2006 Winter Simulation Conference, with 

extended results in Sanchez, Wan, and Lucas (2009). Work on sequential bifurcation continues to the 

present. Bruce Ankenman, Russell Cheng and Susan Lewis recently developed an enhancement, the 

Anscombe Fully Sequential Bifurcation Method, that employs sequential stopping rules for the number of 

simulation replications needed at each step, for screening based on influence on the mean or on the variance 

of the output (Ankenman, Cheng, and Lewis 2015). The statistical efficiency of the method dominates 

earlier methods. 

Simultaneous sinusoidal variation of multiple input parameters, each at different frequencies, provides 

a way to do screening within one or two simulation runs. First presented at the 1981 Winter Simulation 

conference, Schruben and Cogliano cite that work in their 1987 CACM paper (Schruben and Cogliano 1981; 

1987). There has been continued refinement and extension of the method; see for example (Morrice and 

Schruben 1993; Morrice 1995; Sanchez, Moeeni, and Sanchez 2006). Schruben’s doctoral advisee Sheldon 

Jacobson and co-authors have extended the frequency domain strategy to designs for constructing response 

surface models (Jacobson 1989; Jacobson, Buss, and Schruben 1991). 

2.5 Efficient Experiment Designs for Response Models 

Early papers on multivariable simulation experiment design promoted designs from the statistical literature 

with known efficiency properties. These were typically full-factorial, fractional-factorial, or response 

surface designs. The potential strategy of blocking a factorial or response surface design based on common 

random numbers was recognized early. Conway, Johnson, and Maxwell (1959) note: “Since a sequence of 

random numbers can be reproduced, it is possible to compare alternatives using identical sequences. Such 

an experimental procedure could perhaps be considered the limiting case of the blocking concept commonly 

employed in experimental designs – blocks as homogenous as possible are selected to reduce the variability 

of the results.” They note the difficulty of analysis using common random numbers for comparison of more 

than two alternatives at a time. 

Schruben and Margolin (1978) were the first to develop an efficient experiment design strategy and 

analysis approach that specifically took advantages of the simulation setting. Much research ensued, 

including the discussion papers that immediately followed Schruben and Margolin’s paper. Subsequent 

works on efficient response surface designs with correlation induction include Nozari, Arnold, and Pegden 

(1987), Donohue, Houck, and Myers (1993), and Tew and Wilson (1992). 

Sequential designs such as those proposed by Donohue, Houck, and Myers (1993) provide efficiency 

improvement in multivariable designs. Much focus has been on simulation optimization, but there have 

been important developments for response surface designs used for characterization. Cheng and several 

coauthors propose an efficient design strategy when variance is heterogeneous across design points (Cheng 

and Kleijnen 1999; Cheng, Kleijnen, and Melas 2000; Lamb and Cheng 2002). Jack Kleijnen, Susan 

Sanchez, Thomas Lucas and Thomas Cioppa provide an overview of experiment design strategies in 

Kleijnen et al. (2005) that includes brief discussion of designs for non-traditional response models. Figure 

1 in that paper gives recommended designs for a comprehensive set of model scenarios. 

2.6 DOE for Non-traditional Models 

Experiment designs for general response models preceded the development of many of the models in use 

today. In the late 1980’s, Sacks, Welch, Mitchell, and Wynn presented a very flexible response surface 

model based on spatial correlation, with a Bayesian interpretation (Sacks et al. 1989; Currin et al. 1991; 

Mitchell and Morris 1992). The model is based on work by Krige (1951), and such response surface models 

are often called kriging models.  Latin hypercube designs were developed as a stratified sampling method 

for estimating the mean of a function of several random variables (see equation (1) below) in McKay, 
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Beckman, and Conover (1979), and Sacks et al. (1989) recommend their exploration for fitting spatial 

correlation models. In two Winter Simulation Conference papers, Barton provided an early overview of 

nontraditional models, including spatial correlation, generalized linear models, frequency domain and 

wavelet models, splines, radial basis functions, and kernel models (Barton 1992, 1994). Experiment design 

issues were discussed in the second paper. Variations on the Latin hypercube design remain popular for 

fitting nontraditional models, but such models present an opportunity for new kinds of sequential designs. 

Kleijnen and van Beers (2004) estimated prediction variance using jackknifing and sequentially added 

design points at locations with largest prediction variance. Although the “nugget effect” provided a method 

for non-interpolating kriging models, it was not until the 2008 Winter Simulation Conference that the 

simulation community saw a formal statistical method for stochastic kriging appropriate for the output of 

discrete event simulation models. The subsequent journal paper includes details on the model, experiment 

design process, and fitting (Ankenman, Nelson, and Staum 2010). Experiment designs using common 

random numbers were found to be ineffective with this model (Chen, Ankenman, and Nelson 2012). 

Efficient experiment designs when using the model for input uncertainty characterization appear in Barton, 

Nelson, and Xie (2013). 

2.7 Models for Statistical Efficiency 

We mention only briefly that there has been important research in employing special statistical models for 

gaining efficiency. These include ARMA models for the output stream (Fishman 1971; Schriber and 

Andrews 1984), indirect estimation (Carson and Law 1977; Glynn and Whitt 1989), and standardized time 

series (Schruben 1983). 

3 VARIANCE REDUCTION TECHNIQUES 

Variance reduction techniques (VRTs) include a variety of sampling and/or modeling “tricks” with the 

intent of increasing the precision of some statistical estimators without decreasing their accuracy (by too 

much) or requiring (too much) extra effort. There is a vast literature on VRTs: econpapers.repec.org 

identifies over 25000 research papers with “Variance Reduction Techniques” in their titles or keywords 

(Econpapers.repec.org 2017). A search of the Winter Simulation Conference Archives (http://informs-

sim.org) for “Variance Reduction” returns several hundred links.  A sample of VRT papers spanning the 

five decades of the Winter Simulation Conference includes Lavenberg and Welch (1978), Nelson (1985), 

Cheng (1986), L'Ecuyer (1994), Glasserman, Heidelberger, and Shahabuddin (2000), and Dong and 

Nakayama (2014). 

 Section 1 of this paper presented different ways VRTs have historically been categorized. Section 2 of 

this paper set the stage for these next two sections: VRTs typically are embedded within an overall 

simulation experiment. In this section, we focus on the historical development of VRTs where dependences 

are induced among samples from the simulation output. Section 4 presents the history of VRTs for rare-

event probability estimation. 

3.1 Variance Reduction and Simulation Effort 

Suppose that we want to estimate a parameter 𝜃 , where for example 𝜃 = 𝐸(𝑌)  for some simulation 

response 𝑌. Consider two different simulation studies producing two unbiased estimators 𝜃(1) and 𝜃(2), 

where the amount of simulation effort to obtain 𝜃(1)  with a variance of 𝜎1
2  is 𝐶1 , and the amount of 

simulation effort to obtain 𝜃(2)  with a variance of 𝜎2
2  is 𝐶2 . Then if 𝐶1/𝐶2 < 𝜎2

2/𝜎1
2 , we say that the 

estimator 𝜃(1) is more efficient than 𝜃(2). Simulation effort, following Owen (2017), includes intangibles 

such as modeling, execution, analysis, and time to decision. Kahn (1954) describes 𝐶𝑖 as simulation cost, 

including designing, programming verification and validation of the model, and the cost of computer run 

time.  This is more meaningful for simulation analysis than simply comparing sample sizes, usually as the 

number of simulation runs or output observations. It is possible to change the simulation model and the 
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computational effort at any time while running a simulation model, and so the effort in a simulation 

experiment can be determined continuously, e.g. as simulated time (Schruben 2010). The modeling world-

view Weltanschauung (Nance and Sargent 2002) used in a simulation model can also make orders-of-

magnitude differences in total effort (Roeder et al. 2002) and can facilitate or impede the use of VRTs. 

In this Section, we focus on VRTs that sample dependent data, and measure that dependency by the 

correlations among the observations.  A large number of techniques for generating dependent samples have 

been developed: common random numbers for trying to induce positively dependent samples, antithetic 

variates for trying to generate negatively dependent samples, control variates, conditional sampling, and 

some more exotic methods such as using copulae, and others. The specific techniques used to create 

dependencies is not our focus here, and the simulation effort required in using different methods can differ.  

3.2 The Monte Carlo Swindle 

Variance reduction techniques are described by McLaughlin and Tukey (as quoted in Gross 1973) as a 

restatement of a problem which reduces the amount of computation needed to achieve a desired precision 

in the results. This is sometimes called the colorful, but misleading, name of being a Monte Carlo “swindle” 

(Kafadar 2006). To illustrate how one might try to profit from dependent sampling, consider two different 

simulation experiments, producing responses 𝑌1 and 𝑌2, with common variance 𝜎2. These responses are 

generically denoted by a function  

 

𝑌 = 𝜂(𝑦), 
 

where 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑟)′ is generated in a simulation run. For example, 𝑦 may represent the vector of 

generated interarrival and service times in a queue, and 𝜂(𝑦) computes, for the realization 𝑦, the average 

waiting time of a particular customer. Now suppose that 𝑌1 = 𝜂(𝑦(1)) and 𝑌2 = 𝜂(𝑦(2)), where 𝑦(1) and 

𝑦(2) are sampled in a dependent manner. The hope is that this sample dependency will carry over to produce 

dependent simulation responses 𝑌1 and 𝑌2 (which can be ensured when 𝜂 has some good behavior). In one 

of our two experiments, the two responses will have a positive correlation, and in the other they will be 

negatively correlated. Two statistics that might be of interest are the sample average response and the 

(normalized) response difference, 

 

𝜃avg = (𝑌1 + 𝑌2)/2     and    𝜃diff = (𝑌1 − 𝑌2)/2. 

 

In either of the two experiments, if the induced correlation of the responses is 𝜌, the variances of these 

unbiased estimators are 

  

Var[�̂�avg] = (1 + 𝜌)𝜎2/2    and    Var[�̂�diff] = (1 − 𝜌)𝜎2/2. 

  

We see that for negatively correlated responses (𝜌 < 0), the variance of the average is reduced, but the 

variance of the difference is increased by exactly the same amount. The opposite is true if the responses are 

positively correlated (𝜌 > 0). There is no net reduction in the sum of the variances of the two statistics from 

dependent sampling, so the swindle is in fact a variance trade. This example illustrates the result in Chen, 

Ankenman, and Nelson (2012): inducing positively correlated responses tends to increase the variance of 

location estimators.  
 This variance invariance property is more general: in a general simulation experiment producing 

𝑘 simulation responses, 𝑌𝑗 , 𝑗 = 1, 2, … , 𝑘 , with 𝑛  linear statistics of interest, 𝜃𝑝 , 𝑝 = 1, 2, … , 𝑛 , having 

weighting functions 𝑥𝑗
𝑝

, we have that 
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𝜃𝑝 = ∑ 𝑥𝑗
𝑝

𝑌𝑗
𝑘
𝑗=1 , or using matrix notation �̂� = 𝑿𝒀, 

 

where the 𝑝th row of the 𝑛 × 𝑘 matrix 𝑿 is 𝒙𝑝 = (𝑥1
𝑝

, 𝑥2
𝑝

, … , 𝑥𝑘
𝑝

) and 𝒀 = (𝑌1, 𝑌2, … , 𝑌𝑘)′. For any set of 

orthonormal 𝒙𝑝, 𝑝 = 1, 2, … , 𝑛, the sum of the variances of the entries in �̂� is a constant, irrespective of the 

correlations induced in the simulation output. This means that if we try to use dependent sampling to reduce 

the variance of some statistics, we will increase the variance of some other independently estimable 

statistics by the same amount.  It is up to the experimenter to drive a good variance bargain by inducing 

correlations to inflate the variances of statistics that are not of particular interest.  This suggest the strategy 

of adding uninteresting factors (like the artificial effect of the induced correlations) to saturate an 

experiment and then induce dependencies that maximize the sum of the variances of this set of uninteresting 

estimators, as described by Schruben (1979). 

 This variance invariance property shows up in some apparently unrelated results. For example: when 

discussing the impact of a monotonic response on the effectiveness of antithetic variates, Owen (2013) (in 

the paragraph after equation 8.4) shows that antithetic sampling eliminates the variance when a response is 

odd, but doubles the variance if a response is even, with no net reduction (Owen’s odd and even quantities 

are orthogonal). Cheng (1984) shows an effective method for dealing with difficult response functions 𝜂(∙
), illustrated with two case studies. 

3.3 Dependency Induction and Control Variates 

This section gives a brief overview of several methods for intentionally inducing dependencies in a sample. 

Some have changed little since they were described in the seminal book by Hammersley and Handscomb 

(1964): antithetic sampling, common random numbers, and control variates. There have been some 

relatively recent innovations such as copulae sampling (Ehrlichman and Henderson 2008). 

 The simplest method of introducing positive and negatively correlated samples is through the reuse and 

modification of the pseudo-random number streams and their antithetic streams as inputs to simulations of 

the same or different experimental design points.   

 To induce positive dependencies, the most popular method is to use the same sets of pseudo-random 

numbers in different simulation runs.  This is known as using common random numbers.  As noted earlier, 

this often reduces the errors for comparisons. Common random numbers have been used successfully in a 

wide range of applications and are incorporated in many simulation languages. See Schruben (2010) for 

some extensions, and methods for keeping random number steams synchronized between runs, such as the 

innovative transient entity “tattooing” suggestion by Kelton (1999).  

 There are a number of methods proposed for inducing negative correlation: the simplest is to run a pair 

of simulations, using a set of pseudo-random numbers used to generate random variates in one run and 

subtracting the first-run pseudo-random numbers from 1 in the second run to create antithetic variates 

(Hammersley and Morton 1956). As mentioned earlier in the reference by Owen, monotonicity is sufficient 

to generate negative correlations, but not necessary. Further, the degree of induced correlation can be small 

even with a monotonic 𝜂(∙). Latin hypercube sampling (McKay, Beckman, and Conover 1979) has been 

shown to induce stronger negative dependencies in simulated activity networks (Avramidis and Wilson 

1993; Tew and Wilson 1992). Other innovative methods of inducing correlations have been proposed by 

Page (1965), Fishman and Huang (1980), and Burt, Gaver, and Perlas (1970). 

 The concept of control variates unifies geometrically many dependency induction methods (Szechtman 

and Glynn 2002). The basic form of control variates is to combine an estimator with a control estimator 

that has (asymptotic) zero-mean. Inducing dependencies between the raw estimator and the control 

estimator, in certain circumstances, can lead to a variance reduction. The control variates can be sampled 

from another simulation whose expected value is (asymptotically) known (external control variates) or an 

estimator of a quantity with known mean in the same simulation model (internal control variates), such as 

the sample mean for input interarrival and/or service times. The weighting of the raw estimator with the 
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control estimator can be adaptive, changed as more is learned about the variances and covariances of these 

estimators during a run. See for example, Kim and Henderson (2004). 

3.4 Combining Dependency Induction Methods 

An abstract framework for variance reduction in a simulation experiment was developed by Nelson and 

Schmeiser (Nelson 1985, 1987; and Nelson and Schmeiser 1983). Correlation induction using common and 

antithetic random number streams was integrated into the overall design of a simulation experiment as 

discussed earlier in Section 2.5.   

 This can be generalized using the variance invariance property given in Section 3.2. This includes the 

Schruben-Margolin strategy as a special case that was extended to control variates in Schruben (1979). The 

property can be generalized to include any methods for inducing positive or negative dependencies, for 

example in Avramidis and Wilson (1993), using Latin hypercube sampling to induce correlations; in Tew 

and Wilson (1994), where the focus is on simulating activity networks and validation; and in the paper 

mentioned in Section 2.5 by Nozari, Arnold, and Pegden (1987), where they present some statistical 

analysis techniques. 

We close this section by noting that the dependent sampling VRTs discussed in this section have had 

mixed results. Many of the negative outcomes can be viewed as trying to pull off a variance swindle but 

instead making a poor variance trade.  

4 RARE-EVENT SIMULATION 

While the VRTs discussed in Section 3 can be effective in reducing variance in many settings, they may 

not be sufficient to analyze rare events. For example, we may be interested in estimating the probability of 

an extremely rare but highly important event. For a civil commuter aircraft, regulations may specify that 

the probability of a catastrophic failure during an average-length flight (about 8 hours) is less than 10−9. In 

particle shielding, a physicist or nuclear engineer may want to ensure that the probability that a neutron 

penetrates a shield is very small, in the range of 10−6 to 10−10. 

To understand the difficulties arising in rare-event problems, suppose that we want to estimate the 

probability 𝜃 = 𝑃(𝐵) of a (rare) event 𝐵 with 𝜃 = 10−8. With simple random sampling (SRS), we perform 

𝑛 independent and identically distributed simulation runs, and let 𝐼𝑗 be the indicator of event 𝐵 occurring 

on the 𝑗th run, i.e., 𝐼𝑗 = 1 (resp., 0) if 𝐵 occurs (resp., does not happen) on the 𝑗th run. The SRS estimator 

is then �̂�𝑛 = (1/𝑛) ∑ 𝐼𝑗
𝑛
𝑗=1 . Simply observing a single occurrence of 𝐵 requires on average a sample size 

𝑛 = 1/𝜃 = 108. To obtain a reasonably accurate estimate of 𝜃, we need 𝑛 much larger. For example, the 

SRS estimator �̂�𝑛 of 𝜃 has standard deviation √𝜃(1 − 𝜃)/𝑛 ≈ 10−4/√𝑛. Even though in absolute terms 

the estimator’s standard deviation is quite small, it is orders of magnitude larger (for moderate 𝑛) than the 

value 𝜃 we are estimating. In particular, define the relative error of estimator �̂�𝑛 as the relative expected 

half width of a 95% confidence interval for 𝜃; i.e., the relative error of �̂�𝑛 is 1.96√𝜃(1 − 𝜃)/(𝜃√𝑛) ≈

1.96/√𝜃𝑛 = 1.96 × 104/√𝑛 . Thus, obtaining a relative error of 𝛿 = 10% requires a sample size 𝑛 =

(
1.96

𝛿
)

2 (1−𝜃)

𝜃
≈ 4 × 1010. 

The VRTs in Section 3 may be able to reduce somewhat the necessary sample size, but they often are 

not designed to analyze such vanishingly infrequent events. Instead, these types of problems require special 

techniques specifically built for this purpose. The main simulation methods for analyzing rare events are 

importance sampling (IS) and splitting, and we will discuss their historical developments in Sections 4.1 

and 4.2, respectively. Many of the techniques for rare-event simulation arose during the early days of Monte 

Carlo related to particle transport. For more details on simulation methods for rare-event problems, see the 

survey articles by Heidelberger (1995), Nicola, Shahabuddin, and Nakayama (2001), Juneja and 
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Shahabuddin (2006), and Blanchet and Lam (2012), and the books by Lux and Koblinger (1991), Bucklew 

(2004), and Rubino and Tuffin (2009). 

4.1 Importance Sampling 

Hammersley and Handscomb (1964) state (p. 42), “Never sample from a distribution merely because it 

arises in the physical context of a problem, for we may be able to use a better distribution in the 

computations and still get the right answer.” This idea forms the basis of importance sampling: change the 

sampling distributions driving the original system so that the rare events of interest occur more frequently. 

Because the system now fundamentally differs from the original one, we have to multiply the results by a 

correction factor, known as the likelihood ratio, to recover unbiased estimates. Specifically, suppose our 

goal is to estimate 𝜃 = 𝐸[𝑌] for some  ℜ-valued random variable 𝑌 = ℎ(𝑋), where 𝑋 is an ℜ𝑑 -valued 

random variable with density function 𝑓, and ℎ: ℜ𝑑 → ℜ is a given function. Thus, we have that 

 

                𝜃 = 𝐸𝑓[ℎ(𝑋)] = ∫ ℎ(𝑥)𝑓(𝑥)𝑑𝑥,        (1) 

 

where 𝐸𝑓 denotes the expectation when 𝑋 has density 𝑓. For example, in the special case when 𝜃 is the 

probability that 𝑋 lies in a (rare) set 𝐴, we have that ℎ(𝑋) = 𝐼(𝑋 ∈ 𝐴), where 𝐼(⋅) is the indicator function. 

In general, the SRS approach to estimate 𝜃 first generates 𝑛 independent observations 𝑋1, 𝑋2, … , 𝑋𝑛 from 

density 𝑓, and then computes 𝜃𝑛 = (1/𝑛) ∑ ℎ(𝑋𝑗)𝑛
𝑗=1  as an unbiased estimator of 𝜃. 

To implement importance sampling, let 𝑔  be another density function on ℜ𝑑  such that 𝑔(𝑥) > 0 

whenever ℎ(𝑥)𝑓(𝑥) > 0. We then re-express 𝜃 as 

 

 𝜃 = ∫ ℎ(𝑥)𝑓(𝑥)𝑑𝑥 = ∫ ℎ(𝑥)
𝑓(𝑥)

𝑔(𝑥)
𝑔(𝑥)𝑑𝑥 = 𝐸𝑔[ℎ(𝑋)𝐿(𝑋)],    (2) 

 

where 𝐿(𝑥) ≡ 𝑓(𝑥)/𝑔(𝑥) is the likelihood ratio, and 𝐸𝑔 denotes expectation when 𝑋 has density 𝑔. The 

second and third steps in (2) apply a so-called “change of measure” because the expectation 𝐸𝑔 is now taken 

with respect to the measure corresponding to 𝑔 rather than the original one 𝑓. By (2), we can obtain an 

unbiased estimator of 𝜃 by generating independent observations 𝑋1, 𝑋2, … , 𝑋𝑛  from density 𝑔, and then 

averaging the ℎ(𝑋𝑗)𝐿(𝑋𝑗); i.e., the IS estimator of 𝜃 is �̃�𝑛 = (1/𝑛) ∑ ℎ(𝑋𝑗)𝐿(𝑋𝑗)𝑛
𝑗=1 . The key to applying 

IS is choosing 𝑔 so that �̃�𝑛 has smaller variance than the SRS estimator 𝜃𝑛, and the approach has been 

developed for a wide spectrum of stochastic systems (e.g., Glynn and Iglehart 1989). A poor choice of 𝑔 

can lead to a variance increase, or even infinite variance. 

Some early papers on IS call the approach “quota sampling” (Goertzel 1949a, Goertzel 1949b). A 

footnote in Goertzel and Kahn (1949) states, “Importance sampling is the term used herein for what 

has in several reports been called ‘quota sampling.’ … We believe ‘importance sampling’ to be more 

descriptive.” A footnote in Kahn (1950) observes, “We had previously called this process ‘quota sampling.’  

This last terminology is a little misleading as it is not identical with the quota sampling of the statisticians.” 

Kahn (1950) further writes, “We are trying to sample every part of the phase space that we are 

studying, with a frequency proportional to the importance of that part of the phase space times 

the probability of getting into it. For this reason the name ‘import ance sampling’ has been 

suggested by G. Goertzel for this procedure.” 

Pinpointing an exact origin for IS has been elusive. In a technical report describing IS, Goertzel (1949b) 

writes, “This document is intended to be a working report for the ORNL Shielding Work Session (Summer 

1949) and does not have the complete set of references a final report would have. None-the-less, I feel it 

desirable to remark that the work herein is a logical continuation of some work of H. Kahn and T. E. Harris 

(various RAND Reports). Further, many of the thoughts herein arose during conferences between Mr. Kahn 

and me during the days June 15–17” (1949). A footnote of Kahn (1950) states, “It was during some 
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conversations at the Oak Ridge National Laboratory during the summer of 1949 that it was decided that 

finding the optimum importance function was probably always equivalent to solving the adjoint problem. 

Present at these conversations were H. Feshbach, F. Friedman, G. Goertzel, and H. Kahn.” 

When the response function h in (1) is nonnegative, the optimal choice of the IS density 𝑔 in (2) is 𝑔∗ 

defined as 𝑔∗(𝑥) = ℎ(𝑥)𝑓(𝑥)/𝜃. In this case, note that 

 
so just a single sampled observation will result in the exact value 𝜃 we want to estimate. Although this 

approach will produce an IS estimator with zero variance, it cannot be implemented in practice because it 

requires knowing the quantity 𝜃  that we are trying to estimate. Kahn and Harris (1949) and Goertzel 

(1949b) are early references noting the optimal 𝑔∗, and they also observe that designing 𝑔 to mimic 𝑔∗ can 

lead to a “good” change of measure. 

While the preliminary work on importance sampling focuses primarily on empirical evaluation of 

particular changes of measure, some later studies examine theoretical properties by considering various 

asymptotic regimes. Here, we introduce a rarity parameter 𝜖 > 0, and we consider a sequence of models 

parameterized by 𝜖, where the rare event of interest becomes rarer as 𝜖 shrinks. For example, in a system 

with a single queue having a large but finite capacity, we may want to estimate the probability that the 

queue overflows before emptying, and we let the queue capacity be 1/𝜖. As another example, consider a 

highly dependable Markovian system comprising a collection of highly reliable components, each with 

specified failure and repair rates, where failure rates are much smaller than repair rates. The system, which 

fails when particular combinations of components are simultaneously down, may further include failure 

propagation, where the failure of one component can trigger others to also fail instantaneously with certain 

probabilities. Shahabuddin (1994) parameterizes the model by assuming that in the resulting continuous-

time Markov chain, failure transitions (i.e., transitions in which one or more components fail) have rates 

that are positive powers of 𝜖, while repair transitions (with one or more components getting repaired) have 

constant rates, independent of 𝜖. In both the queueing example and the reliability problem, the rare-event 

performance measure 𝜃 being estimated is therefore a function of 𝜖, so we write it as 𝜃𝜖. We then analyze 

the theoretical behavior (e.g., the relative error) of the simulation estimator of 𝜃𝜖 as 𝜖 → 0. 

4.1.1 Queueing Systems 

One of the earliest works establishing asymptotic properties of IS estimators is Siegmund (1976). For a 

given interval [𝑎, 𝑏] with 𝑎 < 0 < 𝑏, this paper considers estimating the probability that a one-dimensional 

random walk first exits the interval by exceeding 𝑏, and it establishes asymptotic efficiency of an IS 

estimator as 𝑏 → ∞ (or equivalently, 𝑏 = 1/𝜖  with 𝜖 → 0). The approach is based on large-deviations 

theory, and later papers apply this idea to study insurance and queueing problems. For example, Asmussen 

(1985) devises an IS method to efficiently estimate the ruin probability of an insurance company, which 

receives premiums and pays out claims, and ruin occurs when the firm’s reserves first become negative. In 

queueing, the rare-event goal is often to estimate the probability that a large but finite queue overflows 

before the system empties; e.g., see Cottrell, Fort, and Malgouyres (1983), Parekh and Walrand (1989), 

Sadowsky and Bucklew (1990), and Sadowsky (1991). 

Initial IS schemes employ state-independent changes of measure, but Glasserman and Kou (1995) and 

Glasserman and Wang (1997) show that the approach can produce asymptotically inefficient estimators. 

To overcome this issue, Dupuis and Wang (2004, 2007) devise state-dependent importance samplers for 

light-tailed systems (e.g., interarrival- and service-time distributions have moment generating functions that 

exist in a neighborhood of 0), exploiting ideas from control theory. 

 

ℎ(𝑥)𝐿(𝑥) = ℎ(𝑥)
𝑓(𝑥)

ℎ(𝑥)𝑓(𝑥)/𝜃
= 𝜃,
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When input distributions have heavy tails (e.g., tail distribution functions decrease polynomially), the 

way in which the rare event of interest typically occurs fundamentally differs from the light-tailed case. For 

this setting, early papers noting the difficulties in IS caused by heavy-tailed increments include Asmussen, 

Binswanger, and Hojgaard (2000) and Juneja and Shahabuddin (2002). 

4.1.2 Highly Reliable Markovian Systems 

In the 1980s, IBM produced large-scale, fault-tolerant computer systems with high-dependability 

requirements. Such systems are used, e.g., by overnight-delivery companies to track packages, and by banks 

to handle financial transactions. The systems must achieve extremely small unavailability, say less than 

10−6. To study the dependability of designs of the systems, Ambuj Goyal of the IBM Thomas J. Watson 

Research Center led a team of researchers to create the System Availability Estimator (SAVE) tool (Goyal 

et al. 1986), a software package used by system designers to evaluate the dependability of a proposed 

system. SAVE builds a Markov chain model from a user-input high-level description of a system as a 

collection of components, each of which can fail and be repaired. SAVE then computes various 

dependability measures, including the steady-state unavailability (SSU), the mean time to failure (MTTF), 

and the unreliability, which is the probability that the system fails before a specified time horizon. The tool 

allows for various component interactions, such as operational dependencies (e.g., an operational 

component becomes dormant and thus has a different failure rate when other specified components are 

failed), repair dependencies (i.e., a failed component cannot be repaired while other specified components 

are down), and failure propagation. 

The initial version of SAVE employed analytical (i.e., non-simulation) techniques to numerically solve 

for the dependability measures of the Markov chain. But the size of the model grows exponentially in the 

number of components in the system; e.g., a simple system with 𝑚 distinct components, each of which can 

be up or down, has at least 2𝑚 states in its Markov chain model. This severely limits the size of the systems 

that analytical techniques can handle.  

To avoid the state-space explosion, Conway and Goyal (1987) enhanced SAVE to also employ 

simulation, incorporating the regenerative method (Crane and Iglehart 1974) and discrete-time conversion 

(Hordijk, Iglehart, and Schassberger 1976). But these methods by themselves are inadequate to accurately 

estimate the dependability measures for the rare-event problems, so Conway and Goyal (1987) further apply 

importance sampling. In particular, the technique of failure biasing, originally devised by Lewis and Bohm 

(1984) to study nuclear reactors, proved to be extremely effective at reducing variance in the Markov chain 

simulations of SAVE.  

In 1987 and 1988, Perwez Shahabuddin, then a Ph.D. student in operations research at Stanford 

University, was a summer intern at IBM Watson, mentored by Goyal, Phil Heidelberger, and Steve 

Lavenberg. Shahabuddin worked on extending SAVE’s simulation capabilities, which led to several 

important advances in IS methodology. Exploiting the regenerative structure, one can express dependability 

measures such as the SSU using a ratio representation, and Goyal, Heidelberger, and Shahabuddin (1987) 

find that independently estimating the numerator and denominator using different sampling measures (a 

technique they call measure-specific IS) can be more effective than estimating both using the same 

approach. A ratio representation of the MTTF proves to be extremely useful as it isolates the rare event of 

interest in the ratio’s denominator, allowing efficient estimation via measure-specific IS (Shahabuddin et 

al. 1988).  

While the original version of failure biasing (later called simple failure biasing) works well when all 

failure transitions out of a state have rates of the same magnitude, the approach may perform poorly for 

unbalanced systems (failure transitions out of a state have rates of different orders of magnitude). This led 

Shahabuddin (1994) to devise balanced failure biasing (BFB), which is implemented in the SAVE package 

(Goyal et al. 1992). Shahabuddin (1994) establishes that BFB produces estimators of the SSU and MTTF 
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having bounded relative error; i.e., the BFB estimators have relative errors that remain bounded as 𝜖 → 0, 

where we recall that 𝜖 is the rarity parameter used in specifying the rates of failure transitions. 

4.2 Splitting 

Splitting is another simulation technique useful for analyzing rare events. The method embeds the rare set 

of states of interest in a sequence of larger, less-rare sets, and reinforces sampling paths that get “closer” to 

the desired rare set, and terminates those that move further away. The idea of splitting was introduced in 

Kahn and Harris (1949), but they credit John von Neumann with devising the method. Specifically, in 

describing three approaches (splitting, importance sampling, and conditional Monte Carlo) for rare-event 

simulations, they write, “The first one we will discuss is the splitting technique, mentioned by Dr. von 

Neumann. In one method of applying this, one [defines] regions of importance in the space being studied, 

and, when the sampled particle goes from a less important to a more important region, it is split into two 

independent particles, each one-half the weight of the original. If you go from a more important to a less 

important region, you double the weight of the sampled neutron but play a game of chance, with probability 

one-half of winning to decide if the history is to be continued. The purpose of this is to spend most of the 

time studying the important rather than the typical particles, but to do it in unbiased fashion.”  The idea of 

randomly terminating a generated history is called Russian roulette, which Kahn (1954) notes, “John von 

Neumann and Stanley Ulam are responsible for both the sampling technique and its name.” 

Splitting (under various names) has been applied to study rare events in many settings, including 

particle transport (Booth 2009); telecommunications, where it has been called RESTART (Repetitive 

Simulation Trials After Reaching Thresholds; Villén-Altamirano and Villén-Altamirano 1991, 1994), and 

structural reliability, where it is known as subset simulation (Au and Beck 2001). Glasserman et al. (1998, 

1999) and Dean and Dupuis (2009) analyze theoretical properties of splitting. 

5 CONCLUSION 

The foundational contributions to statistical efficiency in simulation experiments described here span nearly 

sixty years. Yet this continuing series of developments provide a guidepost to the future. We expect that 

simulation researchers are not finished with improvements to statistical efficiency - in rare event simulation, 

variance reduction /dependency induction and design of simulation experiments.  
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