
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

TOWARDS A UNIVERSAL FORMALISM FOR MODELING & SIMULATION

Fernando J. Barros

University of Coimbra
Department of Informatics Engineering

3030 Coimbra, PORTUGAL

ABSTRACT

The representation of hybrid systems has shown to be one of the greatest challenges in Modeling &
simulation. While discrete event systems can be represented without error, continuous models rely on
approximations based in numerical methods. Given the large variety of numerical integrators a unified
representation has been elusive due the lack of an universal formalism that can describe all numerical
methods and to provide their seamless integration. In this paper, we propose the Hybrid Flow System
Specification (HYFLOW) as a unifying representation for different families of numerical integrators for
solving ordinary differential equations (ODEs). HYFLOW combines the conventional discrete event approach
with a novel representation based on sampling and the support for dense outputs to describe modular and
hierarchical hybrid systems. We demonstrate that HYFLOW can describe 1st-order, geometric (2nd-order),
and exponential integrators. Additionally, since these integrators share the same underlaying HYFLOW
representation they can be seamlessly combined.

1 INTRODUCTION

The representation of hybrid systems has proven to be one of the greatest challenges in Modeling & simulation.
While discrete event systems can be represented without error in digital computers, the representation of
continuous models has been elusive, since an exact description cannot, in general, be achieved in these
computers. In fact, continuous systems can only be exactly represented in analog computers, but these
machines are virtually extinct nowadays. Practical representations involve the use of numerical methods,
like ODE (ordinary differential equations) integrators but unfortunately no single method can produce an
adequate description for all types of continuous systems. In fact, there is a plethora of numerical methods,
each one with its strengths and weaknesses, that provide only an approximate representation. A formalism
able to provide a unifying representation of all these methods and capable to build a bridge with discrete
event systems modeling is currently a big research challenge.

The quest for a unifying formalism requires the identification of the basic constructs that can support
the representation of continuous signals in a digital computer. While discrete event systems have long been
formalized (Zeigler 1976), the set of constructs able to represent continuous systems has been elusive.

In this paper we propose the concept of generalized sampling and the support for dense outputs as
the key constructs for achieving a unifying representation for some of the numerical methods used to
describe continuous systems. Sampling and dense outputs constructs are formalized in the Hybrid Flow
System Specification (HYFLOW) a formalism for representing hybrid systems. In particular we show
that HYFLOW provides a framework for describing several families of numerical integrators, including
polynomial, exponential, and geometric (2nd-order) integrators. HYFLOW also guarantees the seamless
combination of these numerical methods, enabling the representation of complex systems that require the
composition of different integrators for achieving a better description.

750978-1-5386-3428-8/17/$31.00 ©2017 IEEE

Barros

Although sampling has long been used in control and signal processing areas, common approaches are
mainly synchronous (Benveniste and Berry 1991), making them incompetent to provide a representation
of continuous systems based on the more efficient adaptive size integrators.

The representation of continuous systems has traditionally been made through idealized formalisms
based on ODEs that abstract the numerical integrators required to solve the ODEs on a digital computer
(Henzinger 1996), (Praehofer 1991). These approaches, while hiding simulation details, also prevent the
possibility to describe how the different numerical methods can be combined, offering no contribution to
model interoperability, in particular when different integrators are needed.

In previous work we have shown that HYFLOW provides a unifying representation for digital controllers
(Barros 2005b), digital filters (Barros 2005a), fluid stochastic Petri Nets (Barros 2015b), and their seamless
integration with other HYFLOW models. The numerical methods presented in this paper point to the
generality of HYFLOW and to its ability to support hybrid modular models that can be simulated as
independent units requiring only the information provided in model interface. This modular design is
fundamental, for example, in co-simulation (Schierz et al. 2006) and for achieving a better computational
performance (Skelboe 2006).

2 RELATED WORK

The use of explicit representations of 1st-order numerical integrators was introduced in (Zeigler and Lee
1998). This work is based on discrete event systems and it relies on the representation of continuous
signals through the use of polynomials (Migoni et al. 2013). In this approach, the output of a component
is pushed to its peers using the coefficients of a polynomial that encodes a continuous output signal. This
work has key differences when compared with HYFLOW sampling-based approach. Since discrete events
are instantaneous, polynomial coefficients need to be locally stored for representing a continuous segment.
Components need also to keep a list of the incoming polynomials, and when a new input (polynomial) is
received it will replace the corresponding outdated element. Besides the additional complexity required for
input management, this procedure severely limits hierarchal and modular design. Each component needs
to know its influencers making it dependent on the context. In particular this require that a component
needs to be adapted when inserted into a new context. For example, if the component is designed to work
with a single input, it needs to be redefined to work with two inputs, making it harder to reuse. This
contrasts with HYFLOW that through sampling gets a value from all inputs at once. Next these input values
become combined by HYFLOW component input function, making the component itself reusable in any
context, since it can always receive a single value, irrespective to the network topology. In an extreme
case, a HYFLOW component can be used, without modification, in a dynamic topology network, while a
polynomial-based approach would make this support very difficult to achieve.

Discrete events also jeopardize the use of hierarchical models. Since polynomials cannot be combined,
coefficients need to be kept in lists. This kind of representation exposes the internal components of a
network model, making any component that receives such a list aware and dependent of the internals
details of a network, severely limiting model hierarchical design. Another limitation involving polynomial
representations is that they provide by no means the best approximation to all kind of continuous functions.
Other approximations, like rational fractions, trigonometric functions (Neta and Ford 1984), or exponentials
used in Section 5 can, in many cases, provide a more accurate representation.

Another limitation is linked to the discrete event nature of the quantized approaches. While 1st-order
polynomial integrators can adjust the step size based on the local error, the geometric integrators described
in Section 6 do not admit this error based control of step size in order to keep their structural properties.
In fact, geometric integrators are mainly fixed step size methods. Modify the step size requires different
assumptions that are not compatible with error-base control principles. Geometric integrators can adjust
their step size based on kinetic energy (Hairer 1997), and they cannot accept interruptions imposed by
external discrete events bringing, for example, polynomials coefficients.

751

Barros

The most common approaches to continuous modeling rely on idealized representations like ODEs
(Henzinger 1996), (Praehofer 1991), (Lynch et al. 2003). However, these approaches do not provide any
light on how to describe integrators with asynchronous step sizes, or if, for example, geometric integrators
need be used for achieving a correct solution. As in many other cases, the devil is in the details, and
idealized solutions are not adequate for developing working M&S environments where numerical methods
can be described. In our opinion a sound M&S formalism should be able to provide a rigorous operational
semantics so the inner details of the numerical methods can be defined without any ambiguity.

3 THE HYFLOW FORMALISM

The Heterogeneous Flow System Specification (HYFLOW) is a formalism created to represent hybrid
modular systems (Barros 2003). HYFLOW defines two types of models: basic and network. Basic models
provide state representation and state transition functions. Network models are a composition of basic
models and/or other network models. To the best of our knowledge HYFLOW was the first hybrid formalism
to use a HyperReal time-base (Barros 2008). Additionally, the HYFLOW formalism merges discrete event
system with sampling-based systems that have been traditionally represented by a real time base and a
discrete time base, respectively (Zeigler 1976) and (Manna and Pnueli 1993). The HYFLOW formalism
proposes a hyperreal time base in order to seamlessly unify these two paradigms.

3.1 HYFLOW Basic Model

We describe HYFLOW basic models and their semantics. Let B̂ be the set of all names corresponding to
HYFLOW basic models. A model associated with name B ∈ B̂ is defined by:

MB = (X ,Y,P,ρ,ω,δ , Λ̄,λ),

where

X = X̄× X̌ is the set of input flow values,
X̄ is the set of continuous input flow values,

X̌ is the set of discrete input flow values,

Y = Ȳ × Y̌ is the set of output flow values,
Ȳ is the set of continuous output flow values,

Y̌ is the set of discrete output flow values,

P is the set of partial states (p-states),

ρ : P−→H0
+∞ is the time-to-input function,

ω : P−→H0
+∞ is the time-to-output function,

S = {(p,e)|p ∈ P,0≤ e≤ ν(p)} is the state set,
with ν(p) = min{ρ(p),ω(p)}, representing the time to transition function,

δ : S×X∅ −→ P is the transition function,
where X∅ = X̄× (X̌ ∪{∅}),
and ∅ represents the null value (absence of value),

Λ̄ : S−→ Ȳ is the continuous output function,

λ : P−→ Y̌ is the partial discrete output function.

HYFLOW models describe independent entities that can only communicate through input/output inter-
faces, defined by sets X and Y, respectively. These sets are structured into continuous and discrete parts

752

Barros

since HYFLOW components can accept and produce hybrid signals. The transition function, δ , describes
how a component changes from the current p-state to the next one. Transitions can be triggered by different
conditions. A component can change its p-state due the presence of a discrete flow. A component can also
change the p-state according to its autonomous behavior specified by the time-to-input/output functions
ρ and ω . When the time elapsed in the current p-state reaches a value specified by one of these time
functions, the component changes its p-state. A change can also be triggered by any combination of
the previous conditions. The output function Λ̄ describes the continuous flow output of a component. Λ̄

supports dense outputs description making it possible the sampling operation at arbitrarily time instants.
Function λ describes the discrete flow. This function can only be non-null when the time elapsed in the
current p-state reaches the time-to-output function ω .

We briefly describe the semantics of tauHyFlow components. Figure 1 depicts the typical trajectories
of a HYFLOW component. At time t1 the component in p-state p0 samples its input since its elapsed time
reaches ρ(p0) = e. The component changes its p-state to p1 = δ ((p0,ρ(p0)),(x1,∅)), where x1 is the
sampled value at time t1, and no discrete flow is present at that time. At time t2 the discrete flow xd is received

Figure 1: Basic HYFLOW component trajectories.

by the component that changes to p-state p2 = δ ((p1,e1),(x2,xd)), where x2 is the continuous flow at t2. At
time t3 the component reaches the time-to-output limit and it changes to p-state p3 = δ ((p2,ω(p2)),(x3,∅)).
At this time the discrete flow yd = λ (p2) is produced. Component continuous output flow is always present
and given by Λ̄(pi,e), where pi is the current p-state.

Since HYFLOW sampling is specified by function ρ , sampling time can be modified during simulation.
Also, since each model defines its own ρ function, sampling can also be made asynchronously. These
features make discrete time formalisms a particular case of an HYFLOW specification were all components
are constrained to sample synchronously and at constant time intervals.

753

Barros

3.2 HYFLOW Network Model

HYFLOW network models are compositions of HYFLOW models (basic or other HYFLOW network models).
Let N̂ be the set of names corresponding to HyFlow network models, with N̂∩ B̂= {}. Formally, a HYFLOW

network model associated with name N ∈ N̂ is defined by:

MN = (X ,Y,η),

where

N is the network name,

X = X̄× X̌ is the set of network input flows,
X̄ is the set of network continuous input flows,
X̌ is the set of network discrete input flows,

Y = Ȳ × Y̌ is the set of network output flows,
Ȳ is the set of network continuous output flows,
Y̌ is the set of network discrete output flows,

η ∈ η̂ is the name of the dynamic topology network executive,

with
η ∈ η̂ representing the set of all names associated with HYFLOW executive models, constrained

to η̂ ∩ B̂ = η̂ ∩ N̂ = {}.

Executives are uniquely assigned to network models, i.e.,

∀i, j∈N̂,i6= jηi 6= η j with Mk = (X ,Y,η)k,∀k∈N̂ .

The model of an executive η ∈ η̂ , is a modified HYFLOW basic model, defined by:

Mη = (X ,Y,P,ρ,ω,δ , Λ̄,λ , Σ̂,γ)η ,

where

Σ̂η is the set of network topologies,

γη : Pη −→ Σ̂η is the topology function.

The network topology Σα ∈ Σ̂η , corresponding to the p-state pα ∈ Pη , is given by the 3-tuple

Σα = γ(pα) = (Cα ,{Ii,α}∪{Iη ,α , IN,α},Fi,α ∪{Fη ,α ,FN,α}),

where

Cα is the set of names associated with the executive state pα ,
for all i ∈Cα ∪{η},

Ii,α is the sequence of influencers of i,
Fi,α is the input function of i,

IN,α is the sequence of network influencers,
FN,α is the network output function.

For all i ∈Cα

754

Barros

Mi = (X ,Y,P,ρ,ω,δ , Λ̄,λ)i if i ∈ B̂,

Mi = (X ,Y,η)i if i ∈ N̂.

The executive is a special component that controls the network topology. Topology depends on the current
executive p-state and it is established by the topology function γ . Changes in network topology include the
ability to modify composition and coupling through add and delete operations. Although HYFLOW relies
on a central component to manage the topology of each network, the decision to change this topology can be
made by any arbitrary component or in cooperative manner by several components. This decision, however,
needs to be communicated to the executive so it can become effective. HYFLOW topology management
guarantees well defined and deterministic semantics when changes in topology occur (Barros 2008).

4 1ST-ORDER POLYNOMIAL INTEGRATORS

The solution of a system of ODEs is commonly performed by reducing all ODEs into an equivalent system
of 1st-order ODEs. This is achieved by introducing new 1st-order ODEs to help reduce higher order ODEs
into a 1st-order system. We describe next 1st-order asynchronous integrators that can use an adaptive
step size . These integrators can individually adjust the step size of each ODE for improving simulation
performance. Given the ODE ẏ = f (x(t)), with y(0) = y0, an asynchronous 1st-order, 1st-degree (Euler)
integrator can be described in HYFLOW by:

MB = (X ,Y,P,ρ,ω,δ , Λ̄,λ),

where

X = R×R,

Y = R×R,

P = {(α,β ,βp,κ,x,y)|α,β ,βp ∈H+
0 ;κ,x,y ∈ R},

ρ(α,β ,βp,κ,x,y) = α ,

ω(α,β ,βp,κ,x,y) = β ,

δ (((α,β ,βp,κ,x,y),e),(xc,xd)) =

(∞,10−5,10−5,0,xc,y′) if α = 0,
(∞,β ′,β ′,0,xc,y′) if e = β + ε,

(∞,min{βp, |ERR−κ ′

xc
|},βp,κ

′,xc,y′) otherwise,

where
β ′ = min{Kβp, |ERR

xc
|},

κ ′ = κ + |estd · x|,
y′ = y+ estd · x,

λ (α,β ,βp,κ,x,y) = y,

Λ̄((α,β ,βp,κ,x,y),e) = y+ x · estd .

The step size ERR
xc

is used for setting a bound to the local error. When the integrator receives an external
discrete flow it accumulates the error in variable κ . The accumulated error is used to adjust the step size
when the component receives discrete flows. When the discrete flow is released the accumulated error is
reset to zero. Increasing step size is limited by the factor K over the previous step βp, preventing large
jumps in consecutive steps. The use of discrete events to stabilize asynchronous ODE integrators was
introduced in (Zeigler and Lee 1998) and it can be easily described in HYFLOW. Solver initial state is

755

Barros

given by s0 = ((0,∞,∞,0,0,y0),0), imposing a first transition at time 0 to sample the derivative xc. Solver
continuous output, defined by Λ̄, is a 1-degree polynomial. Better accuracy can be obtained, for example, by
Adam methods using higher degree polynomial approximations. These integrators can be easily described
in HYFLOW requiring the storage of derivative past values (Barros 2015a). A system of two 1st-order,
third degree integrators are used in Section 6 (Example II) to solve a 2nd-oder ODE.

5 EXPONENTIAL INTEGRATORS

The use of non-polynomial integrators is relatively recent (Brock and Murray 1952), (Pope 1963), (Certaine
1959), being currently an active area of research (Hochbruck 2010). These integrators approximate ODE
solutions by exponential functions, and they were created to enable larger time steps and to fix the stiffness
problems introduced by polynomial integrators. We describe here the 1st-order exponential method developed
in (Pope 1963). Given the ODE

ẏ = f (t,y),

the second derivative can be computed as:

ÿ = ft + f fy

. A 1st-order Exponential integrator is described by (Pope 1963)

yn+1 = yn +h f + ÿ f−2
y (eh fy−h fy−1).

For small values of |h fy| the recurrence needs to be approximated by the series (Pope 1963):

yn+1 = yn +h f + ÿ
+∞

∑
k=2

hk f k−2
y

k!
.

The local truncation error is given by (Pope 1963):

ERR =
1
6

h3[ftt +2 f fty + f 2 fyy]+O(h4).

Given the HYFLOW ability to represent arbitrary functions, computing the dense output by an exponential
or a sum of values poses no problem. Trigonometric and hyperbolic functions, as required for 2nd-order
methods (Pope 1963), can also be easily represented in HYFLOW. For simplicity we describe here a
integrator with no explicit time dependency, i.e, ẏ = f (y). The exponential integrator is given by the
HYFLOW model:

MX = (X ,Y,P,ρ,ω,δ , Λ̄,λ),

where

X = /0× /0,

Y = R×R,

P = {(α,β ,βp,y)|α,β ∈H+
0 ;y ∈ R},

ρ(α,β ,βp,y) = α ,

ω(α,β ,βp,y) = β ,

δ ((α,β ,βp,y),e) =

(α,10−5,10−5,y) if α = 0,

(∞,min{K ·βp, 3

√
6·,ERR

f 2(y)| fyy(y)|
},β ,y+ ITG(e)) otherwise,

756

Barros

where ITG(h) =

h f (y)+ ÿ
+∞

∑
k=2

hk f k−2
y (y)
k!

if |h fy(y)| ≤ 0.1,

h f (y)+ ÿ f−2
y (y)(eh fy(y)−h fy(y)−1) otherwise,

and ÿ = f (y) fy(y),

Λ̄((α,β ,βp,y),e) = y+ ITG(e),

λ (α,β ,βp,y) = y.

Likewise the polynomial integrator in the previous section, we use the factor K to limit the amplitude of
consecutive step sizes.

Example I: Flame Model

Exponential integrators are know to handle stiff ODEs. There seems to be case that stiffness is a consequence
of the polynomial approximation rather than the eigenvalue considerations usually taken as the cause for
ODE stiffness (Hairer et al. 2000). A well known stiff ODE is the flame propagation model (Abelman and
Patidar 2008), represented by the equation:

ẏ = y2(1− y).

Results are presented in Figure 2 for a simulation time T = 2 ·104, y(0) = 10−4, ERR = 10−6, and K = 1.1.
The numerical integration was also efficient taking only 483 transitions. The step size is represented in
Figure 3. As shown in Figure 2, the exponential integrator exhibits no stiffness, i.e, the typical oscillating

Figure 2: Flame size. Figure 3: Step size.

behavior characteristic of the explicit polynomial integrators that impose a small step size. As it can be
observed in Figure 3, the step size is very large in the region t > 104, whereas a conventional polynomial
integrator would require small values for the integration step due to stiffness (Abelman and Patidar 2008).

6 GEOMETRIC INTEGRATORS

The prevalent rule in most common modeling and simulation tools is to map the set of arbitrary order
ODEs into a system of 1st-order ODEs (Fritzson 2003). However, these methods do not preserve system
energy being not acceptable for simulating long time periods. Geometric integrators are based on a strategy
involving the direct integration of 2nd-order ODEs to obtain solutions that preserve some system properties,
like notably, the total energy (Hairer et al. 2005). We introduce here a HYFLOW representation for geometric
ODEs. Given the 2nd-order ODE

ÿ = f (x(t),y) with y(0) = y0, ẏ(0) = ẏ0,

757

Barros

and using the variable v = ẏ, a fixed step size h, 2nd-order ODE, 2nd-degree polynomial approximation,
geometric integrator is described by the equations (Swope et al. 1982):

yn+1 = yn +hvn +
1
2

h2 fn,

vn+1 = vn +
h
2
(fn + fn+1).

The HYFLOW corresponding model is given by:

MΓ = (X ,Y,P,ρ,ω,δ , Λ̄,λ),

where

X = R×∅,

Y = R×∅,

P = {(yn,vn, fn)|yn,vn, fn ∈ R},
ρ(yn,vn, fn) = h,

ω(yn,vn, fn) = ∞,

δ ((yn,vn, fn),e),(xc,xd)) = (yn+1,vn +
1
2 estd(fn + fn+1), fn+1), with

yn+1 = yn + estdvn +
1
2 e2

std fn and

fn+1 = f (xc,yn+1),

Λ̄((yn,vn, fn),e) = yn + estdvn +
1
2 e2

std fn,

λ (yn,vn, fn) =∅.

The recurrences are computed by the transition function δ and the fixed sampling period h is specified
by function ρ . The output flow is given by the 2nd-degree polynomial provided by Λ̄ that defines dense
values enabling sampling by external components as shown in Example III.

Example II: Oscillator

Let us consider an oscillator composed by a body M with mass m and a spring K with elasticity constant
k, described by the equation:

ÿ =− k
m

y with y(0) = 0, ẏ(0) = 2.0.

This energy conservation system can be solved by a geometric integrator. The plot of y vs. velocity ẏ is
depicted in Figure 4. Simulation parameters are m = 1 kg, k = 8 N/m, y(0) = 0, and ẏ(0) = 2 m/s. Results
were obtained for a constant step size of 0.1 s and a run time of 100 s. Although the oscillator has been
simulated for a large number of cycles it can be observed that the plot remains stable (a closed ellipse),
showing energy preservation. Simulation results were obtained using G-HYFLOW, an implementation of the
HYFLOW formalism in the Groovy language (König et al. 2015). Geometric integrators (GIs) outstanding
features can be contrasted with the poor performance of 1st-order polynomial integrators (PIs). Figure
5 plots y× ẏ when the oscillator is represented by a system of two 1st-order ODEs and integrated by a
3rd-degree version of the polynomial integrator described in Section 4. The graph is no longer an ellipse
becoming a thick line revealing that the solution is not periodic showing also energy variation. Additionally,
the GI is more efficient than the two PIs. The GIs used a fixed sampling interval of 0.1 s requiring 1000
transitions for the 100 s interval. The PIs have required a total of 7308 transitions, a larger number for a
worse accuracy.

758

Barros

Figure 4: y× ẏ computed by a geometric
integrator.

Figure 5: y× ẏ computed by two 1st-order
polynomial integrators.

Example III: Double-Mass Oscillator

As mentioned before HYFLOW enables the seamless combination of any models including, obviously, the
numerical integrators that are represented as HYFLOW models. To show the combination of integrators
we consider a system composed by two bodies M1 and M2 with masses m1 and m2 connected by a spring
K with unstretched length L and elasticity constant k. This system is represented in Figure 6. Positions x1
and x2 of the two masses are given by the following 2nd-order ODEs:

ẍ1 =−
k

m1
(x1− x2 +L), (1)

ẍ2 =−
k

m2
(x2− x1−L). (2)

The system is thus represented by two 2nd-order ODEs. A natural choice for solving the equations is to
use two geometric integrators, one for representing each body. The HYFLOW network for modeling the
oscillator is depicted in Figure 7. Simulation results for a 5 s interval are depicted in Figure 8 with parameters

Figure 6: Double mass oscillator. Figure 7: HYFLOW network for representing
equations (1) and (2).

m1 = 5 kg, m2 = 1 kg, k = 50 N/m, L = 0.2 m, x1(0) = 0, ẋ1 = 0, x2(0) = L and ẋ2 = 0.5 m/s. Representing
the oscillator by a HYFLOW network enables solution to be computed by two geometric integrators with
independent sampling rates. For M1 a step size of 0.05 s was used, while M2 was integrated with a step size
of 0.01 s. The ability to use different rates enables faster simulations. Efficiency can be further improved
through the use of asynchronous variable step geometric integrators (Stoffer 1995). Geometric integrators
provide an accurate alternative to the representation of 2nd-order ODEs into 1st-order ODEs. HYFLOW
enables the seamless composition of geometric integrators with polynomial and exponential integrators
described in Sections 4 and 5, since they all share the same underlaying representation.

759

Barros

Figure 8: Positions x1 and x2 of bodies M1 and M2.

7 CONCLUSION

HYFLOW generalized sampling and dense output support enable a novel representation of continuous
systems. HYFLOW can exactly represent continuous functions in a digital computer, supporting both
time and component varying sampling to provide access to (dense) output values. We have shown that
sampling is a basic operator to represent numerical ODE integrators. In particular, we have demonstrated
that HYFLOW provides a unifying representation for polynomial, geometric and exponential integrators.
Since integrators are represented as particular models in HYFLOW they can be seamlessly combined to
describe complex systems based on independent components. As future work we plan to represent other
ODE numerical integrators, like BDF methods (Ascher and Petzold 1988).

REFERENCES

Abelman, S., and K. Patidar. 2008. “Comparison of some recent numerical methods for initial-value problems
for stiff ordinary differential equations”. Computers and Mathematics with Applications 55:733–744.

Ascher, U., and L. Petzold. 1988. Computer Methods for Ordinary Differential Equations and Differential-
Algebraic Equations. SIAM.

Barros, F. 2003. “Dynamic Structure Multiparadigm Modeling and Simulation”. ACM Transactions on
Modeling and Computer Simulation 13 (3): 259–275.

Barros, F. 2005a. “Simulating the Data Generated by a Network of Track-While-Scan Radars”. In 12th
Annual IEEE International Conference on Engineering Computer- Based Systems, 373–377.

Barros, F. 2005b. “A System Theory Approach to the Representation of Mobile Digital Controllers Agents”.
In International Workshop on Radical Agent Concepts.

Barros, F. 2008. “Semantics of Discrete Event Systems”. In Distributed Event-Based Systems, 252–258.
Barros, F. 2015a. “Asynchronous, Polynomial ODE Solvers based on Error Estimation”. In Symposium on

Theory of Modeling and Simulation.
Barros, F. 2015b. “A modular representation of Fluid Stochastic Petri Nets”. In Symposium on Theory of

Modeling and Simulation, 122–128.
Benveniste, A., and G. Berry. 1991. “The Synchronous Approach to Reactive and Real-Time Systems”.

Proceedings of the IEEE 79 (9): 1270–1282.
Brock, P., and F. Murray. 1952. “The use of Exponential Sums in Step by Step Integration”. Mathematics

of Computation:63–78.
Certaine, J. 1959. Mathematical Methods for Digital Computers, Volume 1, Chapter The Solution of

Ordinary Differential Equations with Large Time Constants, 128–132. John Wiley.
Fritzson, P. 2003. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley.
Hairer, E. 1997. “Variable time step integration with Symplectic methods”. SIAM Journal of Scientific

Computation 26 (6): 1838–1851.

760

Barros

Hairer, E., C. Lubich, and G. Wanner. 2005. Geometrical Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations. Springer.

Hairer, E., S. Nörsett, and G. Wanner. 2000. Solving Ordinary Differential Equations II: Stiff Problems.
Springer.

Henzinger, T. 1996. “The Theory of Hybrid Automata”. In 11th Annual IEEE Symposium on Logic in
Computer Science, 278–292.

Hochbruck, M. 2010. “Exponential Integrators”. Acta Numerica:209–286.
König, D., P. King, G. Laforge, H. D’Arcy, C. Champeau, E. Pragt, and J. Skeet. 2015. Groovy in Action.

Manning.
Lynch, N., R. Segala, and F. Vaandrager. 2003. “Hybrid I/O Automata”. Information and Computa-

tion 185:105–157.
Manna, Z., and A. Pnueli. 1993. “Verifying Hybrid Systems”. In Formal Techniques in Real-Time and

Fault-Tolerant Systems, 4–35.
Migoni, G., M. Bortolotto, E. Kofman, and F. Cellier. 2013. “Linearly implicit quantization-based integration

methods for stiff ordinary differential equations”. Simulation Modelling Practice and Theory 35:118–
136.

Neta, B., and C. Ford. 1984. “Families of Methods for Ordinary Differential Equations based on Trigonometric
Polynomials”. Journal of Computational and Applied Mathematics 22:33–38.

Pope, D. A. 1963. “An Exponential Method of Numerical Integration of Ordinary Differential Equations”.
Communications of the ACM 6 (8): 491–493.

Praehofer, H. 1991. System Theoretic Foundations for Combined Discrete-Continuous System Simulation.
Ph.d. diss., University of Linz, Austria.

Schierz, T., M. Arnold, and C. Clauss. 2006. “Co-simulation with communication step size control in
an FMI compatible master algorithm”. In Proceedings of the 9th International Modelica Conference,
205–214.

Skelboe, S. 2006. “Adaptive Partitioning Techniques for Ordinary Differential Equations”. BIT Numerical
Mathematics 46:617–629.

Stoffer, D. 1995. “Variable Steps for Reversible Integration Methods”. Computing 55:1–22.
Swope, W. C., H. C. Andersen, P. H. Berens, and K. R. Wilson. 1982. “A computer simulation method for

the calculation of equilibrium constants for the formation of physical clusters of molecules: Application
to small water clusters”. Journal of Chemical Physics 76 (1): 637–649.

Zeigler, B. 1976. Theory of Modelling and Simulation. Wiley.
Zeigler, B., and J. Lee. 1998. “Theory of Quantized Systems: Formal Basis for DEVS/HLA Distributed

Simulation Environment”. In Proceedings of the SPIE: Enabling Technology for Simulation Science
II, Volume 3369, 49–58.

AUTHOR BIOGRAPHY

FERNANDO J. BARROS is a professor at the University of Coimbra, Portugal. His research interests
include theory of modeling & simulation and hybrid dynamic topology systems. He published more than
70 papers in journals, book chapters and conference proceedings, and he has organized several conferences
and workshops in the area of simulation. Fernando Barros is a member of the editorial board of the Int.
J. Simulation and Process Modelling and associate editor of the Int. J. Agent Technologies and Systems.
His email address is barros@dei.uc.pt.

761

