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ABSTRACT 

Defect management in manufacturing environments requires effective identification of the defects and 

finding proper solutions to resolve them. Predicting and preventing the defects before they can occur is the 

focus of quality risk management. To effectively manage defects, companies need to analyze historical data 

to identify the causes and solutions for defects as well as study the impact the defect can have on the 

processes, priorities, and operations. This study integrates data analytics and simulation modeling to 

develop a system for defect management in manufacturing environments. Simulation is used to analyze the 

behavior of the system whereas data analytics is used to develop prediction models for defect resolution. A 

case study from high-end server manufacturing environment, which is characterized by extensive test 

processes to ensure high quality and reliability of servers, is provided. The proposed approach helps 

decision makers analyze and manage defects and develop proactive means to prevent them.  

1 BACKGROUND 

1.1 Introduction 

Today manufacturing environments are characterized by continuously changing conditions driven by 

globalization and increased market competition. To adapt to these changing conditions, companies need to 

continuously evaluate their performance and make smart decisions based on quantitative data analysis. 

Different techniques for decision making have emerged in the last few decades. These techniques helped 

manufacturing environments make effective decisions to improve their performance. Simulation methods 

and analytics models are commonly used in manufacturing for decision support. 

In most manufacturing companies, outsourcing of parts from suppliers is an important part of supply 

chain management. Outsourcing provides companies with many potential benefits including lowers costs, 

and shorter lead times. However, outsourcing can also present some risk factors to the company such as 

quality risks, material shortage risk, and transportation risks. If quality risks are not managed effectively, 

defects can transit through the supply chain and affect the different partners. Quality issues can increase the 

cost of quality and affect customer satisfaction. Usually, cost of quality consists of two components: (1) 
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quality risk loss cost, and (2) quality risk management cost. Reactive strategies are related to the quality 

risk loss cost whereas preventive strategies are related to the quality risk management cost. 

In high-end server manufacturing, defects can cause major disruptions to the operations and may result 

in loss of millions of dollars. Defective parts can be disposed, repaired, or returned to the supplier depending 

on the type of defect. Removal of defective parts is necessary to protect the company’s product, image and 

reputation, and customer satisfaction. Product quality is ensured through test processes, manufacturing, and 

design. Because servers are very expensive and they should have high quality, server components are tested 

multiple times by both suppliers and manufacturers. Major quality risk events can disrupt the smooth flow 

of products and operations in the supply chain. Quality management is responsible for stopping the flow of 

defective materials to the customers. 

1.2 Related Literature 

Defect analytics and quality risk management have been studied by many researchers. Previous studies 

have discussed the management of defects in different areas including construction (Park et al. 2013; Kwon 

et al. 2014), home appliances (Law  et al. 2017), garment industry (Lee et al. 2013), manufacturing (Aqlan 

et al. 2015), software (Yadav and Yadav 2015). 

The study of defects focuses on developing management systems and solutions approaches for the 

defects to predict and prevent them. For example, Park et al. (2013) proposed an approach for defect 

management in construction industry by integrating ontology, augmented reality and building information 

modeling. The proposed system can reduce defects that may occur during the construction process as well 

as improves the management of the defects. In a similar study, Kwon et al. (2014) integrated building 

information modeling, image-matching, and augmented reality for defect management of reinforced 

concrete work . An automated defect discovery for dishwasher appliances was developed in Law et al. 

(2017). The authors used a text analytics framework to detect defects from online consumer reviews. Defect 

management in garment industry was discussed in Lee et al. (2013). The study used rule mining to extract 

defect patterns to develop a prediction approach for defects and identify their root causes. Defect prediction 

in software using a fuzzy logic approach was presented in Yadav and Yadav (2015). The authors proposed 

a phase-wise prediction model using the top most reliability relevant metrics. 

Simulation modeling has been widely used to study manufacturing systems. Simulation techniques, 

especially discrete-event simulation (DES), can effectively be used to capture and analyze the behavior and 

interactions of complex systems with less effort when compared to analytical models. Simulation can 

effectively be used to make accurate and sound decisions to identify the best alternative among several 

candidates (Aqlan et al. 2014). Jeddi et al. (2012) developed a DES model to study an automotive 

manufacturing system in an after-sale service shop. The goal of the study was to increase service rate while 

reducing the amount of waiting times which results in more customer satisfaction.  

Data analytics techniques can be used to study and predict defects in manufacturing environments. 

Studies have discussed the use of analytics techniques to analyze defects. For example, Slimani et al. (2015) 

developed an analytical method to calculate defect tolerance of logic circuits using probabilistic defect 

propagation. The study provided a case of single defect model to validate the proposed approach. Aqlan et 

al. (2014) discussed defect analytics in a server manufacturing environment utilizing structured and 

unstructured data analytics techniques.  

Integrating simulation models with data analytics provides an effective approach for managing defects 

by considering both current and future states of the system as well as performing scenario analysis and 

prediction. According to Kibira et al. (2015), such integration of data analytics and simulation methods can 

account for the multiple parameters and variables that affect system performance and allows for analyzing 

large volume and variety of streaming data. 

In this study, we propose an approach based on data analytics and simulation for defect management 

in manufacturing environments. This topic is of great importance because defects, if not managed properly, 

can cost companies millions of dollars. Furthermore, the availability of big data sets allow for utilizing 
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analytics models to predict and resolve the defects. The proposed approach is applied in a high-end sever 

manufacturing environment in which no single defect is allowed to pass to customer. To achieve this “Zero 

Defect” goal, multiple test processes are performed to ensure high quality and reliability of the servers.  

2 PROPOSED METHODOLOGY 

Shown in Figure 1, the proposed research methodology consists of two main parts: simulation and data 

analytics. Simulation is used to study the dynamics of the system and the impact of defects and defect 

management on the system performance. Analytics models are used to provide inputs to the simulation 

model based on utilizing historical data to identify defect patterns and predict appropriate resolutions for 

defects. The data analytics step consists of multiple steps. First, defect data is obtained from different 

resources including databases, Excel sheets, and manual records. The collected data is then pre-processed 

and cleaned to remove outliers and prepare the data for predictive models. Outputs from the developed 

models are used as inputs to the simulation models to determine the processing steps of parts. 

Simulation model development consists of the following steps: 1)  a conceptual model is developed for 

a selected part or product to identify process steps and decisions, 2) data is collected and analyzed to be 

used in the simulation model, 3) the developed simulation model is integrated with the outputs from the 

analytics model and the results are analyzed to study defects and their impact on the system. 
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Mfg. 

Environment Data Perprocessing

Build Conceptual 
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Collect Data for 

Simulation
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Model

Integrate Simulation 

with Predictive Models
Results and Analysis

Recommendations

 
 

Figure 1: Proposed research methodology. 

3 CASE STUDY 

The system discussed in this study represents a high-end server manufacturing environment. The company 

produces high-end servers that are built with leading edge technology. High-end server manufacturing 

environment is characterized by aggressive introduction cycles of new products (i.e., every two years), 

extreme demand skews, significant engineering changes, and high inventory holding cost. An overview of 

the high-end server manufacturing system architecture is illustrated in Figure 2. The manufacturing 

environment is based on configure-to-order processes which is a combination of build-to-plan and make-

to-order processes. This strategy, also known as fabrication-fulfillment model, provides the advantages of 

responding to customer orders rapidly and minimizing inventory holding costs. In the fabrication process, 

components or subassemblies are produced, tested, and assembled based on a projected production plan 

and are kept in stock until an actual order is received from a customer. In the fulfillment process, final 

products are assembled according to actual customer orders, such that no finished good inventory is kept.  

 According to Aqlan et al. (2014), the fabrication-fulfillment model provides the company with the 

flexibility of mass customization and the speed and efficiency of mass production. However, the 

randomness (i.e., random yields, system configuration, stochastic lead times, etc.) inherent to this model 

makes the inventory management and production planning a challenging problem. This can result in high 

inventory holding costs and missing opportunity costs. The high-end server manufacturing environment is 

characterized by skewed demand pattern where most of the customer orders arrive during the last month of 

the quarter. For any given quarter of the year, the arrival of customer orders is distributed as follows: 10% 
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of the orders arrive in the first month, 20% arrive in the second month, and 70% arrive in the third month. 

For the third month, 29% of the orders arrive in the first two weeks and 71% arrive in the last two weeks. 

For the last two weeks, 40% of the orders arrive in the first week and 60% arrive in the second week. 

Customer order starts a potential order and then a reserve order. The order is then moved to the next step, 

firm order exception, and then firm order. The order then gets processed and shipped to customer. If the 

order is cancelled by the customer, it is considered a cancelled order. If it cannot be shipped on time and 

customer is not willing to receive it late, it is considered a backorder. Otherwise, it is considered a missed 

order. Figure 3 shows the different stages of customer order in a high-end server manufacturing 

environment. Most of the orders get confirmed mainly in the last 2 weeks of the quarter. Furthermore, 85% 

of the total received orders get confirmed.  

 To deal with the uncertainty in customer demand, some of the key strategies that were implemented 

include 1) inventory sharing between different plants when there is a shortage of parts and components; 2) 

localized warehouse for suppliers at manufacturing sites; 3) flexible production planning for internal orders; 

4) order fulfillment dashboard; and 5) information technology. These strategies are also important for defect 

management. For example, if part shortage occurred as a result of defects, tested parts can be obtained from 

another plant. The use of order fulfillment dashboard makes it easy to track defects and failures in real time. 

  

 
Figure 2: Process flow of high-end server manufacturing. 
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Figure 3: Different stages of customer order in a high-end server manufacturing. 

 

The management of defects in manufacturing environments requires effective identification of the 

defects, finding proper solutions for these defects, and providing the required resources and tools to resolve 

the defects. Predicting and preventing the defects and quality issues before they can occur is the focus of 

quality risk management. Several tools are used for analyzing the defects including Risk Ranking and 
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Filtering (RRF), Failure Mode and Effect Analysis (FMEA), Hazard and Operability Analysis (HAZOP), 

and Fault Tree Analysis (FTA). Furthermore, automated systems have been proposed to identify defects 

and retrieve related solutions from the database. However, these systems do not consider the required skills 

and resources to solve the problem. 

Defect identification and validation of high end servers in a manufacturing environment requires 

extended hours of troubleshooting sessions from groups of diverse and high skilled individuals in multiple 

disciplines. The difficulty is in the defect resolution response time of each sector. Many factors such as the 

complexity of the configuration of the entity being tested and the quantity and frequency of failures 

currently being captured generate massive amounts of data. The use of learner produced data to develop a 

predictive model to discover information for predicting and advising engineers and technicians learning 

throughout the different sectors in a manufacturing environment is discussed in this study.  

One of the main parts of the server that fails frequently is the ‘Memory Card’ which is also known as 

known as Dual In-line Memory Module (DIMM), see Figure 4. DIMM is one of the three main components 

of the server node. This study will focus on studying the DIMM defects that can occur at any stage of the 

server production and test.  

 

 
 

Figure 4: Main components of high-end server node. 

3.1 Simulation Model 

The simulation model is developed to study the behavior of the system and analyze the defects and their 

resolutions. The first step of conducting the simulation study is to create a conceptual model that shows the 

different entities of the system and their interactions. Figure 5 shows the conceptual model for the 

simulation study discussed in this paper. As mentioned earlier, this study focuses on one of the main 

components of the server, which is DIMM. The flow chart in Figure 5 represents a high level illustration 

of the fab-fulfillment process of DIMMs. The process starts with forecasting the demand for DIMMS. The 

forecasts are used as basis for creating the fabbing plan. Arrival of actual customer order drives the 

fulfillment process in which tested DIMMs are pulled from the crib and assembled into the customer order. 

Data input for the simulation model was collected for three months (one quarter). The collected data 

includes cycle times, repair times, order arrivals, and defect rates. Based historical data and time studies 

were considered. Table 1 shows the statistical distributions of the simulation input parameters. For some 

attributes, historical data was collected and fitted into appropriate statistical distributions. For other 
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attributes, historical data was either not available or not accurate. In this case, we either conducted time 

studies or asked experts for the minimum, maximum, and most likely process times. The manufacturing 

site sends 34% of the tested DIMMs to the sister sites and the rest 66% are used to fulfill customer orders 

in the same site. Defect rates, root causes, and resolutions are determined by the analytics models. The 

simulation model was developed using Arena software (www.arenasimulation.com). Figure 6 shows 

historical data for the number of orders (both forecasted and actual) arrived each week for one quarter. 

Forecasting is performed by the Central Planning Engine (CPE) of the company. It can be seen that almost 

35% of the orders arrive in the last two weeks of the quarter. Table 2 shows the characteristics of the 

simulation model. The main characteristics of the simulation model are shown in Table 2. 
 
 

Demand Forecast
Production Plan
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Order DIMMS

Warehouse Super Crib

Fab Plan

DIMM Kitting Fab Test
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Customer OrderExternal
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Type 3
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Yes

Type 2 Repair

Type 2

Type 2

Figure 5: Fab-fulfillment process for DIMMs. 

 

Table 1: Input data for the simulation model. 

Simulation Input Distribution Data Source 
Order Arrival Time between arrivals (days): 0.999 + Expo(0.544) 

Orders per arrival: DISC (0.102,1, 0.328, 4, 0.607, 5, 0.820,  8, 1,  9) 

Historical Data 

DIMM Size Distribution DISC(0.001, 1, 0.003, 2, 0.18, 4, 0.47, 8,0.81, 16, 0.98, 32, 1, 64) GB Historical Data 

Fab Inspection Time  TRIA(10.1, 11.4, 12.0) minutes Time Study 

Fab Test Time TRIA(3.01,3.45,3.74) days Historical Data 

Node Assembly TRIA(10.02,11.12,12.21) hours Time Study 

Dekitting Time TRIA(15.3, 17.4, 19) minutes Experts 

Fab Repair Time  0.25*TRIA(3.01,3.45,3.74) days Experts 

Ful Assembly Time 0.52 + WEIB(1.63,3.84) days Historical Data 

Fulfilment Test Time 1.41 + 1.18 * BETA(1.5,1.76) days Historical Data 

Fab Inspection Time  TRIA (50, 60, 70) minutes Experts 

Ful Repair Time  0.25*[1.41 + 1.18 * BETA(1.5,1.76)] days Time Study 

Clean, Pack, and Ship TRIA(0.5, 0.65, 1) days Historical Data 
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Figure 6: Actual and forecasted orders for one quarter. 

Table 2: Simulation model characteristics. 

Characteristic Entities Resources Inputs Output Number of 

Replications 

Simulation 

Time 

 

 

 

Description 

 Customer 

Orders 

 Servers  

 Nodes 

 DIMMS 

 Assembly 

Stations 

 Test 
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 Repair 

Stations 

 Arrival rates 

 Number of 

workstations 

 Cycle times 

 Failure rates 

 Repair times 

 Throughput 

 Work-in-

process 

 Inventory 

levels 

 

 

 

30 

 

 

 

90 days 

3.2 Analytics Models 

We use data analytics to identify the defect rates in each production stage based on historical data and 

determine the defect resolutions by developing predictive models. Data was collected from four 

manufacturing sites: P, M, A, and S. There are 5173 defect instances for two main product types. This study 

focuses on site P as it accounts for 90.39% of the defects. Moreover, four suppliers (MV, MU, MS, and 

M1) will be considered because they account for 99.93% of the defects. Figure 7 shows the defect 

distribution for the sites, suppliers, memory size, and memory type. The collected data represents three 

years (or twelve quarters). 

In order to identify the percentage of DIMM defects for each production stage, we use the equation 

below where Dij represents the DIMM defect rate for product i in stage j. Table 3 shows the DIMM defect 

rate for the different production stages for the two main product types, where D1j represented the defect rate 

for product 1 and D2j represents the defect rate for product 2. DIMM defects can also occur in other 

production stages such as packaging, transportation, and picking. However, only the main stages which 

have high defect rates are considered in this study.  

 

𝐷𝑖𝑗 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒 𝑗 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐼𝑀𝑀𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖
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a. Defect distribution per site b. Defect distribution per supplier 

 

 
 

  

c. Defect distribution per memory size d. Defect distribution per memory type 

 

Figure 7:Distribution of defects based on historical data. 

Table 3: DIMM defect percentages for per product type and stage. 

Process Stage (j) D1j (%) D2j (%) 

 

Fabrication 

FAB0.5 0.00 1.00 

FAB1 0.56 1.70 

FAB2 0.82 1.40 

 

Fulfillment 

Fulfillment  Assembly 0.03 0.04 

Fulfillment Test 1.20 0.08 

 

Node/Kitting 

Node Assembly and Test 0.00 0.52 

Kitting 0.06 0.10 

Dekitting 0.12 0.24 

Other Other 0.17 0.04 
 

Based on the data analysis, the main root causes of the defects were identified as shown in Table 4. The 

table also provides the percentage, based on historical data, of each defect root cause category as well as 

explanation of the root cause. We also included Failure Analysis (FA) experts opinions about the most 

common solution for each defect root cause category (see Table 4, last column). The data analytics model 

for defects was developed in IBM SPSS Modeler software (www.ibm.com). To predict the defect solutions, 

we used Neural Networks (NN) model. NN models have been proven to be an efficient approach in many 

areas, such as aerospace, automotive, mathematics, engineering, medicine, economics, meteorology, 

psychology, neurology, and many others. There are many learning algorithms used for ANNs. The most 

popular algorithm is Backpropagation (BP) neural network, which was used in this study. BP neural 

network is also called Multi-Layer Perceptrons (MLPs) and is based on gradient descent optimization 

approach in which the total squared error of the output signals is minimized. Figure 8 shows the model 
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structure and the Neural Network nodes used to predict defect solutions. In Figure 9, Neural Network model 

and prediction results are presented. Eight input parameters were used to predict the defect solutions. The 

overall model accuracy is 87.1%. The highest accuracy, 95.52%, is obtained when a defect that should be 

“returned to supplier” is predicted as “Return to Vendor”. The lowest accuracy is obtained when a defect 

that should be “repaired” is predicted as “Repair”. For this case, there is a 42% chance that the defect is 

predicted as “Return to Vendor” and this is not a big issue because the repair of the defect can also be 

performed by the supplier.  

    Table 4: Main DIMM defect types and their description. 

Defect Code Percentage Meaning and Explanation Possible Causes Common Solutions (Based on 

Experts) 

 

DRAM CE 

33.52 DRAM Correctable Error 

(single bit) 

Cannot read from single bit 

Internal failure  Cannot be fixed onsite (on 

customer site, it can be fixed) 

DIMM returned to supplier 

 

DRAM UE 

10.81 DRAM Uncorrectable Error 

(multiple bits). Cannot read 

from multiple bits 

Internal Failure Cannot be fixed onsite 

DIMM returned to supplier 

 

CRC 

12.84 Cyclic Redundancy Check.  

MCM doesn’t get same 

readings  

Poor connections Poor connection may be 

caused by contamination 

and/or scratch 

 

LN SPARE 

14.55 Lane Sparing. DIMM fails 

when spare lane are used 

Poor connections Poor connection caused by 

contamination and/or scratch 

on the lanes 

 

VPD 

2.10 Vital Product Data 

Cannot read product data 

Contamination/ 

scratches. Supplier 

did not include data  

VPD pins are located in the 

very end corners of the 

DIMM 

MEM BUS 

UE 

5.72 Memory Bus Uncorrectable 

Error 

Poor connections Swapping cards to ensure the 

failure is caused by the lanes 

DMI 4.03 Device Maintenance Interrupt Poor connections Contamination and/or scratch 

POISSON 1.90 POISSON  

Lane failure 

Poor connections Contamination and/or scratch 

OVER 

TEMP 

2.74 Overheating of DIMM Poor cooling Scrap 

MECH 6.87 Mechanical failure Damage Scrap 

OTHER 4.94 Other types of defects Perform failure 

analysis 

Depends on cause 

 

 
 

Figure 8: Data analytics model in SPSS Modeler. 
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The overall accuracy, which is represented by the 

overall percent correct, of the neural Network model 

is 87.1%.  

Figure 9: Neural Network model (left) and results (right) for predicting defect solutions. 

3.3 Integrating Simulation and Data Analytics  

The simulation model was developed in Arena software. The model was run for 90 days (or one quarter) 

and the results obtained include cycle time, throughout, and defects. The simulation model was verified and 

validated by comparing the simulation results to the real system output. The measures used for this purpose 

are throughput, for both servers and DIMMs (see Figure 10). Confidence level, α,  value of 0.05 was used. 

The p-values are greater than 0.05 which indicates that the simulation results are not statistically different 

from the real system data. 

 

Server  Throughput DIMM Throughput 
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X
_
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131501310013050130001295012900

X
_
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DIMMs

Boxplot of DIMMs
(with Ho and 95% t-confidence interval for the mean)

 
 

Figure 10: Statistical results for simulation model validation. 

Simulation results for DIMM defects were used as inputs to the analytics model. The defect parameters 

obtained from simulation include: process, stage, DIMM type and size, supplier, part number, product 

model and types, operation, and root cause for the defect. Based on these parameters, the Neural Network 

model predicts the defect solution as shown in Figure 11. The Figure shows sample data for ten defects 
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obtained from simulation. The last two columns include the prediction and corresponding confidence values 

obtained by the Neural Networks model. The prediction of the defect solutions is used to determine whether 

the DIMM should be scrapped, repaired, or returned to supplier.  

 

 
Figure 11: Simulation results for DIMM defects and associated analytics predictions. 

4 CONCLUSIONS 

This paper presented a framework for integrating simulation and analytics models to study and analyze 

defects in manufacturing environments. Simulation models were effectively used to study and analyze the 

behavior of the manufacturing system taking into consideration the uncertainty and randomness. For defect 

prediction, analytics models were utilized. Both simulation and data analytics were combined to provide an 

integrated approach for defect management and resolution. A case study from a high-end server 

manufacturing was provided. Results from the case study showed that both simulation and data analytics 

can be effectively integrated for managing defects in manufacturing. 

Future work will focus on automating the integration process by developing an interface that connects 

simulation and data analytics models. Furthermore, the system will be designed to run in real time in order 

to provide decision support for the failure analysis workers.   
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