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ABSTRACT 

The quality of the project plan created is essential for 
realizing a construction project. This is a big challenge 
for planners, because there are many constraints to be 
considered. The problem to be solved is known as the 
multi-mode resource-constrained project scheduling 
problem (MRCPSP). This paper presents a multi-agent 
approach in which resources and processes are 
represented as collaborative agents. Autonomous 
process and resource agents register themselves on a 
central blackboard where resource allocation to 
activities is negotiated. As expansion to prior works, a 
learning agent is integrated to improve the solutions 
created. A discrete-event simulation implements the 
model and it is evaluated with standardized project plans 
from the field of operations research. 
 
 
INTRODUCTION 

Insufficient construction-project planning often leads to 
overall progress delays and cost overruns. Most projects 
are nonetheless scheduled manually without using 
optimization tools. Hence, quality depends on the 
planner's experience and the available time. That's why 
project plans are often generated without much detail or 
consideration of constraints, which are primarily 
predecessor/successor dependencies, and limited 
resources and space. 

The influence of unpredictable circumstances is also 
important for project management in construction. The 
former lead to delays and necessitate rescheduling, but 
the effect of delayed processes cannot be investigated in 
advance in detail without a computer-based tool. 
 
Most project scheduling software uses methods such as 
Program Evaluation and Review Technique (PERT) or 
Critical Path Method (CPM) (Maroto and Tormos 
1994). None of those methods considers resource 
constrains. A method for project scheduling in 
construction dealing with these topics therefore has to be 
developed, which 

- considers all types of constraints in 
construction, 

- is adaptable to specific situations, and 
- enables easy rescheduling after unpredictable 

incidences. 
 
PROBLEM STATEMENT 

The general problem to be solved is known as the 
resource-constrained project scheduling problem 
(RCPSP) or the multi-mode resource-constrained 
project scheduling problem (MRCPSP), because every 
activity can be executed in different ways (modes). 
These modes' process time and required resources differ. 
The problem can be described generally as follows: 
 
J: number of activities/jobs 
j: activity ID with j = {0, …, J+1} 
M: number of modes for each activity j 
djm: duration of activity j executed in mode m ∈ M 
Sj: successors of activity j 
Pj: predecessors of activity j 
R: number of different types of renewable resources 
N: number of different types of nonrenewable 

resources 
rjmk: renewable resources of type k ∈ R required by 

activity j in mode m  
njml: nonrenewable resources of type l ∈ M required by 

activity j in mode m 
 
Jobs having IDs 0 and J+1 are dummy activities with 
neither a processing time nor resource requirements 
(d0 m|J+1 m=0, r0 mk|J+1 mk=0, and n0 ml|J+1 ml=0). They serve 
as the project's start and end. 

Minimizing a project's makespan while taking care 
of the given constraints is the goal. The following 
variances can be used to achieve this: first is the mode in 
which an activity executes; second is each process's 
starting time. That the starting time's 
predecessor/successor dependencies aren’t violated has 
to be guaranteed. 

The number of resources used in the project plan 
created is never allowed to exceed the given number of 
renewable and nonrenewable resources. The chosen 
solution is invalid if it does so. 
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Some simplifications have to be made for upcoming 
parts of the paper: 

- The execution of started activities cannot be 
interrupted. 

- An activity's chosen mode cannot be 
subsequently changed. 

- An activity's resources remain assigned until 
the job is finished. 

- The number of available resources cannot be 
changed during the project time. 

 
However for the intended use in construction, these 
restrictions have no big influence or can be considered 
by adjusting the input data (e.g., splitting an activity up 
into two or more parts with individual features). 
 
Different schedules are needed during development and 
for tests. Kolisch and Sprecher created standardized 
examples for this purpose with their project generator, 
ProGen (Kolisch and Sprecher 1997). The plans fulfill 
all constrains mentioned and are built up systematically 
for selected parameters as Table 1 shows. A particular 
parameter is changed for every type of plan while the 
rest remain fixed. This allows selective investigation of 
each parameter's influence on the result. 
 

Table 1: Structure of the Project Plans Used 
 

Name Parameter 
 J M R N 
j10 10 3 2 2 
j16 16 3 2 2 
j30 30 3 2 2 
m1 16 1 2 2 
m5 16 5 2 2 
n0 10–20 3 2 0 
n3 16 3 2 3 
r1 16 3 1 2 
r5 16 3 5 2 

 
Knowledge of the minimal project duration is an 
essential advantage of the instances that Kolisch and 
Sprecher created. The quality of the method used to 
solve the MRCPSP can thus be compared and evaluated. 
 
 
DIFFERENT APPROACHES TO SOLVING THE 
RCPSP AND MRCPSP 

Blazewicz et al. proved that this problem is np-hard 
(Blazewicz et al. 1983). An optimal solution is hence 
nearly impossible to find within a reasonable amount of 
time. For smaller projects, approaches such as branch-
and-bound (Johnson 1967) or lower bounds (Heilmann 
and Schwindt 1997) can be used to find the optimum. 
However, the solution space grows very fast with larger 
projects and these approaches become inefficient. That's 
why various heuristics and meta-heuristics were 
developed and adapted for the (M)RCPSP. Among these 

are simulated annealing (König and Beißert 2009, 
Józefowska et al. 2001), genetic algorithms (van 
Peteghem and Vanhoucke 2010, Senouci and Al-
Derham 2008, Toklu 2002), ant colony algorithms (Li 
and Zhang 2013, Christodoulou 2005), or particle 
swarm optimization (Jarboui et al. 2008, Lu et al. 2008, 
Zhang et al. 2006). Despite their different basic ideas, 
they all create new combinations according to different 
rules, but also randomly, to try to find a better solution. 

Since creating every possible solution within an 
acceptable time isn't possible, finding the optimal 
solution it is not guaranteed. 
 
 
MULTI-AGENT SYSTEM FOR THE MRCPSP 

Using a Multi-Agent System (MAS) is a different 
approach to solving this problem. The main benefit is 
being able to split the whole problem into smaller, easier 
parts. Furthermore, the latter are more robust and 
flexible than those in traditional methods (Davidsson et 
al. 1994). The agents themselves are also easy to 
understand and create due to the small number of 
capabilities. 

A few MAS implementations exist for the resource-
constrained scheduling problem. Horenburg presented a 
MAS for the RCPSP with agents for each activity as 
well as for each resource. Resource allocation to jobs is 
controlled by priority rules (Horenburg 2014). Knotts et 
al. introduced another agent-based framework for 
solving the RCPSP in minimal project duration (Knotts 
et al. 2000). Resources aren’t modeled as agents in this 
case. 

Wauters et al. implemented a new aspect with the 
system's ability to learn (Wauters et al. 2011). Selecting 
the next activity is realized in two steps for solving the 
MRCPSP. The most important job is first identified, 
then one of its modes is chosen. This means 
consequently that not all modes of the activities have the 
same chance to get executed. If the mode of an activity 
with the highest priority cannot be executed, it is not 
possible to select a mode from an alternative activity, 
although it might be a better choice than the next mode 
from the previously chosen activity. With this issue 
deals the following presented MAS by including all 
possible modes in the process of resource allocation. 
Hence, only one step is needed for choosing the next 
mode of an activity and there might be potential for 
improvements of a Multi-Agent System. 
 
Framework of the MAS 

This section will present the structure of a multi-agent 
system for the MRCPSP. Figure 1 shows the different 
types of agents and communication. Different types of 
agents represent activities as well as renewable and 
nonrenewable resources. The central element is the 
blackboard. Resource allocation to current activities is 
negotiated there. This architecture simplifies 
communication (compared to the complexity required 



 

 

when all agents have to communicate with each other) 
and promotes efficient, transparent resource allocation. 
 

 
 

Figure 1: Multi-Agent System 
 
All of the jobs' executable modes register themselves on 
the blackboard with resource requests as soon as their 
predecessors finish. All available resources are 
simultaneously inscribed there too. Every time a job 
finishes, this agent informs all the former's successors 
about the completion. 
 
Information about duration, resource requirements, and 
previous/subsequent activities enables every process 
agent to act in the described way. Beside these 
characteristics, every agent can act on and communicate 
with its environment. As already mentioned, the most 
important capability is being able to register on the 
blackboard with the calculated priority value. Methods 
also exist for adjusting status and recording data for 
statistics. 
 
Priority Rules for Resource Allocation 

Insufficient resources typically exist for all of activities 
registered on the blackboard. To identify the most 
crucial current jobs, each process agent transmits a 
priority value. The activities' negotiation order is 
calculated based on this value. Whether enough 
resources are available at the moment is successively 
checked for each. If not, an activity is postponed until 
the next negotiation round. That the limits of 
simultaneously active renewable resources are never 
exceeded can be guaranteed this way.  

The situation is different with nonrenewable 
resources. Subsequent activities cannot be started once 
the limit is reached, and the search for a solution stops 
prematurely. Due to the way the project plan is created, 
a valid combination of modes is not guaranteed. That an 
early negotiation can cause too many nonrenewable 
resources to be used is unavoidable with local decisions. 
The project is nevertheless planned completely for 
getting an (invalid) starting combination, which can be 
improved later. 

 
Different priority rules for the MAS introduced to 

solve the MRCPSP were presented in a previous paper 
(Wenzler and Günthner 2015). They feature different 
activity attributes to compute the priority value  such as 
duration, resource requirements, or number of 
successors. 

The LPF_AVG (Longest Path Following) rule is 
chosen in the sequel. This was shown to provide - 
together with others - the best results and is defined as 
follows: Every activity determines the duration of its 
successor processes. The activity with the biggest value 
receives the highest priority. Since priority calculation 
occurs before or during project planning itself, the 
longest path has to be identified without resources. 
Appendix “_AVG” defines how to handle the different 
modes of every activity in the path. Every activity can 
be executed in only one mode, but which one will be 
chosen is unknown in advance. So the average of all 
modes is assumed for an activity's duration in this 
priority rule. 
 
Introducing a Learning Agent 

As mentioned, the first simulation run may be unable to 
find the optimal solution. That’s why a new agent type, 
the learning agent (LA), was incorporated into the 
existing framework. Figure 2 shows its communication 
with other agents. 
 

 
 

Figure 2: Multi-Agent System with Learning Agent 
 
The learning agent can analyze the plan created so far 
and influence the process agents’ mode choices. The LA 
subsequently restarts the planning procedure and 
compares the result with previous solutions. 
 
 
THE LEARNING AGENT’S FUNCTIONALITY 

The learning agent (LA) has two main tasks, which are 
executed in the order listed: 

- Create a feasible solution that doesn’t exceed 
resource limits. 



 

 

- Improve a feasible solution as far as possible. 
 
The LA is active until a stop criterion is satisfied. This 
can happen in several different ways: 

- The optimum is found. Therefore, the best 
solution has to be known. Projects are usually 
so large that the optimum cannot be 
determined. For plans from the PSPLIB, which 
are used in this paper, the minimum makespan 
for each schedule is known and the LA can use 
this knowledge. 

- One type of optimization rule is used 
successively more often than a defined limit. 

- No improvements are made for too many 
consecutive times. 

 
With the last two rules, the calculation will terminate 
whenever the LA cannot improve the solution with the 
defined settings. 
 
Creating Feasible Solutions 

A valid solution - even one with a longer makespan - is 
better than exceeding the constrains. Hence, the LA’s 
first task is to generate a feasible plan. 
 
The heuristic of the learning agent to get an acceptable 
solution operates as follows: An (invalid) solution is 
needed first. Then each activity’s modes are cycled 
through to check for possible nonrenewable-resource 
improvements. The LA obeys the following rules to do 
this: 

- The requirement for at least one type of 
nonrenewable resource is less stringent in the 
new mode than in the current one. 

- The amounts of other types of resources used 
must not grow - unless enough reserve exists. 

- The limits imposed on other types of resource 
may not be exceeded. 

 
The result of this procedure depends on the initial 
solution. A new combination of modes will be chosen if 
a feasible solution was not generated. The mode with the 
highest savings is selected to avoid the previous 
bottleneck for the crucial type of nonrenewable 
resources.  
 
As soon as a feasible solution is found, the LA transmits 
the defined modes to the process agents and the process 
of creating a schedule is started again. 
 
Solution Improvement 

Any feasible solution generated is unlikely to be the 
optimal solution. The LA is hence tasked with 
improving it via selective adjustments. Changing the 
mode, the earliest starting time, and the priority rule are 
possible adjustments. 
One important solution analysis tool is identification of 
the critical path and the floats. If the value of an 

activity’s float is greater than 0, this activity can be 
delayed up to this value without having any influence on 
the remaining schedule. Every activity with zero float is 
part of the critical path. With this information, searching 
the activities the adjustment of which probably effects 
the schedule most is possible. The following rules are 
implemented in the current state of research: 

- Change some activities to a mode with shorter 
duration. The number of selected activities can 
vary. For every activity the ratio of duration to 
resource requirement is calculated and for 
those activities, whose value is above the 
average, a new mode is chosen. 

- Shift some of the activities to a later start time 
in case they have enough float. The freed 
resources may allow other activities to start 
earlier. 

- Execute some activities in a mode with less 
demanding resource requirements so other jobs 
can use more resources or start earlier. Chosen 
are those activities which save more resources 
than the average by changing the mode. 

At this point, no rule uses random for changing the 
parameters. For that reason, every decision is 
understandable. 
 
RESULTS 

The MAS presented was implemented in a discrete-
event simulation (DES). Monte-Carlo simulations were 
conducted to verify and validate the model as well as to 
provide reference values. Priority values are therefore 
generated randomly. Several different priority rules were 
evaluated in the next step (Wenzler and Günthner 2015). 
The “LPF_AVG” rule produced the best results so this 
rule was chosen in this paper (labeled “without LA” in 
tables or figures). 
 
Comparison with the MAS without LA 

This section will present the effect of activating the 
learning agent on the simulation results. The first goal 
for which the learning agent is implemented is to reduce 
the number of invalid schedules. Table 2 lists the 
number of projects for which no feasible solution was 
found. 
 

Table 2: Number of Infeasible Projects 
 

Type Total number 
of projects 

Infeasible solutions 
 Without LA With LA 
j10 536 315 0 
j16 550 308 0 
j30 552 300 0 
m1 640 0 0 
m5 558 309 4 
n0 470 0 0 
n3 600 372 15 
r1 553 306 0 
r5 546 286 0 



 

 

Without the active LA for every type of plan, the MAS 
left a number of projects unsolved. The ratio is up to 
62% except for m1 and n0, where all plans are solvable 
because of their structure. 

Table 2 shows that a valid schedule was created 
using the LA for almost every project. The only 
exceptions are the most complex plans, m5 and n3, with 
4 and 15 unsolved plans respectively. All possible 
combinations of modes for each activity were searched 
by enumeration to further investigation of why the MAS 
with LA still cannot solve some of the projects (Table 
3). The “Feasible combinations” column represents the 
number of different combinations that can be created 
without exceeding nonrenewable-resources limits. 
 
 

Table 3: Number of Feasible Combinations of the 
Unsolved Schedules 

 
Type Number Feasible 

combinations 
Possible 
combinations 

n3 1_6 1 43 046 721 
 3_3 189 43 046 721 
 3_6 27 43 046 721 
 6_3 4 43 046 721 
 6_4 6 43 046 721 
 6_6 1 43 046 721 
 6_7 4 43 046 721 
 6_8 4 43 046 721 
 7_7 4 43 046 721 
 8_2 16 43 046 721 
 8_4 4 43 046 721 
 36_7 18 43 046 721 
 36_8 124 43 046 721 
 36_9 1881 43 046 721 
 36_10 2 43 046 721 
m5 1_1 4 1 440 000 000 
 1_2 2 35 156 250 000 
 5_4 256 152 587 890 625 
 36_9 1104 152 587 890 625 

 
The results show that are only a few possible ways exist 
to get a feasible schedule. Sometimes the heuristic has to 
find the single way out of more than 43x106 
possibilities, as in case of the n3 plans, or one of two 
solutions from 35x109 combinations theoretically 
possible for project-type m5. 

The heuristics for solving these projects correctly 
have to be improved in future work. Integrating 
enumeration is not an option because of excessive 
computing time especially for large projects. 
 
Table 4 shows the results of the LA’s second task: 
solution improvement. The number of optimal solutions 
increased only slightly with the defined stop criteria for 
plan types j16, n3, and r1. However, a lot of the 
remaining projects finished within a shorter time. 

Table 4: Project-Makespan Improvement 
 

Type Optimal solutions Better solutions 
with LA  without LA with LA 

j10 112 112 351 
j16 112 113 360 
j30 116 116 366 
m1 400 400 0 
m5 96 96 305 
n0 231 231 88 
n3 107 110 393 
r1 136 137 337 
r5 136 136 353 

 
The figures below show detailed results for some project 
types. The number of tested schedules having a certain 
deviation from the known optimum can be seen there. 
The bar with “0” deviation represents the optimal 
solutions, while the declared value of time units is also 
needed for completion of the other plans. The last bar 
shows the number of infeasible solutions if any exist. 
 

 
 

Figure 3: Detailed Results for Project Type n0 
 
Nearly 50% of the plans specified n0 can be solved 
optimally with the MAS (Figure 3). This can be 
achieved even without the LA; however, the other 
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results improve with the active LA. The largest 
deviation is reducible from 19 to 11 time units. The 
number of nearly perfect solutions with deviations of 1 
to 3 also rose significantly. 
 
The n3 projects' greater complexity is visible in Figure 
4. More than 60% irregular schedules exist without the 
LA. In contrast, only 15 unsolved projects remain with 
the LA. The number of optimal solutions or of those 
with small deviations from the optimum also increased. 
The main point for further improvements is the large 
number of schedules for which the heuristics found a 
feasible but not optimal solution. 
 

 
 

Figure 4: Detailed Results for Project Type n3 
 
Comparison with other Approaches 

In Table 5 the results of the MAS with the priority rule 
“LPF_AVG” for the datasets with 10 to 20 activities 
(j10-j20) are shown. For those, the comparison with 

other approaches is possible. The table shows the 
average deviation from the known optimal solution. The 
actual performance of the MAS is not as good as those 
of the alternative methods. This can be explained by the 
following issues. Firstly, the LA creates feasible 
solutions without giving the project duration top 
priority. These solutions have in general a large 
makespan (up to 200% of the optimal duration) and so 
even a few solutions with a long duration have a strong 
influence on the average deviation. To solve this 
problem, the LA has to improve the initial solution by 
changing some parameters. In the current state, only the 
mentioned rudimental rules are implemented and after 
about 10 iterations the solutions aren’t changing 
anymore. Therefore the heuristics have to be improved 
to create a larger solution space. 

The positive aspect of the actual results is, that the 
average deviation is nearly constant, although the size of 
the datasets increases.  
 
 
CONCLUSION 

This paper presents a multi-agent approach to solving 
the MRCPSP. An individual collaborative agent, a new 
type of which (learning agent) was introduced, 
represents every activity and resource. It analyses a 
previously generated solution and influences the process 
agents' decisions concerning the chosen mode using the 
dependent resource requirements or the starting time.  

The MAS is implemented in a discrete event 
simulation environment and tested with standardized 
projects from the field of operations research. Hence, 
these projects' optimal solution is known, and the quality 
of the project plans created could be evaluated. 

With the learning agent (LA), the high quota of 
irregular project plans can be reduced significantly and 
the number of (nearly) optimal solutions increased 
compared to the MAS without learning agent. 

The presented MAS is a preliminary result. The 
learning agent has to be improved further to create better 
solutions with as little rescheduling as possible by the 
end of the project. 

 
 

 

 
Table 5: Comparison with other Approaches for the MRCPSP – Average Deviation from Optimum (%) 

 
 j10 j12 j14 j16 j18 j20 
LPF AVG 41.95 41.44 43.05 44.45 45.16 45.48 
Li and Zhang (2013) 0.09 0.13 0.40 0.57 1.02 1.10 
Wauters et al. (2011) 0.05 0.08 0.23 0.30 0.53 0.70 
Van Peteghem and 
Vanhoucke (2010) 

0.01 0.09 0.22 0.32 0.42 0.57 

Jarboui et al. (2008) 0.03 0.09 0.36 0.44 0.89 1.10 
Józefowska et al. (2001) 1.16 1.73 2.60 4.07 5.52 6.74 
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Some specific additions have to be made for use in 
construction. First, a new area agent allows the limited 
space on a construction to be taken into account site. 
That leads to new constraints, which have to be 
considered. 

A type of resource agent for shared resources is 
missing. Several processes use some machines 
simultaneously (e.g., cranes) necessitating another agent. 
Include the emerging interactions between participating 
activities in the MAS is possible this way. 

Finally, real project data will be used to demonstrate 
applicability. 
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