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ABSTRACT 

Agents are self-contained objects within a software model that are capable of autonomously interacting 
with the environment and with other agents. Basing a model around agents (building an agent-based 
model, or ABM) allows the user to build complex models from the bottom up by specifying agent 
behaviors and the environment within which they operate. This is often a more natural perspective than 
the system-level perspective required of other modeling paradigms, and it allows greater flexibility to use 
agents in novel applications. This flexibility makes them ideal as virtual laboratories and testbeds, 
particularly in the social sciences where direct experimentation may be infeasible or unethical. ABMs 
have been applied successfully in a broad variety of areas, including heuristic search methods, social 
science models, combat modeling, and supply chains. This tutorial provides an introduction to tools and 
resources for prospective modelers, and illustrates ABM flexibility with a basic war-gaming example. 

1 INTRODUCTION 

This tutorial provides background, application context and a how-to-get-started look at the simulation 
paradigm known as agent-based modeling (ABM). Those with familiarity of the field might note that the 
term ABM is not the standard term.  Other labels for the paradigm we discuss include agent-based 
simulation, complex adaptive simulation systems, even object-oriented simulation.  For this tutorial we 
use the ABM term throughout but discuss some of the rationale for use of the other terms.  
 We start the tutorial with some definitions of ABM and provide a view of the background work that 
has led to the current state of ABM.  This background is not intended to be a definitive history of ABM, 
as once again such a history will have many versions based on the background and fundamental 
simulation beliefs of the writer of the history.  Rather, we recount some of the influences we view as key 
to the development of the current ABM paradigm. 
 We then move onto recounting some of the applications of ABM.  Simulation is a powerful, general 
purpose analytical tool, more often than not listed as one of two favored tools among analysts (statistical 
analysis or regression modeling being the other favored tool).  The general applicability of simulation, 
and the performance of modern computers, means simulation can be used in not only the descriptive role 
for which it is generally intended, but also in a prescriptive role with the addition of simulation-based 
optimization modules.  Again, the application review is not comprehensive but selective, intended to 
motivate the wide-ranging applicability of ABM. 
 Finally, we provide some how-to-get-started information.  Creating a simulation from scratch is 
computationally intensive.  Adding ABM capabilities add further computational infrastructure.  Avoiding 
the need to create the home-grown computational environment means using one of the many publically 
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available ABM infrastructures.  We review some of these infrastructures and focus the getting starting 
portion of this tutorial on use of the NetLogo environment, one that is extremely popular and quite useful. 

1.1 Background 

An early influence on ABM was non-computational; the early theories focusing on human behavior in 
complex societal systems.  Researchers such as Adam Smith and Donald Hobbs were attempting to 
understand emergent behavior in systems using individual human behavior as the catalyst for the system 
behavior (Heath and Hill 2010).  If we turn this approach around, and use the model to observe the 
emergent behavior instead of using the model to explain the behavior we have a key characteristic, and 
benefit, of ABM.   

The introduction of the computer revolutionized how to conduct quantitative analysis. The computer 
could quickly accomplish calculations that might overwhelm the human operator, plus the computer could 
do them more accurately.  The computer also introduced new models of thought.  Von Neumann noted 
that computers could “break the present stalemate created by the failure of the purely analytical approach 
to nonlinear problems” (Von Neumann 1966) and thereby give the researchers a means to empirically 
develop new theories.  This insight from 50 years ago captures one of the appeals of ABM; the ABM can 
be used as a computational search machine from which one might derive theories of behavior among 
system entities, theories that can then be tested and proven using conventional methods.   

Arguably, cellular automata (CA) are viewed as the computational precursor to the ABM.  An intent 
of a CA is demonstrate complex behavior and interactions among neighboring entities using simple rules 
of interaction isolated within each of the simple entities; complexity through simplicity.  As discussed in 
Heath and Hill (2010), an early but very notable CA model was the Game of Life by Conway (as 
recounted in Langton 1989).  The Game of Life is a checkerboard in which the entities (each cell) change 
color using one of three simple rules based on their interaction with neighboring cells.  Despite the 
simplicity, research soon uncovered that certain starting conditions on the board led to differing patterns 
of behavior, none of which were programmed into the CA; emergent behavior viewed by Bonabeau 
(2002) as a crucial aspect of ABM.  An interesting offshoot of this early CA research is research efforts to 
replicate natural systems based on simple rules.  Examples include capturing the flocking behavior of 
birds, the movements of crowds of people, even the behavior of waves in a body of water. 

The CA research reinforced a key concept from complexity and complex systems, sensitivity to initial 
conditions.  Lorenz (as recounted in Gleick 1987) was the first to find the condition using his models of 
weather.  Other complexity concepts include the use of simple rules to mimic complex behavior and the 
concept of a strange attractor, areas of behavior predictable over the long term despite short-term 
unpredictability.  A limiting aspect of the CA for more general analytic use was the game-board 
environment of the entities.  Naturally, an extension was to free the entities from the game-board and 
allow their movement and interactions in a wider field of play.  This can be seen as the step towards the 
complex adaptive system (CAS) simulation (CASS). 

The field of CAS draws more inspiration from the biological world (North and Macal 2007) than do 
precursor methods.  Within the defined playing field for the simulation, entities are allowed to roam based 
on some purpose and interact with other entities while having some awareness of the state of the field of 
play.  The entities within these CAS models were dubbed “autonomous agents” due to their propensity to 
react to the other entities and the environmental conditions without the need for some higher-level 
guidance within the simulation. 

Jennings, Sycara, and Wooldridge (1998) define an autonomous agent as: 
 
• situated within some environment from which it receives sensory input; 
• autonomous in the sense that human intervention is not required for the agents to proceed;  
• flexible in that the agent perceives and reacts to its environment and further exhibits goal-directed 

behavior; and 
• operating on its own thread of execution. 
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As recounted in Hill and Heath (2010), properties of a CAS include: 
 
• Aggregation – entities can be grouped such that a group shares traits and behaviors and can thus 

be treated the same; 
• Nonlinearity – the property stemming from CAS roots in complexity such that the system 

behavior is not the sum of the individual entity behavior meaning the behavior observed at the 
system level is not directly attributable to individual entities; and  

• Diversity – the property that the agents are not homogeneous (as likely common in the CA 
modeling paradigm) and it is this diversity of entities in the model that can bring about the richer 
suite of interactions leading to the system level behavior. 

 
Arguably, the development and extensive use of CAS models brought about the rapid growth and 

acceptance of the ABM modeling paradigm.  The CAS approach allowed a wide range of applications, 
from social science (Epstein and Axtel 1996) through personnel modeling (Hill and Gaupp 2006), to 
combat analysis (Ilachinski 2000).  Moreover, the closer alignment of the simulated field of play, as 
compared to the checkboard field of CA, meant easier acceptance of the abstraction of the real system 
played in the simulation. Many of the general purpose tools in the ABM realm closely align with the CAS 
modeling paradigm.  A survey of Winter Simulation Conference proceedings will find a number of such 
instances to include an agent-based simulation track. 

The CAS modeling paradigm is really the basic component of the general ABM approach.  One might 
consider the ABM to encompass the CA and CAS paradigms but allow for richer modeling scenarios.   

2 GENERAL DEFINITIONS AND GUIDELINES 

2.1 Defining What We Mean by an ABM 

A good starting definition of ABM comes from a Winter Simulation Conference tutorial, ABM “is a 
modeling and computational framework for simulating dynamic processes that involve autonomous 
agents.” (Macal and North 2014).  This however is quite generic.  Some argue that an ABM is nothing 
new and is just another discrete event simulation with simulation entities executing more complex rules.  
This of course is a true statement as well.  The dilemma arises in the subtle distinctions between what one 
considers a simulation and what one considers an agent.   
 From Macal and North (2014) an ABM has 
 

1. Agents complete with their attributes and behaviors; 
2. Agent relationships and methods of interactions to include definitions of whom the agents can 

interact with; and 
3. The agent environment in which the agents exist with the other agents in the system. 

 
The list above from Macal and North helps define the ABM but does not help much in distinguishing 

the ABM from any other discrete-event simulation.  Thus, we would propose the following: 
 
Definition 1 An ABM is a simulation framework, using primarily the discrete-event scheduling 

paradigm, where the entities within the simulation have a greater degree of autonomy in movement and 
decision making than generally found in simulation models.  

 
We can clarify the definition with examples.  Consider a discrete-event, network-based simulation of 

a shopper within a store.  The shopper entity will follow certain rules and visit certain stations upon 
entering the system and when complete will leave the system.  Interactions with other shopper entities 
might be limited to knowledge of line lengths or number of shoppers in a section of the store.  An ABM 
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version of the same simulation may provide the shopper entity with a set of goals to achieve, each of 
which might have varied levels of performance and the shopper entity might survey the immediate 
environment to determine subsequent steps and note the behaviors of other shopper entities using that 
knowledge to modify its own behavior.  Thus, the difference between the simulation paradigms is subtle.   

Structurally, there are other differences.  Typically agents are self-contained, such as objects or very 
object-like, such that their memory is uniquely their own, that memory is used to fire off their rules of 
behavior, behaviors whose purpose is to attain some goal internal to that agent.  Quite often the ABM is 
built upon some object-oriented simulation framework as such a framework facilitates the encapsulation 
of the agent behavior rules and memory. 

Heath, Ciarallo, and Hill (2012) point out other aspects that differentiate the ABM as a modeling 
paradigm.  They note that all simulation modeling endeavors require abstracting the real-world system or 
process into a conceptual form and then into a executable form.  The ABM requires a different abstraction 
process focused on the goals and decisions of the distributed, autonomous entities in the system.  The 
ABM is not necessarily going to realize a network flow of the entities through the system (which is quite 
a common flow model in discrete-event simulation).  Finally, the entities within the ABM are provided 
some level of internal intelligence. 

2.2 When to Consider Using an ABM 

There are a variety of rules as to when to use an ABM.  These rules, compiled from works such as Macal 
and North (2014), North and Macal (2007), as well as some of the works of the authors already cited, are 
the following.  Consider using the ABM modeling paradigm when: 

 
• The system or process is representable by distributed, interacting agents; 
• The decisions required and the rules by which an entity is to make these decisions, are well 

defined; 
• The agent behavior is a focus of the study and in particular how those behaviors might lead to 

the system-level emergent behavior; 
• Adaptation within the system by entities within that system are a focus of the work; 
• When adaptations by entities might affect other entities thereby changing the nature of the 

system under study is an aspect of the study of interest. 
 
Another useful device for determining when to use an ABM is the taxonomy found in Heath, Cirallo 

and Hill (2009).  The taxonomy was intended to guide the amount of validation required for the ABM.  
However, it serves well in defining whether or not to consider the ABM paradigm.  

Each of the roles in Figure 1 are a function of the level of understanding of the real system.  For a 
Predictor simulation, the real system is quite well known, well understood, and one simulates the system  
to build useful predictions for the system. For the Moderator, the system is less well understood, the 
model is incomplete and is executed to gain insight about the system.  Finally, in the Generator role, little 
is known about the true system so the purpose of the simulation is to develop some fundamental theories 
about how the system behaves.  An ABM approach is an excellent option for simulations in the Generator 
role and likely a preferred option for simulations in the Mediator role. The ABM approach functions well 
in a Predictor role but other simulation paradigms are likely more efficient and effective. 
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Figure 1: Purpose of the Simulation Taxonomy useful for determining when to use an ABM (Heath, 
Ciarallo, and Hill 2009). 

3 APPLICATIONS OF ABM 

There has been a wealth of applications of ABM.  Table 1 in Macal and North (2014) list 15 separate 
areas of application with examples in each.  These include agriculture, air traffic control, economics, 
emergency evacuation, healthcare and social behavior.  Heath, Ciarallo, and Hill (2009) surveyed 279 
applications of ABM in compiling their survey of ABM modeling practices with a focus on model 
validation.   

A special issue of Mathematics and Computer Modelling focused on agent-based models.  Elliston 
and Cao (2006) used an ABM to examine managerial decisions affecting fishery operations while Soulie 
and Thebaud (2006) examined the impact of regulatory measures on the same industry.  Purnomo and 
Guizol (2006) examined foresting operations while Bah et al. (2006) examined land and resource use 
policies near oil drilling areas.  Georgoudas, Sirakoulis, and Andreadis (2007) modeled earthquake 
activity.  The Journal of Simulation has published two special issues on the subject, one in 2010 and 
another in 2013.  Numerous other journals have similarly had special issues on the use of ABM within 
their domain. 

The next subsections provide a more detailed review in specific application domains of ABM. 

3.1 Social Sciences 

ABM of sociological phenomena is not new; one of the first ABMs examined racial segregation in 
housing (Schelling 1971).  Advances in computer processing have enabled greater use of this technique in 
the last two decades.  Epstein and Axtell’s (1996) Sugarscape marked the beginning of a research 
paradigm termed Generative Social Science (GSS).  The key desideratum of GSS is the use of the 
simplest possible set of rules to explain an emergent behavior of interest (Epstein 2006).   
 GSS has gained popularity as a methodology, and examples of its application can be found in many 
of the social sciences including economics (Zhang et al. 2010; Roozmand et al. 2011), archaeology 
(Epstein 2006), and sociology (Gorman et al. 2006; Mäs, Flache, and Helbing 2010).  In psychology, 
Epstein (2006) generated thoughtless application of norms in an ABM and Willer, Macy, and Kuwabara 
(2009) supported this with laboratory experiments showing support of norms that disagree with personal 
beliefs.  This demonstrates the potential for GSS and traditional experimentation to augment each 
other.enemy engagements and an extend mission duration.  
 Agent_Zero (Epstein 2013) presents the most recent generative social science model by Joshua 
Epstein.  Ideally, hypothetical rule or behavior sets should be grounded in experimental results, and with 
Agent_Zero Epstein took pains to base his agents’ behavior on neurocognitive studies.  Agent_Zero is 
presented in two forms: a detailed look at an individual based on mathematical models generally accepted 
in the neurocognitive literature and an agent-based model. 
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 The mathematical model (Epstein 2013) is a series of differential equations that describe fear 
activation under continued stimulus and fear extinction when stimuli cease. This model is based on 
classical conditioning theory and parameterized through experimental studies of neuronal activation (also 
known as Pavlovian conditioning). In this model, an unconditioned stimulus (US) such as an electric 
shock follows presentation of a conditioned stimulus (CS) such as an audio tone. The US naturally evokes 
an unconditioned response (UR) of fear. Over time, the CS will also evoke a conditioned response (CR): 
fear. Even in the absence of the US, the CS will continue to evoke the CR, though this will extinguish 
over time.  The ABM implementation of Agent_Zero captures the Affective component described in the 
mathematical model and adds a Rational and a Social component.  In Agent_Zero Epstein (2013) presents 
five computational parables demonstrating how the various components interact and the resulting 
emergent behavior, along with a large number of interesting extensions.  The Agent_Zero text includes 
NetLogo (Wilensky, 1999) code and numerous figures throughout graphically depicting various results 
and trajectories. 

3.2 Combat Modeling  

For a typical combat simulation the blue and red forces defined as adversaries make up a dynamic, non-
linear, complex adaptive system in which the overall system behavior emerges from the aggregate 
interactions among individual agents (Carres 2002).  Therefore an ABM approach makes sense for 
modeling combat. Looking for some of the earliest uses of ABM within the military modeling community 
we look back to October 1995, when two scientists working for the Commanding General of the US 
Marine Corps Combat Development Command embarked on Project Albert (Brandstein, Horne, and 
Friman 2000).   Project Albert used a combination of new models and tools, multidisciplinary teams, and 
the scientific method to understand how ABM techniques could be correctly applied to represent a broad 
spectrum of military operations. As part of Project Albert Dr. Andy Illachinski (2000) developed an ABM 
called the Irreducible Semi-Autonomous Adaptive Combat (ISSAC) model referenced earlier in this 
paper.  

At about the same time the Air Force Space Community (SMC/XR) was releasing their first version 
of an ABM called the System Effects Analysis Simulation (SEAS) in April 1994 (USAF 2011).  SEAS 
has the ability to model the presence and interaction of a large variety of unique agents within a combat 
mission scenario.  Some examples of the agents that can be represented in SEAS are tanks, Surface to Air 
Missile (SAM) sites, Unmanned Aerial Vehicles (UAVs), fighters, and satellites.  A typical mission 
scenario from SEAS is illustrated in Figure 2. 

Figure 2 shows that SEAS represents not only various combat agents but also their respective sensors 
and communication devices.  SEAS is built around three different logic entities: agents, devices, and 
environments.  Agents interact through use of devices (weapons, sensors, communication systems) with 
each other and the environment with conflict outcomes emerging from the resulting interactions. Agents 
represent logical members acting within the combat mission scenario at the individual combatant level or 
as a larger military unit such as multi-ship fighter flight or Army platoon or company.  The environment 
represents the battlespace consisting of locations, terrain, weather, jamming, and day or night 
characteristics (USAF 2011). 
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Figure 2: SEAS mission scenario representation (USAF 2011). 

 
A relatively new ABM gaining traction with the Air Force simulation community is the Analytical 

Framework for Simulation, Integration, and Modeling (AFSIM), originally a tool developed by Boeing 
that the Air Force Research Lab (AFRL) now manages (Connors 2015).  AFSIM consists of a set of tools 
used to load simulation scenarios, populate different objects within the simulation, and then control the 
simulation execution.  Because AFSIM is object-oriented, objects can be defined, reused, expanded, and 
manipulated easily.  A primary benefit of object-oriented simulation systems such as AFSIM is that 
libraries of existing platforms, to include weapons, sensors, and vehicles, can be used as a base to define 
new platforms or systems within the simulation environment.  Autonomous agents in AFSIM are, in 
essence, a combination of different platform, sensor, and weapon objects combined with algorithms to 
generate behavior (i.e. actions and responses to the environment) that represent realistic decision-making 
(Connors 2015). 

3.3 Supply Chains 

When building a simulation to provide some insight on supply chain performance, an ABM approach 
makes sense due to the large number of interactions among different processes such as production, 
marketing, shipping, inventory control and participants such as suppliers, manufacturers, wholesalers, and 
customers. The discussion in this section focuses on the area of inventory control and provides a number 
of specific examples of research in this area. 

Ito and Abadi (2002) develop an ABM for a warehouse system composed of three subsystems; agent-
based communication system, agent-based material handling system, and agent-based inventory planning 
and control system.  This warehouse system monitors the fluctuation and uncertainty of demands from 
customers, and provides just-in-time delivery of materials.  The ABM utilizes master agents and 
subagents including customer, supplier, order, inventory, product, supplier order, and automatic-guided 
vehicle agents.  With additional research the authors plan on incorporating the capability for autonomous 
setting of parameters to determine the order points or order-up-to-level point of products based on the 
history of customer orders and supplier lead times. 
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Li and Li (2008) develop an ABM for a multi-location inventory system with several retailers who 
share one supplier.  The model considers demand lead time, replenishment lead time, and transshipment 
lead time but without employing a central agency to determine transshipments with retailers making 
decisions separately.  Optimal inventory policies are explored by considering holding, ordering, 
transshipment, backorder, and transshipment benefit costs. 

Jirong et al. (2008) develop a 4-level multi-agent system model for supply chain inventory with a 
decision making model for every enterprise agent in the supply chain.  Their approach is selected due to 
the dynamic nonlinear complexity of such a supply chain inventory system.  Results from their study 
exploring the influence of lead time and information sharing among the four agent types (retailer, 
wholesaler, distributor, and manufacturer), confirm that the information sharing strategy effectively 
decreases the variation amplitudes of inventory for each enterprise in the supply chain (diminishes the 
bullwhip effect). 

Sirivunnabood and Kumara (2009) explore appropriate risk mitigation strategies for a supply chain 
network under supplier risks.  Their ABM includes supplier agents, plant agents, warehouse agents, 
customer agents, and a controller agent.  Supply chain operation is simulated and performance evaluated 
under randomly generated risk events.  Their analysis explores the impact of having a redundant supplier 
and reserving more inventories as two risk mitigation strategies against four types of risks, defined by 
frequency and duration. 

Krishnamurthy, Khorrami, and Schoenwald (2008) consider a new inventory control technique for 
large-scale supply chains incorporating stochastic transport delays, manufacturing times, repair times and 
probabilistic characterization of part repair.  Optimization techniques for inventory control of 
bidirectional stochastic supply chains are computationally intractable, leading the authors to use an ABM.  
They model an aircraft supply chain involving multiple original equipment manufacturers, depots, bases, 
squadrons, and planes.  Through use of an adaptive feature the simulation can adjust stock levels with the 
objective of reducing excess inventory and maintaining or increasing mission capability of aircraft.  
Simulation output can be used to determine the number of parts of each type that each site should order 
from an associated supplier site, and the number of parts of each type to start manufacturing. 

Harper et al. (2011) proposes a framework for designing an agent based simulation to allow for easy 
aggregation and/or disaggregation of agent characteristics, behaviors, and interactions using a supply 
chain modeling context. When ABM is to be used with different levels of resolution the key steps that are 
affected are initial planning, agent and agent rule design, data collection and entry, and model execution. 
While identifying the purpose of the model and the questions the model is intended to answer, there must 
be some delineation between the different levels or resolution needed for these questions. This is not a 
trivial process, but can be eased by systematically analyzing the system under study and determining what 
data is available. The way agents are designed affect the ease of switching levels of resolution. Since 
multiple levels of resolution have different data requirements, the data collection and entry process is a 
key step in ABM for aggregation and disaggregation. More data analysis is necessary to validate the 
method of data aggregation, so data collection and data analysis generally take more time. However, this 
is balanced by the ability to model and analyze selected parts of the system at a high level of detail or 
more of the system at an aggregated level. Finally, the model execution process requires some data input 
changes to change levels of resolution. 

4 HOW TO BUILD AN ABM 

4.1 Getting Started 

While courses in ABM are becoming increasingly common at universities, it remains the exception rather 
than the rule, so researchers may find the task of getting started with ABMs daunting. However, the last 
decade has seen significant maturation of the field in the resources available to prospective agent-based 
modelers.  
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 There is not, as yet, a standard textbook for the field, but several recent books take on the task of 
introducing agent-based modeling. North and Macal (2007) present the topic in a business context using 
spreadsheet models and Repast. Both Railsback and Grimm (2012) and Wilensky and Rand (2015) 
present the topic in a more topic-agnostic context focusing on the use of NetLogo. Borschev (2013) 
addresses ABM along with discrete-event simulation and system dynamics modeling focusing on the use 
of AnyLogic. Depending on your needs, any of these books make excellent resources. 
 Once comfort with the agent perspective has been built, user forums and tutorials for each of the 
ABM software tools represent the most up-to-date and useful reference for building expertise in the 
mechanics of building a model. Most tools also have considerable libraries of models built for research 
and instructional purposes that are well documented.  

4.2 Software Tools 

At its root, ABM has arisen from the development of object-oriented programming (OOP) languages. As 
such, many modelers prefer to build ABMs from scratch using OOP development environments. 
Common OOP languages include Java, C++, C#, Python, and Ruby. This is the most flexible 
environment within which to build a model, and in many cases these models will run the fastest. 
However, many modelers prefer to work in an environment with pre-constructed methods that facilitate 
ABM development. 
 The list of ABM development tools is far too long to exhaustively present here, but some common 
ones include NetLogo, Repast, AnyLogic, and Simio. NetLogo (Wilensky 1999) and Repast (North et al. 
2007) are both free and open-source software for Mac OS X, Windows, or Linux. These are very flexible 
programming tools with limited graphical user interfaces. AnyLogic and Simio are both commercial tools 
with more robust graphical user interfaces that can be used for ABMs or to embed agents in other types of 
models. 

4.3 An Example ABM 

Lanchester (1916) presented a now classic deterministic model of outcomes of ranged combat based on 
the fighting effectiveness and the troop strengths (i.e., number of soldiers) of two opposing forces. The 
system of differential equations that came to be known as the Lanchester Square Law is given by 

𝑏𝑏′(𝑡𝑡) = −𝑐𝑐𝑐𝑐(𝑡𝑡), 𝑏𝑏(0) = 𝑏𝑏0, 
𝑐𝑐′(𝑡𝑡) = −𝑘𝑘𝑏𝑏(𝑡𝑡), 𝑐𝑐(0) = 𝑐𝑐0, 

where c and k are the fighting effectiveness coefficients of the red and blue forces, respectively, and b and 
r are the troop strengths of the blue and red forces, respectively. 
 While the Lanchester Square Law has been widely applied as an attrition model, the lack of high-
quality data regarding troop strengths over time in battle has created problems in validating the model. In 
applications attempting to explain the Battle of Kursk and the Battle of Ardennes, it has proved not to be a 
good predictor of outcomes (Lucas and Turkes 2004). In another application to battles between fire ant 
colonies, the Square Law again failed to explain outcomes (Plowes and Adams 2005). Perhaps an agent-
based model of battles could provide a better explanatory model. 
 As a first step, an agent-based model could be built to replicate basic Lanchester’s Square Law 
performance. Let the two forces be equally effective. Then the below NetLogo code is sufficient to 
replicate Lanchester’s Square Law. Note that, in NetLogo, turtles are the pre-built class of agents that are 
capable of movement. 
 

to setup 
 clear-all 
 spawn-forces 
 reset-ticks 
end 
 
to spawn-forces 
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 create-turtles 2000 [ 
  set color blue 
  setxy random-xcor random-ycor 
 ] 
 create-turtles 2050 [ 
  set color red 
  setxy random-xcor random-ycor 
 ] 
end 
 
to go 
 ask turtles [ attack ] 
 tick 
end 
to attack 
 let target one-of turtles with [color != [color] of myself] 
 if target != nobody [ ask target [ die ] ] 
end 
 

 This code has two simple sections: setup and go. To setup, all variables and agents are cleared, and 
then the square space is filled with blue agent and red agents. To go, in random order, each agent kills 
exactly one enemy, if an enemy remains to kill. Running many iterations of this simulation, we find that 
the mean number of agents remaining once one side has been killed is equal to that predicted by 
Lanchester’s Square Law. An example run’s outcome is shown in Figure 3. 

 

 
Figure 3: Outcome of basic Lanchester ABM. 

Solving Lanchester’s equations is much faster than running many iterations of the ABM, with the 
ABM requiring exponentially more time to compute. However, the ABM has the advantage of flexibility 
and natural interpretability. In the basic model, the agents are placed randomly, targeting occurs without 
regard for range, and all agents are homogeneous. It is unknown how each of these changes in 
assumptions would impact the deterministic Lanchester model, but an ABM can easily be altered to 
address these questions. 

Let us add some basic heterogeneity. Suppose that test of red force weaponry indicate that, at a range 
of 1 unit, they will kill an enemy with probability 0.9, with that probability decreasing exponentially with 
range. Meanwhile, blue force weaponry has an equivalent probability of 0.95, also with exponential 
degradation with range. It is safe to assume, in this scenario, that each soldier will choose the closest 
target. By adding a few lines to our “attack” method, this is easily implemented. 
 

to attack 
 let targets turtles with [color != [color] of myself] 
 let target min-one-of targets [distance myself] 
 if target != nobody [ 
  let accuracy 0 
  ifelse color = blue [ set accuracy 0.95 ] [ set accuracy 0.9 ] 
  if random-float 1 < (accuracy ^ (distance target)) [ 
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   ask target [ die ] 
  ] 
 ] 
end 
 

 This modification alters the outcome of the battle; the blue forces can overcome the numerically 
larger red forces with their technological superiority.   An example outcome is shown in Figure 4.  

 

 
Figure 4: Outcome of a technologically imbalanced battle. 

One can imagine many variations of the base model that could easily be programmed; different troop 
maneuvers, introducing elite forces on either side and intra-force heterogeneity, reinforcement strategies 
are just a few. The ability to code these departures showcases the strength of the agent-based approach. It 
is recommended to start with a simple model and incrementally increase the complexity when building in 
this way. 

 

 
Figure 5: One tick into a battle with red forces surrounded. 

For a final deviation from the Lanchester model, consider a red force being attacked from two sides 
by a blue force with only 90% their troop strength (see Figure 5). Blue force weapons have mean 
accuracy of 0.62 at 1 unit distance, whereas red force weapons have mean accuracy of 0.60 at the same 
range, with individuals’ accuracy varying according to a normal distribution with a standard deviation of 
0.1. Blue forces are short on ammunition, so they have orders to only fire from a maximum range of 5 
units. The red forces, meanwhile, can fire at any range. If a soldier fires, they can move only 25% the 
distance that they could move otherwise. This level of complexity remains simple to implement in an 
ABM. The code for this scenario is shown below. 

 
turtles-own [  
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  attack_radius 
  accuracy 
] 
 
to setup 
  clear-all 
  spawn-blue-forces 
  spawn-red-forces 
  reset-ticks 
end 
 
to spawn-blue-forces 
  create-turtles 1800 [ 
    set color blue 
    set attack_radius 5 
    set accuracy random-normal 0.62 0.10 
    set accuracy min list 1 accuracy 
    set accuracy max list 0 accuracy 
    set xcor random-xcor 
    set ycor (max-pycor / 2) + random-float (max-pycor / 2) 
    if random 2 = 1 [ set ycor (- ycor) ] 
  ] 
end 
 
to spawn-red-forces 
  create-turtles 2000 [ 
    set color red 
    set attack_radius 32 
    set accuracy random-normal 0.60 0.10 
    set accuracy min list 1 accuracy 
    set accuracy max list 0 accuracy 
    set xcor random-xcor 
    set ycor (random-ycor / 2) 
  ] 
end 
 
to go 
  ask turtles [ attack ] 
  tick 
  if count turtles with [color = blue] = 0 or count turtles with [color = red] = 0 
[stop] 
end 
 
to attack 
  let targets turtles in-radius attack_radius with [color != [color] of myself] 
  let target min-one-of targets [distance myself] 
  ifelse target != nobody [ 
    face target 
    if random-float 1 < ( accuracy ^ (distance target) ) [ 
      ask target [ die ] 
    ] 
    move 0.25 
  ] [ 
    move 1 
  ] 
end 
 
to move [ steps ] 
  if any? turtles with [color != [color] of myself] [ 
    face min-one-of (turtles with [color != [color] of myself]) [distance myself] 
  ] 
  forward steps 
end 
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This more complex model yields a slight advantage to the blue forces; over 100 replicates, 68 result 

in a blue victory. This result is statistically significant (𝑝𝑝 < 0.001). More importantly, the ABM gives the 
flexibility to ask the question in the first place.  
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