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ABSTRACT

When we make operational decisions for high-tech manufacturing with products having short life times,
there exist various challenges: (1) high uncertainty in the supply, production and demand; (2) limited amount
of valid historical data; and (3) decision makers with a risk-averse attitude. We propose a simulation-
based prediction framework to support real-time decision making. Specifically, we consider a generalized
two-stage dynamic decision model accounting for both input uncertainty and system inherent stochastic
uncertainty. Since the risk-adjusted cost objective involves nested risk measures, it could be computationally
prohibitive to precisely estimate the system performance, especially for complex stochastic systems. Given
a decision policy, in this paper, a metamodel-assisted approach is introduced to efficiently assess the system
risk performance in the planning horizon, while delivering a credible interval quantifying the simulation
estimation error. This information can guide us to select a good policy for real-time decision making.

1 INTRODUCTION

This paper is motivated by our on-going research on supply chain risk management collaborated with
Regeneron, a bio-pharmaceutical manufacturing company. There exist various challenges for decision
making, including rapid change in the technology and markets for end-products and high uncertainty in
the supply, production and demand (Kaminsky and Wang 2015). Due to the significant capital investment
required for the production process, globalization and specialization are often used to maximize the return
on investment, which could lead to high supply uncertainty. Since some defects impacting the quality of
products, e.g., contamination and cross-contamination in production lines (PLs), are hard to detect, there
exist quality assurance tests following each production step. The testing cycle times could be lengthy and
the results could have high variability. In addition, the demands of clinic products are much less predictable
compared to those of commercial products. Therefore, how to dynamically make operational decisions,
including decisions related to procurement, testing, inventory and production, under various sources of
uncertainty becomes an important question.

Statistical models characterizing uncertainty in the supply, production and demand are called input
models. Since the underlying true input models are often estimated by a finite amount of valid historical
data, there exists input estimation uncertainty, called input uncertainty. Given an input model estimate,
stochastic uncertainty represents the variability of system response, e.g., the total cost, induced by the input
models. Thus, we should consider both input and stochastic uncertainty in the decision making.

The literature on stochastic optimization considers both sources of uncertainty separately. Stochastic
uncertainty is a major concern in stochastic and robust optimization (Shapiro, Dentcheva, and Ruszczynski
2009). The distributionally robust optimization (Scarf, Arrow, and Karlin 1958; Delage and Ye 2010)
considering the worse case situation for input uncertainty could lead to conservative decisions. In addition,
the composite of two risk measures quantifying input and stochastic uncertainty was studied in Qian,
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Wang, and Wen (2015) and Zhou and Xie (2015). Different combinations of these measures could lead to
totally different system behaviors (Zhou and Xie 2015), and it is not clear how to select appropriate risk
measures in the composite approach. Further, it could be hard to integrate this approach with dynamic
optimization. Motivated by our previous study on input uncertainty (Xie, Nelson, and Barton 2014), a
compound approach for stochastic optimization was proposed in Hu, Xie, and Xu (2016), which quantifies
both input and stochastic uncertainty simultaneously. Since the analytic study over a newsvendor example
demonstrates that the compound approach could lead to good and robust decisions (Hu, Xie, and Xu 2016),
in this paper, we extend it to dynamic situations.

Optimal decisions depend on the choice of system performance measure. Even though most literature on
supply chain management focuses on the mean performance, for high-tech products with high profit, decision
makers tend to be risk averse (Chen et al. 2007). Thus, we consider risk measures to quantify the system
performance. In this paper, we use the conditional value-at-risk (CVaR), the tail conditional expectation of
the cost, for illustration; See Shapiro, Dentcheva, and Ruszczynski (2009) for more information on CVaR.

Many challenges arise when trying to apply strictly analytical approaches to assess the risk performance
of real complex stochastic systems. Since stochastic simulation is in every sense a statistical experiment,
one of the most valuable features of simulation is its ability to characterize the risks inherent in complex
stochastic systems (Nelson 2013). Kaminsky and Wang (2015) also pointed out that simulation-based
approaches have great promise for supply chain risk management in the biopharmaceutical industry.

Therefore, in this paper, we propose a simulation-based prediction framework to support real-time
decision making. We consider a generalized two-stage dynamic decision model. This class of problems
was first proposed by Beale (1955) and Dentzig (1955), and gained wide usage subsequently. Shapiro
and Homem-de Mello (1998) developed a simulation approach, and they mainly focused on two-stage
linear programming problems with mean performance measure. In this paper, we consider more general
situations with risk measures. Further, since the underlying true input models are unknown and estimated
by real-world data, we also account for the input uncertainty.

Since the risk-adjusted cost objective in the two-stage model involves nested risk measures, it could
be computationally prohibitive to precisely estimate the system risk performance in the planning horizon,
especially for complex stochastic systems. Thus, in the simulation-based prediction framework, we introduce
a metamodel-assisted approach that can make efficient use of the simulation resources to assess the risk-
adjusted cost objective, while delivering a credible interval (CrI) quantifying the simulation estimation
uncertainty. This information could be useful to guide the search for a good decision policy. Specifically,
there are two decision-making points in the two-stage model. Given the historical data, the posterior
predictive distribution is used to drive the simulation and predict the future system performance. As time
evolves to the second decision point, new data arrive and our belief of input models is updated by following
Bayes’ rule. Then, the updated posterior predictive distribution can drive the simulation to estimate the
system future performance after the second decision point. To assess the risk-adjusted cost objective,
a Gaussian process (GP) metamodel is constructed to estimate the system future performance at each
sample of updated input models and it also provides the posterior distribution characterizing the simulation
estimation uncertainty.

In sum, the main contributions of this paper include: (1) To facilitate real-time decision making in supply
chain risk management, we propose a generalized two-stage dynamic decision model that can account for
both input and stochastic uncertainty simultaneously; (2) In our simulation-based prediction framework,
a metamodel-assisted approach is introduced to make efficient use of the simulation resources so that we
can quickly assess the system performance in the planning horizon for any given decision policy; and (3)
Our approach also delivers a CrI quantifying the simulation estimation uncertainty.

The next section provides a formal problem description and describes the two-stage dynamic decision
model for real-time decision making. In the simulation-based prediction framework proposed in Section 3,
a metamodel-assisted approach is introduced to efficiently assess the system risk performance for a given
decision policy, while delivering a CrI quantifying the simulation estimation error. A multi-stage inventory
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example is used to study the finite-sample performance of our approach in Section 4. We conclude this
paper in Section 5.

2 PROBLEM DESCRIPTION AND TWO-STAGE DYNAMIC DECISION MODEL

To make it easy to follow, in this section, we first consider the static setting with a fixed amount of real-world
data, and then extend it to the dynamic setting with data streams. The input models, denoted by F , could
include mutually independent models. For an inventory example, F could include input models for supply
lead times and product demands. For notation simplification, suppose F is composed of a single input
model.

The output of a stochastic system of interest is denoted by Y = H(u,X), where u represents decisions
and X represents input samples. For example, in a newsvendor example, Y could be the cost, u and X
could be the ordering decision and product demands. Most research in the existing supply chain literature
focuses on the mean performance of Y . In recent years, some studies have started to use risk measures
to characterize the system performance; see Chen, Xu, and Zhang (2009) and Gotoh and Takano (2007).
Since decision makers for high-tech products in the bio-pharmaceutical industry tend to be risk averse, we
will explore risk measures, denoted by ρ(Y ), to quantify the system performance. In this paper, we use
CVaR for illustration and let ρ = CVaRα with the right tail probability α ∈ (0,1).

If the underlying “correct” input model, denoted by Fc specified by the input parameters θθθ c, is known,
the system risk performance is

ρX[Y (θθθ c)] = min
ξ∈ℜ

∫
x

[
ξ +

1
α
(H(u,x)−ξ )+

]
f (x|θθθ c)dx (1)

where f (x|θθθ) denotes the input density function. Since the variability in the response Y is induced by X
through the logic of system of interest and H(·) is a (unknown) deterministic function, the subscript X in
ρX emphasizes that the risk measure ρ depends on the distribution of X. Therefore, given the true input
model Fc, Equation (1) quantifies the impact of stochastic uncertainty on the system risk performance.

In reality, the underlying input model Fc is unknown. In this paper, we assume that the parametric
family is known and unknown true parameters θθθ c are estimated using valid historical data, denoted by
{x1,x2, . . . ,xt0} with xi

i.i.d.∼ Fc for i = 1,2, . . . , t0. Following Bayes’ rule, the input uncertainty or our belief
about θθθ c can be characterized by a posterior distribution, denoted by g(θθθ) ≡ p(θθθ |x1,x2, . . . ,xt0). Then,
we use the input model estimate to predict the new data X. Thus, the compound random vector X(ΘΘΘ)
accounts for both input uncertainty, ΘΘΘ∼ g(θθθ), and stochastic uncertainty, X|ΘΘΘ∼ F(·|ΘΘΘ). We can quantify
their impact on the system risk performance by

ρX[Y (ΘΘΘ)] = min
ξ∈ℜ

∫
x

[
ξ +

1
α
(H(u,x)−ξ )+

]
f (x|x1,x2, . . . ,xt0)dx (2)

where f (x|x1,x2, . . . ,xt0)≡
∫

f (x|θθθ)g(θθθ)dθθθ is the posterior predictive density. Therefore, the risk measure
in Equation (2) accounts for both input and stochastic uncertainty. Notice that the posterior predictive
distribution is often used in the Bayesian approaches to check if the selected input model is appropriate or
it can capture the important properties in the historical data (Gelman et al. 2004).

Equations (1) and (2) have similar forms. However, the measure f (x|θθθ c) only accounts for stochastic
uncertainty, and the measure f (x|x1,x2, . . . ,xt0) accounts for both input and stochastic uncertainty. The
input model only provides a tool to extract the important information from the historical data and predict
the new observation x. When we assess the system risk performance, it is not appropriate to separate input
and stochastic uncertainty because the estimation over Fc is mainly for predicting the new observation x
based on the information collected from the historical data {x1,x2, . . . ,xt0}.

Then, we consider the dynamic setting with data streams, denoted by {Xt}∞
t=1, from the underlying true

input model Fc. In each time period t, we first observe the new data Xt , update the physical state St and
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the knowledge state or our belief on the input model, and then implement the decision ut . For example, for
an inventory system with a single product, in the time period t, we first observe the realization of demand
Xt . Then, we update the inventory level either by satisfying the demand with available stock or recording
it as the backlog if there is out of stock. Based on the new information from Xt , we also update our belief
on the demand distribution. After that, we make the ordering decision ut .

At any time t0, given the historical data x[t0] ≡ (x1,x2, . . . ,xt0), decision makers want to find the
optimal decisions ut with t ≥ t0 to minimize the risk-adjusted cost in the planning horizon. For notation
simplification, suppose the current time period t0 = 0 and denote the historical data by x[0]. Since it is
typically computationally intractable to directly solve the dynamic programming, we build an approximate
look-ahead model to guide real-time decision making. In this paper, we consider a generalized two-stage
decision model which has two decision-making points at t0 and t1. Specifically, based on the historical
data x[0], we first make decision u0 at t0. Then, after collecting the new information from observations
X[1:t1] ≡ (X1, . . . ,Xt1), we further make decisions u1,u2, . . . ,uT at t1 with t1 ≤ T . The objective function
becomes

min
u0

C0(S0,u0)+ρX[1:t1]

[
min

u1,...,uT

t1

∑
t=1

rtCt(St ,ut)+ρX[t1+1:T ]

(
T

∑
t=t1+1

rtCt(St ,ut)

)]
(3)

where St represents physical state variables, i.e., the inventory levels at each stage of supply chains; Ct(·)
denotes the cost function in period t for the stochastic system of interest; and r denotes the time discount
factor. The state transition St+1 = ht(St ,ut ,Xt+1) is determined by the system logic, and the system is
driven by the posterior predictive distribution with Xt+1 ∼ f (x|x[t]). The value of t1 determines the stage
aggregation and T represents the planning horizon. Finding appropriate t1 and T is our on-going research.

At any time t, the posterior distribution of ΘΘΘ, denoted by gt(θθθ), characterizes our belief about the input
model. When time evolves to next time period t +1 and the new data xt+1 arrives, our belief is updated
by applying Bayes’ rule, i.e., gt+1(θθθ) ∝ gt(θθθ) · p(xt+1|θθθ).

For complex stochastic systems, since it is typically impossible to get the analytic form of system
risk performance in the planning horizon, we estimate it by simulation. Given a decision policy, the state
transition and the decisions (u0,u1, . . . ,uT ) are directly obtained by following the logic of the simulated
system. To find good real-time decisions, it is critical to quickly assess the risk-adjusted cost objective

ρX[Y (ΘΘΘ)] =C0(S0,u0)+ρX[1:t1]

[
t1

∑
t=1

rtCt(St ,ut)+ρX[t1+1:T ]

(
T

∑
t=t1+1

rtCt(St ,ut)

)]
. (4)

In the literature, the sample average approximation (SAA) is recommended to estimate the risk
performance, e.g., CVaR (Shapiro, Dentcheva, and Ruszczynski 2009). The sampling procedure for
estimating Objective (4) includes: (1) Generate θθθ (i) ∼ g0(θθθ) and X(i)

[1:t1]
∼ f (x[1:t1]|θθθ (i)) with i = 1,2, . . . ,N;

(2) At each X(i)
[1:t1]

, update our belief about the input model characterized by g(i)t1 (θθθ) ∝ g0(θθθ) · p(X(i)
[1:t1]
|θθθ), and

then generateθθθ (i j)∼ g(i)t1 (θθθ) and X(i j)
[t1+1:T ]∼ f (x[t1+1:T ]|θθθ (i j))with j = 1,2, . . . ,ni, where N and (n1,n2, . . . ,nN)

represent the number of replications used to estimate the risk measures ρX[1:t1]
and ρX[t1+1:T ] . Thus, Objective (4)

is estimated by

ρ̂X[Y (ΘΘΘ)] =C0(S0,u0)+ ρ̂X[1:t1]

[
t1

∑
t=1

rtCt(St ,ut)+ ρ̂X[t1+1:T ]

(
T

∑
t=t1+1

rtCt(St ,ut)

)]

where ρ̂X[1:t1]
and ρ̂X[t1+1:T ] denote the estimates for the risk measures ρX[1:t1]

and ρX[t1+1:T ] . To get a precise
estimation over ρX[Y (ΘΘΘ)], it requires thousands of replications for N and (n1,n2, . . . ,nN). Since each
simulation run could be computationally expensive, it is important that we can make efficient use of the
simulation budget to assess the risk-adjusted cost in (4), which is critical for finding a good policy for
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real-time decision making. Notice that since the simulation budget is related to the constraint on the
computational time, “a finite simulation budget” typically means that we need to make decisions in a
certain amount of time.

3 A SIMULATION-BASED PREDICTION FRAMEWORK

In this section, given a finite simulation budget, we propose a simulation-based prediction framework
to efficiently estimate the risk-adjusted cost ρX[Y (ΘΘΘ)] in (4), and further deliver a CrI quantifying the
simulation estimation uncertainty. Suppose t1 ≤ T/2. Notice that the computational cost for estimating
ρX[Y (ΘΘΘ)] mainly comes from estimating the future response at the second decision-making point t1, denoted
by µ

(
S(i)

t1 ,g
(i)
t1 (θθθ)

)
≡ ρX[t1+1:T ]

[
∑

T
t=t1+1 rtCt(St ,ut)

]
, for all realizations X(i)

[1:t1]
with i = 1,2, . . . ,N. Given a

decision policy, this risk response only depends on the updated physical state St1 and knowledge state or
our belief on the input model characterized by the posterior distribution gt1(θθθ). Suppose gt1(θθθ) can be
specified by a finite number of parameters. Motivated by our previous study (Xie, Nelson, and Barton
2014), we introduce a metamodel-assisted approach that can efficiently use the simulation budget to reduce
the simulation estimation uncertainty. It also provides a posterior distribution of the response surface
for µ(St1 ,gt1(θθθ)) so that we can quantify the simulation estimation uncertainty of the risk-adjusted cost
ρX[Y (ΘΘΘ)].

In this paper, we consider the parametric input model with a conjugate prior; see Section 3.1. Given
the historical data x[0], the input uncertainty can be characterized by a conjugate posterior g0(θθθ) specified

by parameters, denoted by βββ 0. As time evolves to time period t1, we observe the new data X(i)
[1:t1]

with

i = 1,2, . . . ,N. By applying Bayes’ rule, the posterior is updated to be g(i)t1 (θθθ) specified by parameters,
denoted by βββ

(i)
t1 . Thus, the uncertainty of updated prediction model f (x|x[0],X[1:t1]) could be quantified by

the samples {βββ (1)
t1 ,βββ

(2)
t1 , . . . ,βββ

(N)
t1 }. By abusing the notation, we can rewrite the response surface as

µ(St1 ,βββ t1) = ρX[t1+1:T ]

[
T

∑
t=t1+1

rtCt(St ,ut)

]
. (5)

To efficiently estimate the response µ(St1 ,βββ t1), based on the simulation outputs at a few well-chosen design
points, we construct a GP metamodel M(·) characterizing our belief for µ(·) in Section 3.2. Then, we
develop a procedure in Section 3.3 that can deliver a CrI quantifying the simulation estimation uncertainty of
ρX[Y (ΘΘΘ)]. Since the evaluation of µ(·) at each sample

(
S(i)

t1 ,βββ
(i)
t1

)
through the metamodel is computationally

cheap, we can let the number of replications N be large enough so that the finite sampling error introduced
by using finite N samples to estimate the outer risk measure ρX[1:t1]

is negligible.

3.1 Update the Input Model

When a conjugate prior is used for the parametric input model, the posterior distribution is in the same
family as the prior and it is specified by a finite number of parameters. Since many input parametric
distributions commonly used in simulation belong to the exponential family, for illustration, we consider
the exponential family with a general form, p(x|θθθ) = η1(x)η2(θθθ)exp{θθθ>T (x)}, where T (x) denotes the
sufficient statistics. If we start with a conjugate prior, at t0 = 0, our belief on the input model is characterized
by the posterior distribution, denoted by g0(θθθ) = p(θθθ |ψψψ0,v0) = f (ψψψ0,v0)η2(θθθ)

v0 exp(θθθ>ψψψ0). It can be
specified by the parameters βββ 0 = (ψψψ0,v0) which are functions of prior parameters and the historical data
x[0].

When time evolves to time period t1, we observe the new realizations X(i)
[1:t1]

. The distribution g0(θθθ) gives
the prior belief of the input model. Then, by applying Bayes’ rule, we can have the posterior distribution
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g(i)t1 (θθθ) = p
(
θθθ |ψψψ(i)

t1 ,v
(i)
t1

)
with

(
ψψψ

(i)
t1 ,v

(i)
t1

)
=
(
ψψψ0 +T (X(i)

[1:t1]
),v0 + t1

)
. Thus, our updated belief on the input

model can be specified by parameters βββ
(i)
t1 =

(
ψψψ

(i)
t1 ,v

(i)
t1

)
.

3.2 Construct a GP Metamodeling

In this section, we construct a metamodel for the response surface µ(·) in Equation (5). Denote the state
variables by z≡ (St1 ,βββ t1) with dimension d. In general, we do not have any strong prior information on
the parametric form for µ(·) and only have weak prior knowledge, such as the continuity. That means as
the state variables z and z′ are close to each other, the responses µ(z) and µ(z′) tend to be similar. Thus,
we construct a spatial dependence metamodel for µ(·) by using the stochastic kriging (SK) proposed by
Ankenman, Nelson, and Staum (2010), which explicitly considers the simulation estimation uncertainty.

SK assumes that the unknown response surface µ(·) is a realization of GP. At any z, the simulation
output Y from the j-th replication is modeled as

Yj(z) = µ0 +W (z)+ ε j(z)

where µ0 is a constant parameter, ε j(z) represents the simulation estimation error and the mean-zero,
second-order stationary GP W (z) accounts for the spatial dependence of the response surface. The spatial
covariance is denoted by Cov[W (z),W (z′)] = τ2r(z− z′), where τ2 denotes the variance and r(·) denotes
a correlation function. Based on the study in Xie, Nelson, and Staum (2010), the product-form Gaussian
correlation function is used in our empirical study r(z− z′|ξξξ ) = exp

[
−∑

d
j=1 ξ j(z j− z′j)

2
]
.

Our prior belief of the response surface µ(·) is characterized by a GP, M(z)≡ µ0 +W (z). To reduce
the uncertainty of our belief on µ(·), we run simulations at k well-chosen design points, denoted by
D ≡ {z1,z2, . . . ,zk}, and denote the simulation outputs by YD = (Y1(zi),Y2(zi), . . . ,Ymi(zi))

k
i=1, where mi

denotes the replications at zi. Let the sample means at all design points be ȲD = (Ȳ (z1),Ȳ (z2), . . . ,Ȳ (zk))
>,

where Ȳ (zi) =∑
mi
j=1Y (zi)/mi for i = 1,2, . . . ,k. Without applying common random numbers, the variance of

ȲD is a k×k diagonal matrix C = diag{σ2
ε (z1)/m1,σ

2
ε (z2)/m2, . . . ,σ

2
ε (zk)/mk}, where σ2

ε (z) = Var[ε(z)].
Let a N×d matrix Z∗ denote the locations of N prediction points. Let Σ represent the k×k covariance

matrix across all design points and Σ(Z∗, ·) be the k×N covariance matrix between all design points and
N prediction points Z∗. If the parameters (τ2,ξξξ ,C) are known, given simulation outputs at design points
YD , the metamodel uncertainty can be characterized by an updated GP

Mp(Z∗)≡M(Z∗)|YD ∼ GP(mp(Z∗),Σp(Z∗,Z∗)) (6)

where mp(·) is the minimum mean squared error (MSE) linear predictor

mp(Z∗) = µ̂0 ·1N×1 +Σ(Z∗, ·)>[Σ+C]−1(ȲD − µ̂0 ·1k×1), (7)

and the corresponding variance covariance matrix is

Σp(Z∗,Z∗) = Σ(Z∗,Z∗)−Σ(Z∗, ·)>[Σ+C]−1
Σ(Z∗, ·) (8)

+kη
>[1>k×1(Σ+C)−11k×11>k×1(Σ+C)−11k×1]

−1
η

where µ̂0 = [1>k×1(Σ+C)−11k×1]
−11>k×1(Σ+C)−1ȲD and η = 11×N −1>k×1(Σ+C)−1Σ(Z∗, ·) (Ankenman,

Nelson, and Staum 2010). Since in reality the spatial correlation parameters τ2 and ξξξ are unknown, the
maximum likelihood estimators are typically used for prediction.

Then, we consider the system performance estimate for ρX[t1+1:T ]

[
∑

T
t=t1+1 rtCt(St ,ut)

]
with ρX = CVaRα

and its estimation variance at each design point. Specifically, at the design point zi, there are ni simulation
runs, denoted by L̃i` ≡ ∑

T
t=t1+1 rtCt

(
S(i`)

t ,u(i`)
t
)

with `= 1,2, . . . ,ni. We can divide ni runs into mi batches
with Ni = ni/mi being an integer. Based on samples in each batch, we can have a CVaRα estimate or
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the simulation output Yj(zi) with j = 1,2, . . . ,mi. After that, we can calculate the sample mean Ȳ (zi) and
also estimate its variance. However, based on the study in Chen and Kim (2014), we can minimize the
mean squared error (MSE) of CVaRα estimation by letting Ni = ni. Thus, in this paper, we use all samples
{L̃i`}ni

`=1 to estimate the response CVaRα

[
∑

T
t=t1+1 rtCt(St ,ut)

]
, and the simulation output becomes

Y (zi) = ṽi−
1

niα

ni

∑
`=1

[ṽi− L̃i`]
+ (9)

where ṽi = inf{x : F̃i(x)≥ α} and F̃i(x) = 1
ni

∑
ni
`=1 I{L̃i` ≤ x} with I(·) denoting an indicator function. The

variance of Y (zi) could be estimated by the bootstrap approach (Cheung and Lee 2005). Accounting for
the bias introduced by using finite ni to estimate the risk measure ρX[t1+1:T ] is in our future research.

3.3 Procedure for the Metamodel-Assisted Approach

In this section, we describe the procedure for our metamodel-assisted approach and it includes the main
steps as follows. We first find a design space E that can cover the most likely prediction points for (S(i)

t1 ,βββ
(i)
t1 ).

To have all prediction points located close to design points, we use a space-filling design, the orthogonal
max-min Latin Hypercube Design (LHD), to generate k design points evenly covering E (Liu and Staum
2010; Barton, Nelson, and Xie 2010). Then, run the simulations at design points and construct a GP Mp(·)
for the risk response surface µ(St1 ,βββ t1). After that, we use mp(·) to get a point estimate (PE) for ρX [Y (ΘΘΘ)]
in Step 3, and further use the posterior distribution of µ(·) to generate a (1−α0)100% percentile CrI
quantifying the simulation estimation uncertainty in Step 4.

0. Provide the current physical and knowledge states (S0,βββ 0).
1. Identify a design space E of state variables z at the second decision-making point, which is

the smallest cube covering a large percentage of prediction points P = {z∗1,z∗2, . . . ,z∗N}, where
z∗i = (S(i)

t1 ,βββ
(i)
t1 ).

2. Use the orthogonal max-min LHD to generate k design points D = {z1,z2, . . . ,zk} evenly covering
the design region E. At each zi, run ni simulation runs to obtain L̃i` with i = 1,2, . . . ,k and
`= 1,2, . . . ,ni. Then, obtain the simulation output Y (zi) by Equation (9) and estimate the variance
σ2

ε (zi) by the bootstrapping. Fit the metamodel by using Equations (7) and (8).
3. Use mp(·) to estimate the responses at the prediction points P . Then, calculate the PE for risk-

adjusted cost, ρ̂X[Y (ΘΘΘ)] =C0(S0,u0)+ v̂− 1
Nα

∑
N
i=1[v̂− L̂i]

+, where L̂i =∑
t1
t=1 rtCt(S

(i)
t ,u(i)

t )+mp(z∗i )
is generated by simulations driven by X(i)

[1:t1]
with i = 1,2, . . . ,N, v̂ = inf{x : F̂(x)≥ α} and F̂(x) =

1
N ∑

N
i=1 I

{
L̂i ≤ x

}
. The costs Ct(St ,ut) with t = 0,1, . . . , t1 are obtained by simulation.

4. Return a CrI quantifying the simulation estimation uncertainty for ρX [Y (ΘΘΘ)]. Generate B sample
paths of Mp(·) by using Equations (6) – (8). For each sample path, estimate the responses µ(·) at
the prediction points P , and then by following the similar procedure in Step 3, obtain an estimate
of the risk-adjusted cost objective, denoted by U j with j = 1,2, . . . ,B. Record the (1−α0)100%
percentile CrI,

[
U(dB α0

2 e)
,U(dB(1− α0

2 )e)
]
, where U(1) ≤U(2) ≤ ·· · ≤U(B) are the sorted values.

4 EMPIRICAL STUDY

In this section, a single-item multi-period inventory example with a daily review (R,Q) policy is used
to study the performance of our approach. Thus, the time unit is in terms of days. Suppose the supply
lead time is L = 2. At the beginning of time period t, we first receive the order ut−L and then observe
the demand Xt . If the stock level St−1 + ut−L is greater than the demand, we have the holding cost
h(St−1 + ut−L−Xt), where St−1 denotes the inventory level in the last time period and the holding cost
per unit is h = 1.5. If Xt exceeds the stock level, we subcontract the remaining demand to the third party
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at price p = 5 per unit. After that, we update the inventory level St = max{St−1 + ut−L−Xt ,0}. If the
inventory position (equal to the sum of stock on hand and outstanding orders) drops to or below the reorder
point R, we place an order with ut = Q; Otherwise, set ut = 0. Thus, the total cost occurs in time period
t is Ct(St ,ut) = cut + hSt + pmax{Xt − St−1− ut−L,0}, where the ordering cost per unit is c = 1.2. The

demands in each time period follow an exponential distribution, Xt
i.i.d.∼ exp(θ c) with rate θ c = 1/300, and

the system starts with an initial inventory 100. Since high-tech products tend to have a short life time,
for simplification, we set the discount factor r = 1. For any given policy specified by (R,Q), we want to
quickly and efficiently estimate the risk-adjusted cost ρX [Y (Θ)] in Equation (4) with ρ = CVaR0.95. For
illustration, suppose R = 100 and Q = 200.

To assess the performance of our approach, suppose the input distribution family is known with the
unknown parameter θ c estimated from real-world data. We start with a noninformative conjugate prior
Gamma(0,0.5). At the current time period t0, the unknown parameter is estimated by m valid historical
data, denoted by x[t0] = (xt0−m+1,xt0−m+2, . . . ,xt0). Thus, our belief on θ c is characterized by the posterior
distribution p(θ |x[t0]) and it is Gamma(a,b)with (a,b)= (m,0.5+∑

t0
t=t0−m+1 xt). For notation simplification,

set t0 = 0. For the generalized two-stage decision model in Equation (4), at the second decision-making point
t1, the knowledge state is characterized by the updated posterior distribution, Gamma(a+ t1,b+∑

t1
t=1 Xt),

which is specified by βt1 = ∑
t1
t=1 Xt .

To examine the robustness of our approach and study the effects of t1 and T on the objective ρX [Y (Θ)],
we consider different settings with m= 10,20,100, T = 10,20 and t1 = 3,5. Since there is no analytical form
for ρX [Y (Θ)] in Equation (4), we do a side experiment to estimate the true value of risk-adjusted cost by using
the Monte Carlo approach with a large enough simulation budget. We run N replications to estimate the outer
risk measure. Since we do not have any prior knowledge about µ(St1 ,βt1) = ρX[t1+1:T ] [∑

T
t=t1+1 rtCt(St ,ut)],

we set equal replications to each sample or prediction point (S(i)t1 ,β
(i)
t1 ) with i = 1,2, . . . ,N. That means

n1 = n2 · · ·= nN = n.
To determine the appropriate replications N and n to estimate the true risk-adjusted cost ρX [Y (Θ)], we

select N = 104 and n = 104 as the benchmark, and then run 10 macro-replications to test different settings.
Since there is larger input uncertainty when m = 10, we only consider m = 10 in the side experiment. In
each macro-replication, we first generate m historical observations, run simulations to estimate ρX [Y (Θ)]
and record the relative error. Then, the results of maximum error in the unit % obtained from 10 macro-
replications are provided in Table 1. We observe that the relative error is more sensitive to the value of
N than n. Since the setting N = 104 and n = 103 can achieve a relative error less than 0.3%, to balance
precision and computational cost, we choose it to estimate the true cost objective value.

Table 1: The maximum absolute relative difference compared to the estimate obtained with N = 104 and
n = 104 (in the unit %).

N 1000 5000 10000
n 1000 5000 10000 1000 5000 10000 1000 5000

t1 = 3,T = 10 1.5 1.6 1.6 1.3 1.4 1.4 0.19 0.08
t1 = 5,T = 10 1.9 1.9 1.9 1.1 1.1 1.0 0.17 0.07
t1 = 3,T = 20 1.4 1.2 1.1 0.9 0.9 0.8 0.29 0.07
t1 = 5,T = 20 1.4 1.2 1.2 0.9 0.9 0.8 0.29 0.08

4.1 Comparison of Metamodel-Assisted and SAA Approaches

For a given simulation budget, we compare our metamodel-assisted approach with the direct SAA approach.
We first study the statistical properties of the PE of ρX [Y (Θ)] obtained by both approaches. Table 2 records
the mean and standard error (SE) of the relative error of PEs in the unit %. They are based on 100
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macro-replications. In each macro-replication, we first generate m historical data from Fc. Then, the
metamodel-assisted and direct SAA approaches are used to estimate the risk-adjusted cost. We record
the relative errors for both approaches. For the metamodel-assisted approach, when we construct the
metamodel for µ(St1 ,βt1), we choose k = 20 design points by following the ‘10d’ rule recommended in
Jones, Schonlau, and Welch (1998). At each design point, we assign 100 replications to estimate the
inner risk measure µ(St1 ,ut1) = ρX[t1+1:T ] [∑

T
t=t1+1 rtCt(St ,ut)]. Based on the simulation results at k design

points, we can construct the fitted response surface mp(St1 ,βt1) by Equation (7) and use it to estimate the
risk-adjusted cost objective. Since it is computationally cheap to assess the inner level risk measure by
using the metamodel, we set N = 1000 when we assess ρX [Y (Θ)]. Considering that the computational
cost mainly comes from assessing the inner risk measure, for simplification, we assign an equal simulation
budget to estimate the inner level risk measure for both metamodel-assisted and SAA approaches. Thus,
for the SAA approach, since the relative error is more sensitive to the value of N than n, we set N = 100
and n = 20 so that we can have one observation falling in the 5% right tail part of ∑

T
t=t1+1 rtCt(St ,ut).

Table 2 demonstrates that the metamodel-assisted approach provides much smaller estimation error and it
can efficiently use the simulation budget to estimate the risk-adjusted cost ρX [Y (Θ)]. Further, we observe
that as t1 increases, the estimation errors from both approaches tend to decrease.

Table 2: The relative error of PEs and the relative width of CrIs obtained by the metamodel-assisted and
SAA approaches (in the unit %).

t1 = 3,T = 10 metamodel-assisted SAA
error of PE CrI width error of PE CrI width
mean SE mean SD mean SE mean SD

m = 10 5.5 0.4 11.3 7.6 13.0 1.0 30.1 8.9
m = 20 4.9 0.3 7.2 3.6 9.0 0.6 26.5 7.1
m = 100 3.0 0.2 3.9 1.5 7.3 0.5 21.1 1.5

t1 = 5,T = 10 metamodel-assisted SAA
error of PE CrI width error of PE CrI width
mean SE mean SD mean SE mean SD

m = 10 4.8 0.4 7.3 5.5 10.0 0.7 25.6 7.3
m = 20 4.1 0.3 5.6 3.2 7.0 0.5 21.6 5.5
m = 100 3.2 0.2 3.0 1.0 5.2 0.4 17.5 4.5

Then, we study the statistical properties of the 95% percentile CrIs obtained by using the metamodel-
assisted and SAA approaches to quantify the simulation estimation uncertainty. Let B = 1000. Table 2
records the mean and standard deviation (SD) of the CrI width divided by the true risk-adjusted cost
ρX [Y (Θ)]. The results are based on 100 macro-replications. In each macro-replication, we first generate m
real-world data from Fc. For the metamodel-assisted approach, let N = 1000 and we build the metamodel
for µ(St1 ,βt1) by using k = 20 and n = 100. Then, we can construct the CrI by following the procedure
described in Section 3.3. For the SAA approach, we first generate N = 100 prediction points, (S(i)t1 ,β

(i)
t1 )

with i = 1,2, . . . ,N. At each sample (S(i)t1 ,β
(i)
t1 ), we estimate the response µ(S(i)t1 ,β

(i)
t1 ) by using n = 20

replications, denoted by µ̂(S(i)t1 ,β
(i)
t1 ), and then obtain the estimation variance by the bootstrap method

(Cheung and Lee 2005), denoted by σ̂2(S(i)t1 ,β
(i)
t1 ). Without using common random numbers, the simulation

estimation uncertainty at different prediction points is independent. Following the similar idea with that in
Xie, Li, and Zhang (2016), we characterize the simulation estimation uncertainty of the response µ(S(i)t1 ,β

(i)
t1 )

with the posterior distribution N (µ̂(S(i)t1 ,β
(i)
t1 ), σ̂2(S(i)t1 ,β

(i)
t1 )), which holds asymptotically. Then, we draw

a multivariate sample at N prediction points from N (µ̂µµ, Σ̂), where the N × 1 vector µ̂µµ with element
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µ̂i = µ̂(S(i)t1 ,β
(i)
t1 ) and the N ×N diagonal matrix Σ̂ with Σ̂ii = σ̂2(S(i)t1 ,β

(i)
t1 ) for i = 1,2, . . . ,N. After

that, we can obtain an estimate of the risk-adjusted cost ρX [Y (Θ)], denoted by Ũb. By repeating this
procedure B times, we have {Ũ1,Ũ2, . . . ,ŨB}. Record the 95% percentile CrI,

[
Ũ(dB α0

2 e)
,Ũ(dB(1− α0

2 )e)
]
,

where Ũ(1) ≤ Ũ(2) ≤ ·· · ≤ Ũ(B) are the sorted values. Notice that these CrIs only account for the simulation
uncertainty on estimating µ(St1 ,βt1). They do not consider the finite sampling uncertainty introduced by
using finite N to estimate the outer risk measure, which could be large for the SAA approach. Table 2
indicates that the metamodel-assisted approach can efficiently use the simulation budget to reduce the
simulation estimation uncertainty.

4.2 Study the Effects of N, t1 and T

In this section, we use the metamodel-assisted approach to investigate the effects of the number of prediction
points N, the second decision point t1, and the length of planning horizon T on the estimation of risk-adjusted
cost ρX [Y (Θ)]. We first study the impact of sample size N. As N increases, the finite sampling error for
estimating the outer risk measure tends to decrease. Since the SAA approach needs to run simulations at
each prediction point (S(i)t1 ,β

(i)
t1 ) with i = 1,2, . . . ,N to estimate the corresponding the inner risk measure, the

computational cost increases dramatically as N becomes large. Differing with SAA, the metamodel-assisted
approach separates the estimation of inner and outer risk measures and it allows us to make predictions for
a large number of prediction points. Thus, we use the metamodel-assisted approach to study the impacts
of the choice of N on the estimation of outer risk measure. Table 3 provides the results on the relative
error of PE and the relative CrI width of the risk-adjusted cost when N = 1000,2000. They indicate that
N = 2000 gives narrower CrI width, while the relative errors of PEs obtained by N = 1000,2000 are close
to each other. That means the finite sampling uncertainty is not ignorable when N = 1000. Notice that as
the required N increases, the advantage of the metamodel-assisted approach becomes more obvious.

In addition, Table 3 indicates that as t1 increases, both the relative estimation errors of PE and the
relative CrI width decrease. By the asymptotic consistency, as t1 increases, the posterior gt1(θ) becomes
more concentrated around θ c and the design space is smaller. Given the same simulation budget, we can
estimate the inner risk measure better.

Table 3: The relative error of PEs and the relative width of CrIs obtained by the metamodel-assisted
approach when N = 1000,2000 (in the unit %).

t1 = 3,T = 10 N = 1000 N = 2000
error of PE CrI width error of PE CrI width
mean SE mean SD mean SE mean SD

m = 10 5.5 0.4 11.3 7.6 5.6 0.4 8.1 6.0
m = 20 4.9 0.3 7.2 3.6 4.0 0.4 5.9 3.4
m = 100 3.0 0.2 3.9 1.5 3.0 0.2 3.4 1.4

t1 = 5,T = 10 N = 1000 N = 2000
error of PE CrI width error of PE CrI width
mean SE mean SD mean SE mean SD

m = 10 4.8 0.4 7.3 5.5 5.2 0.4 6.1 4.9
m = 20 4.1 0.3 5.6 3.2 3.8 0.3 5.2 2.9
m = 100 3.2 0.2 3.0 1.0 3.0 0.2 2.6 1.0

Then, we study the impact of the planning horizon T . While it is computationally cheaper to estimate
the risk-adjusted cost when we use a smaller T value, the larger T gives better approximation to the infinite
planning horizon. We study cases with T = 10,20 and the results are shown in Tables 4. The relative
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errors of PEs and relative CrI width do not change significantly. Since the value of ρX [Y (Θ)] increases as
T increases, the absolute error and the CrI width become larger.

Table 4: The relative error of PEs and the relative width of CrIs obtained by the metamodel-assisted
approach when T = 10,20 (in the unit %).

t1 = 3 T = 10 T = 20
error of PE CrI width error of PE CrI width
mean SE mean SD mean SE mean SD

m = 10 5.5 0.4 11.3 7.6 5.2 0.4 10.9 8.0
m = 20 4.9 0.3 7.2 3.6 4.3 0.3 8.9 5.6
m = 100 3.0 0.2 3.9 1.5 2.5 0.2 4.2 2.0

t1 = 5 T = 10 T = 20
error of PE CrI width error of PE CrI width
mean SE mean SD mean SE mean SD

m = 10 4.8 0.4 7.3 5.5 5.4 0.4 7.1 6.6
m = 20 4.1 0.3 5.6 3.2 3.7 0.4 6.2 4.9
m = 100 3.2 0.2 3.0 1.0 2.5 0.2 3.8 1.6

5 CONCLUSIONS

There exist various challenges when we make real-time decisions for supply chain risk management in
the bio-pharmaceutical manufacturing industry. In this paper, a generalized two-stage decision model is
studied and we propose a simulation-based prediction framework. Since the risk-adjusted cost objective
in the decision model involves the nested risk measures, it could be computationally prohibitive to assess
the system performance by using the classical SAA approach. Considering that the computational cost
mainly comes from estimating the inner risk measure, a metamodel-assisted approach is introduced. It can
efficiently use a finite simulation budget to estimate the risk-adjusted cost objective and further deliver a
CrI quantifying the simulation estimation uncertainty, which is critically important to find good real-time
decisions. An empirical study on an inventory example demonstrates clear advantages of the metamodel-
assisted approach compared to the SAA approach. Then, our approach is further used to study the effects
of the settings of two-stage decision model on the cost objective.
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