
Proceedings of the 2016 Winter Simulation Conference

T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

INTRODUCTION TO SIMULATION USING JAVASCRIPT

Gerd Wagner

Department of Informatics

Brandenburg University of Technology

P. O. Box 101344

03013 Cottbus, GERMANY

ABSTRACT

JavaScript is a dynamic functional object-oriented programming language that can not only be used for

enriching a web page, but also for implementing various kinds of web applications, including web-based

simulations, which can be executed on front-end devices, such as mobile phones, tablets and desktop

computers, as well as on powerful back-end computers, possibly in some cloud infrastructure. Although

JavaScript cannot compete with strongly typed compiled languages (such as C++, Java and C#) on speed,

it provides sufficient performance for many types of simulations and outperforms its competitors on ease

of use and developer productivity, especially for web-based simulation. This tutorial provides a two-fold

introduction: (1) to JavaScript programming using the topic of simulation, and (2) to simulation using the

programming language JavaScript. It shows how to implement a Monte Carlo simulation, a continuous

state change simulation and a discrete event simulation, using the power of JavaScript and the web.

1 INTRODUCTION TO SIMULATION

“Simulation” is an umbrella term subsuming a variety of use cases and approaches. Since we are only

interested in computer simulation in this article, we can say that a simulation is provided by any computer

program that imitates a static structure or a dynamic system of the real-world. This broad definition

includes using

 a general-purpose programming language such as C++, Java, JavaScript, C#, etc., for imple-

menting a simulation program, no matter if it is purely ad-hoc or based on a simulation paradigm;

 a simulation language such as Simula, SIMAN, Modelica, NetLogo, etc.;

 a simulation platform such as Arena, Simio, AnyLogic, etc.;

 an implementation of an abstract process formalism such as Petri Nets, State Charts, DEVS,

Event Graphs, Activity Cycle Diagrams, etc.

 Three main categories of simulations are often distinguished:

1. Monte Carlo simulation,

2. continuous simulation, and

3. discrete event simulation.

 As explained in Wikipedia, Monte Carlo methods are “a broad class of computational algorithms that

rely on repeated random sampling to obtain numerical results”. In principle, this approach can be used to

solve any computational problem involving random variables. When Monte Carlo methods are used in a

program for estimating certain performance indicators of real-world systems, such as in manufacturing or

financial markets, this is often called Monte Carlo simulation, if the program does not involve the

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 148

Wagner

modeling of time and the simulation of state changes, but only a set of input random variables and a set of

equations for computing the resulting output variables.

Continuous simulation, or more precisely: continuous state change simulation, is concerned with

modeling a dynamic real-world system with the help of differential equations describing its state changes

and simulating it by running a computational model based on a numerical solution of the differential

equations. The computational model includes a discretization of the theoretically continuous time model

by choosing a fixed time increment depending on a suitable granularity of time (e.g., 10 ms or 100 ms),

and then running a fixed increment time progression loop that iteratively computes the next values of all

state variables based on their current values.

Normally, continuous simulation is used for simulating continuous dynamic systems, in which

continuous qualities, such as the spatial position or the velocity of a material object, or the temperature of

an amount of matter, are subject to continuous changes. But continuous simulation can also be used for

simulating discrete dynamic systems, such as biological populations or economic systems, by describing

their discrete state changes approximatively with continuous state changes based on differential equa-

tions.

The term Discrete Event Simulation (DES) has been established as an umbrella term subsuming

various kinds of computer simulation approaches, all based on the general idea of making a computational

model of a discrete dynamic system by representing its state with the help of state variables, and

modeling its dynamics by modeling the events that are responsible for its state changes. There is,

however, no generally accepted definition of DES. Simulation textbooks and tutorials avoid defining the

term “DES” in a precise way.

Pegden (2010) explains that the most fundamental DES approach, which he calls the event worldview,

views a discrete dynamic system as a series of instantaneous events that change the state of the system

over time, such that a DES model needs to define the events in the system and model the state changes

that take place when those events occur. This is also the view adopted in DES textbooks, when they

present implemented discrete event simulations based on the computational paradigm of event scheduling

using a future events list and a next-event time progression loop that iteratively invokes the event routines

of all imminent events.

As we have argued in (Guizzardi and Wagner 2010), objects and events are the most fundamental

ontological categories for understanding and describing real-world systems, and therefore, the traditional

event worldview should be extended to an object-event worldview where a system is viewed to consist of

objects the state of which is changed by events. In this broader view, both objects and events are first-

class citizens, the system state is the aggregation of all objects’ states and the simulation model’s state

variables are provided by the attributes of the system’s objects.

Notice that the object-event worldview is also supported, in some sense, by the success of the object-

oriented modeling and programming paradigm in software engineeering, and by the remarkable fact that

it is historically rooted in the concepts of objects, classes and inheritance originally pioneered by the

simulation language Simula.

2 INTRODUCTION TO JAVASCRIPT

JavaScript was developed in 10 days in May 1995 by Brendan Eich, then working at Netscape, as the

HTML scripting language for their browser Navigator 2. Originally, it was intended to be used for

enriching web pages and web user interfaces. A web page could be enriched by (a) generating browser-

specific HTML content or CSS styling, (b) inserting dynamic HTML content, or (c) producing special

audio-visual effects (animations). A web user interface could be enriched by (a) implementing advanced

user interface components, (b) validating user input on the client side, or (c) automatically pre-filling

certain form fields.

Later, after browsers started supporting the ECMAScript 5.1 standard defined in 2011, JavaScript

mutated into a full-fledged programming language that could be used for programming all kinds of

software applications and tools. At the same time, the back-end JavaScript platform Node.js was

149

Wagner

developed and adopted by an increasing number of web developers who appreciated the new possibility

of using JavaScript not only for browser-based front-end development, but also for all kinds of back-end

tasks.

 Today, JavaScript is the most widely used programming language (according to certain measures,

such as the statistics on StackOverflow and GitHub), and a powerful platform, which offers many

advantages over other platforms:

1. It's the only language that enjoys native support in web browsers.

2. It's the only universal language in the sense that it allows

a. building web apps with just one programming language. All other languages (like Java and

C#) can only be used on the back-end and need to be combined with front-end JavaScript, so

developers need to master at least two programming languages.

b. executing the same code (e.g., for constraint validation) on the back-end and the front-end.

3. It's the only language that allows dynamic distribution, that is, executing the same code (e.g., for

business computations) either in the back-end or the front-end, depending on run-time conditions

such as the availability of front-end resources.

4. It combines object-oriented with functional programming.

5. Its dynamism allows various forms of meta-programming, which means it enables developers to

program their own programming concepts, like classes and enumerations.

 JavaScript is object-oriented (OO), but in a different way than classical OO programming languages

such as Java and C#. There is no explicit class concept in JavaScript. Rather, classes have to be defined in

the form of special objects, either as constructor functions or as factory objects, using certain code

patterns.

 Objects can also be created without instantiating a class, in which case they are untyped, and

properties as well as methods can be defined for specific objects independently of any class definition. At

run time, properties and methods can be added to, or removed from, any object and class.

The version of JavaScript that is currently supported by web browsers is called “ECMAScript 5.1”, or

simply “ES5”, but the next two versions, called “ES6” and “ES7”, with lots of added functionality and

improved syntaxes, are around the corner and are already partially supported by current browsers and

back-end JavaScript environments.

 After a brief discussion of the most basic language elements of JavaScript, further concepts are

explained on the fly when they are used for implementing a specific simulation. The following sub-

sections are extracted from my JavaScript Summary article (Wagner 2015), which is recommended for

readers who want to learn more about JavaScript.

2.1 Types and Data Literals

JavaScript has only three primitive data types: string, number and boolean, and we can test if a

variable v holds a value of such a type with the help of typeof(v) as, for instance, in typeof(v) ===

"number". There is no explicit type distinction between integers and floating point numbers (all numeric

data values are internally represented in 64-bit floating point format). We can test if a number is an

integer with the help of the built-in function Number.isInteger.

 Since JavaScript has special forms of objects, arrays and functions, I normally say “JS object”, “JS

array” or “JS function” whenever I refer to one of them. There are essentially three reference types in

JavaScript: Object, Array, and Function. JS arrays and JS functions are special types of JS objects.

The object concept of JavaScript is very versatile. For instance, JS objects can be used as records

(attribute-value pairs), as in {num:2, denom:3}, or as maps (sets of key-value pairs), as in {"one":1,

"two":2, "three":3}. A variable holding an empty JS object literal is defined by var o = {} with

curly braces, while a variable holding an empty JS array literal is defined by var a = [] with brackets.

Since JS arrays do not have a fixed size, they rather correspond to array lists.

150

Wagner

The types of variables, array elements, function parameters and return values are not declared and are

normally not checked by JavaScript engines. Type conversion (casting) is performed automatically.

For testing the equality (or inequality) of two primitive data vales, we use the strict equality predicate

expressed with the triple equality symbol === (and !==) instead of the double equality symbol == (and

!=). Otherwise, for instance, the number 2 would be the same as the string "2", since the condition (2 ==

"2") evaluates to true in JavaScript.

2.2 Procedures and Functions

As in C/C++, procedures are called “functions”, no matter if they return a value or not. Since JS functions

are JS objects, they can be stored in variables, passed as arguments to functions, returned by functions,

have properties and can be changed dynamically. Therefore, JS functions are first-class citizens, and

JavaScript can be viewed as a functional programming language.

 The general form of a function definition in JavaScript is an assignment of a function expression to a

variable:

 var myF = function theNameOfMyF () {...}

 where theNameOfMyF is optional. When it is omitted, the function is anonymous. In any case,

functions are invoked via a variable that references the function. In the above case, this means that the

function is invoked with myF(), and not with theNameOfMyF().

JS functions can have inner functions. The closure mechanism allows a JS function using variables

from its outer scope, and a function created in a closure remembers the environment in which it was

created.

2.3 Defining and Using Classes

The concept of a class is fundamental in object-oriented programming. Objects instantiate (or are

classified by) a class. A class defines the properties and methods (as a blueprint) for the objects created

with it. Having a class concept is essential for being able to implement a data model in the form of model

classes within a Model-View-Controller (MVC) architecture.

 There has been no explicit class concept in JavaScript before ES6, but only the concept of a

constructor function, which can be used in combination with certain code patterns for defining an

equivalent of classes. In ES6, a user-friendly syntax for defining classes and class hierarchies has been

introduced, but it is still not supported in all browsers today. In ES5, we have to follow certain code

patterns, recommended by Mozilla in their JavaScript Guide, for defining a class. The code pattern for

defining an inheritance relationship between two classes requires seven steps, see (Wagner 2015).

Because such a complex pattern is quite unwieldy, it can be preferable to use a library like cLASSjs for

easily defining constructor-based classes and class hierarchies. This is also the approach taken in this

tutorial.

2.4 JavaScript’s Built-In Random Number Generator

A random number generator (RNG) is a deterministic algorithm that imitates the sampling of a random

variable with a uniform distribution over the interval (0,1) by generating a corresponding sequence of

floating point numbers upon repeated invocations. The RNGs originally built into JavaScript (more

precisely, into the JavaScript engines of browser vendors) were not very good. In fact, at least in Firefox,

Chrome and Safari, they have been replaced (in the beginning of 2016) with a high-quality RNG called

xorshift+, based on Marsaglia’s xorshift generator, see Vigna (2016).

JavaScript’s built-in RNG is invoked with Math.random(), which returns a number in the range [0,

1) that is, from 0 (inclusive) up to but not including 1 (exclusive). Unfortunately, the built-in RNG cannot

be seeded by the user, so when seeding is required, an external library, such as Mersenne Twister JS or

seedrandom, has to be used. Also, since there is no built-in support for random variate generation, a

151

Wagner

library like jStat or probability-distributions, supporting all common probability distributions, has to be

used.

3 MONTE CARLO SIMULATION

We start by building a Monte Carlo simulation, considering the case of manufacturing computer chips on

wafers, which are discs that are typically made of purified silicon. Chips are built simultaneously in a grid

formation on the wafer surface, as illustrated by Fig 1.

Figure 1: A wafer map showing cells on the wafer and cells that don't fully lie within the wafer (image by

Moxfyre, CC BY-SA 3.0).

An important issue is the cost per chip resulting from the chip yield per wafer, which depends on

wafer size, chip size and average number of defective chips. In our simplified example, we assume that

chips may be defective due to random contamination of the wafer, for which we assume a uniform

probability distribution over the wafer’s circle area, obtained using polar coordinates.

A simple browser-based JavaScript program consists of an HTML file defining the user interface, and

an embedded reference to an external JavaScript file, as shown in the following HTML code listing:

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

 <meta charset="utf-8">

 <title>Wafer Defects Simulation</title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

</head>

<body>

 <h1>Simulating the Defects on a Wafer</h1>

 <table>

 <thead>

 <tr><th># Defects</th><th>Avg. # Good Chips</th><th>Avg. Chip Price</th></tr>

 </thead>

 <tbody id="tbody"></tbody>

 </table>

 <script src="WaferDefectsSimulation.js"></script>

</body>

</html>

 In the external JavaScript file "WaferDefectsSimulation.js", we first define three utility procedures:

1. The function getUniformDecimal generates a uniformly distributed random variate between a

lower bound and an upper bound number.

2. The function generateRandomPointOnCircle generates a random point on a circle based on

uniformly distributed random polar coordinates.

3. The procedure createOutputTableRow creates a HTML table row in the user interface for

showing simulation results to the user.

152

Wagner

 Then we define a class Wafer in the form of a constructor function with two parameters denoting the

wafer diameter and the chip size:

var Wafer = function (d, s) {

 var i=0, j=0;

 // define attributes

 this.diameter = d;

 this.chipSize = s;

 this.gridWidthInNumberOfCells = parseInt(this.diameter / this.chipSize);

 this.nmrOfGridCellsOnWafer = 0; // computed below

 this.gridCells = [];

 // initialize grid cells array

 for (i = 0; i < this.gridWidthInNumberOfCells; i++) {

 this.gridCells[i] = []; // initialize row array

 for (j = 0; j < this.gridWidthInNumberOfCells; j++) {

 this.gridCells[i][j] = this.isGridCellOnWafer(i, j);

 if (this.gridCells[i][j]) this.nmrOfGridCellsOnWafer++;

 }

 }

};

 The Wafer class encapsulates three methods:

1. The method isGridCellOnWafer(i,j) returns a Boolean value indicating if the grid indexes i and j

identify a cell that fully lies within the wafer or not.

2. The method generateDefect() generates a random defect on the wafer.

3. The method countGoodChips() counts the good chips on the wafer, after the simulated defects

have been generated.

 The standard approach in JavaScript is to define the methods of a class as methods of a special

“prototype” object associated with the constructor function via its built-in prototype property. This allows

invoking the methods on any object created with the constructor and enables inheritance for subclasses.

Consequently, we define, for instance, the generateDefect method in the following way

Wafer.prototype.generateDefect = function () {

 var p={}, i=0, j= 0,

 r = this.diameter / 2;

 p = generateRandomPointOnCircle(r);

 i = Math.floor((p.x + r) / this.chipSize);

 j = Math.floor((p.y + r) / this.chipSize);

 this.gridCells[i][j] = false; // defective grid cell

};

 The repeated random sampling for input variables, which is characteristic for Monte Carlo simulation,

requires a corresponding loop, which is run within a nested for loop over chip sizes and defect frequencies

in a main procedure:

(function main () {

 var s=0, k=0, i=0, wafer=null, p=null,

 chipSize = 0.0, nmrOfDefects = 0,

 totalNmrOfGoodChips = 0, avgNmrOfGoodChips = 0.0;

 var nmrOfExperiments = 50; // # repeated simulation experiments

 var waferDiameter = 12; // cm

 var waferCost = 5000; // US Dollars

 // HTML element for tabular output

 var tableEl = document.getElementById("tbody");

 // loop over 3 chip sizes

 for (s=0; s < 3; s=s+1) {

 chipSize = 1 + s * 0.5; // 1 cm, 1.5 cm, 2 cm

 // create wafer object for computing the # of cells on wafer

 wafer = new Wafer(waferDiameter, chipSize);

153

Wagner

 createOutputTableRow(tableEl, "Chip size: " + chipSize +

 " / Number of potential chips: " + wafer.nmrOfGridCellsOnWafer);

 // loop over different defect frequencies

 for (nmrOfDefects = 10; nmrOfDefects <= 100; nmrOfDefects += 10) {

 totalNmrOfGoodChips = 0;

 avgNmrOfGoodChips = 0.0;

 // repeated experiments for computing averages

 for (i=1; i <= nmrOfExperiments; i=i+1) {

 // create new wafer object

 Wafer = new Wafer(waferDiameter, chipSize);

 // create defects on wafer

 for (k=1; k <= nmrOfDefects; k=k+1) wafer.generateDefect();

 totalNmrOfGoodChips += wafer.countGoodChips();

 }

 avgNmrOfGoodChips = totalNmrOfGoodChips / nmrOfExperiments;

 createOutputTableRow(tableEl, nmrOfDefects, avgNmrOfGoodChips,

 waferCost / avgNmrOfGoodChips);

 }

 }

}()); // syntax of an immediately invoked function expression

 Notice that the main procedure is expressed in the syntax of what is called an “immediately invoked

function expression”. This is a JavaScript approach for creating a scope for variables that would otherwise

pollute the global scope.

 The wafer defects simulation can be executed, and its full code inspected, by visiting the web page:

http://oxygen.informatik.tu-cottbus.de/modsim/ex/WaferDefectsSimulation.html.

4 CONTINUOUS SIMULATION

We consider a scenario where a car has to follow another car and maintain a “safe distance”, assuming

that it knows its own velocity and the distance to the leading car, from sensor data. The scenario is

illustrated in Fig. 2.

Figure 2: A car following another one (image by Delapouite under CC BY 3.0).

 The leading car has its own independent driving behavior model. One or more following cars have a

car-following behavior model based on two parameters: the security time distance between two cars,

symbolically sT, which consists of the time needed to react and a security buffer, and can be set, e.g., to 2

seconds, and a reaction sensitivity coefficient β that defines how quickly a following car adapts its

velocity v when the current distance d falls below, or exceeds, the security distance v ∙ sT. For adapting its

velocity, a car either accelerates or decelerates, and an equation for computing the car’s acceleration a as

a control action is the main issue of a car-following behavior model.

 We use the simple linear equation a = β (d – v ∙ sT), which implies a positive value (hence,

acceleration), when the current distance is greater than the security distance, and a negative value (hence,

deceleration), when it is less that the security distance.

4.1 Making a Simulation Design Model

For designing a general computational solution, we first make a conceptual information model describing

the types of objects that populate the considered scenario, and their attributes, which form the system

state. Cars are the only object type in the conceptual model shown on the left-hand side in Fig. 3. Cars are

described in terms of their make and model, having the physical properties position, velocity and

acceleration. These properties are essential for describing how one car, the following car, follows another

one, the leading car, by adjusting its velocity via acceleration or deceleration in order to decrease or

increase its distance to the leading car.

154

Wagner

 Notice how the names of both roles, leading car and following car, are attached to the two ends of the

association between cars in the diagram on the left-hand side in Fig. 3. This association models the

possibilities that a car may be a following car or a leading car in a sequence of two or more cars.

The general logic of continuous simulation requires iteratively computing the next values of all state

variables based on their current values. In a general approach, we can use a two-element array for each

state variable v, such that v[0] denotes the current value of v, and v[1] denotes its next value.

We can express this in a design model, as shown on the right-hand side in Fig. 3, by declaring the

three attributes position, velocity and acceleration as arrays with two elements, each holding a decimal

number (for simplicity, we choose a one-dimensional space model as part of our simulation design).

Notice that we have allocated these three attributes, and the two corresponding update functions

computeNextVelocity and computeNextPosition, to a more general class of moving objects, of which cars

are a special case. In terms of object-oriented modeling, this means that the Car class inherits these

attributes and functions from the MovingObject class.

distance()

make
model
position
velocity
acceleration

cars

following car 0..1

leading car

0..1

computeNextVelocity() : Decimal
computeNextPosition() : Decimal

position : array<2, Decimal>
velocity : array<2, Decimal>
acceleration : array<2, Decimal>

MovingObject

getDistance() : Decimal
computeAcceleration() : Decimal

securityTimeDistance : Decimal
reactionSensitivity : Decimal
leadingCar : Car

Car

Figure 3: Deriving a computational design model from a conceptual model.

 Notice also that the computeAcceleration update function, defining the acceleration behavior of a car,

is encapsulated within the Car class, while computeNextVelocity and computeNextPosition simply

implement Newtonian physics (Δv = a ∙ Δt and Δx = v ∙ Δt, respectively) and are encapsulated within the

MovingObject class.

4.2 Implementing the Simulation Design Model with JavaScript

We first show how to implement the two classes MovingObject and Car defined in the design model in

Fig. 3 with the help of the cLASSjs library, which simplifies the definition of classes in JavaScript. A

class is defined as an instance of the meta-class cLASS with a set of properties and a set of methods,

where each property is defined by a name and a range, and each method is defined by a name and a

method body in the form of a JS function expression (in terms of JavaScript syntax, both properties and

methods are map-valued properties of the cLASS instance MovingObject).

var MovingObject = new cLASS({

 Name:"MovingObject",

 properties: {

 "pos": {range: ["Decimal","Decimal"]},

 "vel": {range: ["Decimal","Decimal"]},

 "acc": {range: ["Decimal","Decimal"]}

 },

 methods: {

 "computeNextVelocity": function () {

 return this.vel[0] + this.acc[0] * dt;

 },

 "computeNextPosition": function () {

 return this.pos[0] + this.vel[0] * dt;

 }

 }

155

Wagner

});

 Notice that computeNextVelocity and computeNextPosition do not have any parameters, but operate

directly on the current acceleration attribute this.acc[0], current velocity attribute this.vel[0] and

current position attribute this.pos[0] of moving objects. The class Car is defined as a subclass of

MovingObject by setting its attribute supertypeName to “MovingObject”:

var Car = new cLASS({

 Name:"Car",

 supertypeName:"MovingObject",

 properties: {

 "leadingCar": {range: Car}

 },

 methods: {

 "getDistance": function () {

 return this.leadingCar.pos[0] - this.pos[0];

 },

 "computeAcceleration": function () {

 return Car.reactionSensitivity *

 (this.getDistance() - this.vel[0] * Car.securityTimeDistance);

 }

 }

});

 In addition to these two class definitions, the simulation model also includes the following simulation

parameter definitions in the form of class-level (static) attributes of Car:

Car.securityTimeDistance = 2.0; // in seconds

Car.reactionSensitivity = 5.0;

 After defining the simulation model, the next step is to initialize the simulation by initializing the

simulation time variable t as well as the fixed time increment parameter dt and the simulation end time

parameter endTime, and define the initial state of the simulation by defining initial attribute values for the

leading car1 and the following car2:

var t = 0.0, dt = 0.1, endTime = 20; // in seconds

var car1 = new Car({pos:[30,0], vel:[17,0], acc:[5,0]}),

 car2 = new Car({pos:[0,0], vel:[17,0], acc:[0,0], leadingCar: car1});

 Finally, we implement the fixed increment time progression loop that iteratively computes the next

values of all state variables based on their current values:

for (i=0; i <= 200; i=i+1) {

 ... // output current speed and distance

 // compute next state on basis of current state

 if (car1.vel[0] > 33.33) car1.acc[1] = -5.0; // 120 km/h

 else if (car1.vel[0] < 16.66) car1.acc[1] = 5.0;

 else car1.acc[1] = car1.acc[0];

 car1.vel[1] = car1.computeNextVelocity();

 car1.pos[1] = car1.computeNextPosition();

 car2.acc[1] = car2.computeAcceleration();

 car2.vel[1] = car2.computeNextVelocity();

 car2.pos[1] = car2.computeNextPosition();

 // update current state

 car1.acc[0] = car1.acc[1]; car1.vel[0] = car1.vel[1];

 car1.pos[0] = car1.pos[1];

 car2.acc[0] = car2.acc[1]; car2.vel[0] = car2.vel[1];

 car2.pos[0] = car2.pos[1];

156

Wagner

 // advance time

 t = t + dt;

}

 Notice that we model the acceleration behavior of the leading car1 by starting with an acceleration of

5 m/s2 and then periodically changing it to -5 m/s2 when an upper limit velocity of 33.33 m/s is exceeded

and raising it again to 5 m/s2 when a lower limit of 16.66 m/s is reached.

The car-following simulation, extended by a simulation log, can be executed, and its full code

inspected, by visiting the web page: http://oxygen.informatik.tu-cottbus.de/modsim/ex/CarFollowing-

2cars.html.

5 DISCRETE EVENT SIMULATION

We consider a simple inventory management system: a shop selling one product type (e.g., one model of

TVs), only, such that its in-house inventory only consists of items of that type. On each business day,

customers come to the shop and place their orders. If the ordered product quantity is in stock, the

customer pays for the order and the ordered products are provided. Otherwise, the order may still be

partially fulfilled, if there are still some items in stock, else the customer has to leave the shop without

any item and the shop has missed a business opportunity. If an order quantity is greater than the current

stock level, the difference counts as a lost sale.

The purpose of the simulation project is to estimate lost sales under certain conditions.

5.1 Making a Simulation Design Model

We only model one object type: SingleProductShop with the following attributes: quantityInStock,

reorderLevel and orderUpToLevel. As a design choice justified by the simulation purpose of estimating

lost sales, we can simplify the model by aggregating all individual customer order events on a day in a

single DailyDemand event.

 Replenishment orders are placed whenever the quantityInStock falls below the reorderLevel.

Assuming that each replenishment order causes a corresponding delivery with a random delay (lead time)

allows abstracting away from replenishment order events and only considering the delivery events caused

by them. Thus, we can make a model with only two event types:

1. An exogenous event type DailyDemand with a demand quantity attribute and a recurrence

method defining the recurrence of DailyDemand events to be 1 (with the meaning that such an

event occurs each day).

2. A caused event type Delivery with a quantity attribute.

 Notice that both event types DailyDemand and Delivery are associated with SingleProductShop, since

the shop participates in events of both types. These associations are implemented with the corresponding

reference properties DailyDemand::shop and Delivery::receiver. It is a general ontological pattern that

objects participate in events. In our example, a shop participates in a DailyDemand event, and a shop

participates in a Delivery event (as the receiver of delivered items). When making a simulation design

model, these participations should be explicitly modeled with the help of corresponding associations.

 We model the random variations of two variables: demand quantity and delivery lead time. In general,

random (input) variables can be modeled in a UML class diagram as class-level (“static”) methods that

sample values from the underlying probability distribution. We model the random variable demand

quantity with the DailyDemand::sampleQuantity method using a uniform integer distribution U(5,10),

and the random variable delivery lead time with the method Delivery::sampleLeadTime using an

empirical integer distribution Emp{1:0.2, 2:0.5, 3:0.3}. This leads to the information design model shown

in Fig. 4.

157

Wagner

name : NonEmptyString
quantityInStock : NonNegativeInteger
reorderLevel : NonNegativeInteger
reorderUpToLevel : PositiveInteger

«object type»
SingleProductShop

recurrence() : PositiveInteger {return 1}
«rv» sampleQuantity() : PositiveInteger {U(5,10)}

occurrenceTime : NonNegativeInteger
quantity : PositiveInteger

«exogenous event type»
DailyDemand

shop 1*

receiver1
*

«rv» sampleLeadTime() : PositiveInteger {Emp(1:0.2, 2:0.5, 3:0.3)}

quantity : PositiveInteger
occurrenceTime : NonNegativeInteger

«caused event type»
Delivery

Figure 4: Information design model for the inventory management simulation.

 We use the UML stereotypes «exogenous event type» and «caused event type» for categorizing

classes that represent exogenous event types and caused event types, while we use «object type» for

categorizing classes that represent object types.

 As explained in (Wagner 2014), for obtaining a complete simulation design using the object-event

worldview, the information design model of Fig. 4 is complemented with a process design model, e.g., in

the form of an event rule design table as in Table 1. Notice that an event rule combines an event type

expression with an event routine specifying immediate state changes of affected objects and (possibly

delayed) follow-up events.

Table 1: Event rule design table for the inventory management simulation.

ON (event type) DO (event routine)

DailyDemand(quantity) @ t IF quantity <= shop.quantityInStock,

 decrement shop.quantityInStock by quantity

 IF shop.quantityInStock − quantity < reorderLevel AND

 shop.quantityInStock > reorderLevel

 schedule Delivery @ t + sampleLeadTime()

 with quantity := reorderUpToLevel − quantityInStock

ELSE (if quantity > shop.quantityInStock)

 increment shop.lostSales by quantity − shop.quantityInStock

 and set shop.quantityInStock := 0

Delivery(quantity) @ t Increment shop.quantityInStock by quantity

 Since all event types share an occurrenceTime attribute and an applyRule method, it is natural to

define an abstract type Event that encapsulates these features shared by all event types, as shown in Fig. 5

below. This can be implemented as an abstract class with an abstract method applyRule in an object-

oriented (OO) programming language. In this way, the OO mechanism of method overriding can be used

in the implementation of the next-event time progression loop for invoking the applyRule method on the

next event from the future events list. This means that, while in the code of the next-event time

progression loop the abstract Event::applyRule method is used, when executing the loop, the runtime

environment of the OO programming language (in our case, the JavaScript engine) will apply the specific

applyRule method of the respective event type of the currently processed event (such as

Delivery::applyRule).

In JavaScript, the Event hierarchy shown in Fig. 5 can be simplified by dropping the abstract method

from the Event class. Due to its weakly typed nature, JavaScript does not need abstract methods for

method overriding.

158

Wagner

applyRule() : Event[*]

occurrenceTime : Number

Event

recurrence() : Integer = 1
sampleQuantity() : Integer = U(5,10)
applyRule() : Event[*]

quantity : NonNegativeInteger
shop : SingleProductShop

DailyDemand

sampleLeadTime() : Integer {Emp(1:0.2, 2:0.5, 3:0.3)}
applyRule() : Event[*]

quantity : PositiveInteger
receiver : SingleProductShop

Delivery

Figure 5: All event types inherit an occurrenceTime attribute from Event.

5.2 Implementing the Simulation Design Model with JavaScript

The simulation code has 4 parts:

1. A simulation model in the form of class definitions; while a continuous simulation model defines

only object classes, a DES model also defines event classes.

2. An initial state definition, which defines a set of initial objects, and, in the case of a DES model,

also initial events.

3. A set of simulation parameter definitions, such as the simulation end time.

4. The simulation time progression loop, which is based on next-event time advance in the case of

DES, while it is fixed-increment time advance in the case of continuous simulation.

 We first show the class definitions for implementing the simulation model: the object class

SingleProductShop and the event classes DailyDemand and Delivery.

var SingleProductShop = new cLASS({

 Name: "SingleProductShop",

 properties: {

 "name": {range: "NonEmptyString"},

 "quantityInStock": {range:"NonNegativeInteger", label:"Stock"},

 "reorderLevel": {range:"NonNegativeInteger"},

 "reorderUpToLevel": {range:"PositiveInteger"},

 // output statistics

 "lostSales": {range:"NonNegativeInteger", label:"Lost"}

 }

});

 Notice that, for simplicity, we have defined the lost sales statistics as an attribute of the object class

SingleProductShop. In general, we would rather have special data structures and code for handling the

output statistics variables.

 Since event rules are implemented as methods with the pre-defined name applyRule in the event class

concerned, we obtain the following code for the DailyDemand event class:

var DailyDemand = new cLASS({

 Name: "DailyDemand",

 supertypeName: "Event",

 properties: {

 "quantity": {range: "PositiveInteger", label:"quant"},

 "shop": {range: SingleProductShop}

 },

 methods: {

 "applyRule": function () {...} // see below

 }

});

159

Wagner

The applyRule method takes care of all state changes implied by a DailyDemand event, and of scheduling

Delivery follow-up events. It is defined as follows:

 "applyRule": function () {

 var q = this.quantity,

 prevStockLevel = this.shop.quantityInStock,

 followUpEvents = [];

 // update lostSales if demand quantity greater than stock level

 if (q > prevStockLevel) {

 this.shop.lostSales += q - prevStockLevel;

 }

 // update quantityInStock

 this.shop.quantityInStock = Math.max(prevStockLevel - q, 0);

 // schedule Delivery if stock level falls below reorder level

 if (prevStockLevel > this.shop.reorderLevel &&

 prevStockLevel - q <= this.shop.reorderLevel) {

 followUpEvents.push(new Delivery({

 occTime: this.occTime + Delivery.sampleLeadTime(),

 quantity: this.shop.reorderUpToLevel - this.shop.quantityInStock,

 receiver: this.shop

 }));

 }

 // since DailyDemand is exogeneous, schedule next DailyDemand event

 followUpEvents.push(new DailyDemand({

 occTime: this.occTime + DailyDemand.recurrence(),

 quantity: DailyDemand.sampleQuantity(),

 shop: this.shop

 }));

 return followUpEvents;

 }

In addition to the property definitions and the applyRule method definition, we also have the definitions

of the static recurrence method and the static method sampleQuantity implementing the random variable

demand quantity:

DailyDemand.recurrence = function () {

 return 1;

};

DailyDemand.sampleQuantity = function () {

 return getUniformInteger(5, 10);

};

 The second event class, Delivery, has the following code:

var Delivery = new cLASS({

 Name: "Delivery",

 supertypeName: "Event",

 properties: {

 "quantity": {range: "PositiveInteger", label:"quant"},

 "receiver": {range: SingleProductShop}

 },

 methods: {

 "applyRule": function () {

 this.receiver.quantityInStock += this.quantity;

 return []; // no follow-up events

 }

 }

});

 In addition, the random variable lead time is implemented with a static method sampleLeadTime:

Delivery.sampleLeadTime = function () {

 var r = getRandomInt(0, 99);

 if (r < 25) return 1; // probability 0.25

160

Wagner

 else if (r < 85) return 2; // probability 0.60

 else return 3; // probability 0.15

};

 The initial state is defined in terms of initial objects and initial events. In our simple example, there is

only one object, which represents a shop:

var tvShop = new SingleProductShop({

 name:"TV",

 quantityInStock: 80,

 reorderLevel: 50,

 reorderUpToLevel: 100

});

 In addition, the initial future events list FEL is set up with just one initial DailyDemand event as

follows:

var FEL = new EventList();

FEL.add(new DailyDemand({occTime:1, quantity:25, shop: tvShop}));

 The future events list drives the next-event time progression loop, the code of which is as follows:

while (simTime < simEnd) {

 logSimulationStep(tvShop, FEL);

 nextTime = FEL.getNextOccurrenceTime();

 // extract and process next events

 nextEvents = FEL.removeNextEvents();

 for (i=0; i < nextEvents.length; i++) {

 e = nextEvents[i];

 // apply event rule

 followUpEvents = e.applyRule();

 // schedule follow-up events

 for (j=0; j < followUpEvents.length; j++) {

 FEL.add(followUpEvents[j]);

 };

 };

 simTime = nextTime; // advance simulation time

}

5.3 Implementing an Event List with JavaScript

Any DES algorithm based on future events scheduling needs a suitable complex datatype for the future

events list. As we can see in the program code listing of the next-event time progression loop above, this

complex datatype has to provide three operations:

1. A getNextOccurrenceTime function for retrieving the occurrence time of the next event.

2. A removeNextEvents method for retrieving and removing all events with an occurrence time

equal to getNextOccurrenceTime() from the FEL.

3. An add method for adding an event to the FEL.

 As in other programming languages, we have different options how to implement the complex

datatype EventList. The simple implementation chosen in our Inventory Management simulation is based

on using an unordered array as a store for the future events. While this choice is okay for all simulations

where the future events list does not grow larger than a few hundred events, a better choice would be

using a linked list. Notice that linked lists are not provided as a pre-defined class in JavaScript. However,

they can be easily implemented.

161

Wagner

getNextOccurrenceTime() : Number
add(in newEvt : Event)
removeNextEvents() : array<Event>

events : array<Event>

EventList

Figure 5: An EventList class using an unordered JS array as the events store.

 Visit the web page http://oxygen.informatik.tu-cottbus.de/modsim/ex/InventoryManagement.html for

executing the Inventory Management simulation and for inspecting its code.

6 CONCLUSIONS

We have shown how different types of simulations can be implemented with JavaScript. However, for a

lack of space, we were not able to show how to construct a user interface for our simulations. The web

platform offers excellent technologies for building user interfaces with HTML and CSS, and enriching

them with powerful visualizations using SVG and the Canvas API. For learning more about how to build

a web-browser-based simulator supporting advanced concepts, user interfaces and visualization, using

JavaScript, HTML, CSS and SVG, see my book Introduction to Simulation Using JavaScript (Wagner

2016), from which the material of this tutorial has been extracted.

REFERENCES

Guizzardi, G., and G. Wagner. 2010. “Towards an Ontological Foundation of Discrete Event Simulation.”

In: Johansson B, Jain S, Montoya-Torres J, Hugan J, Yücesan E (Eds.), Proceedings of the 2010

Winter Simulation Conference, Baltimore (MD), USA, 652−664. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers, Inc. Available from: http://www.informs-sim.org/wsc10papers/

059.pdf

Pegden, C.D. 2010. “Advanced Tutorial: Overview of Simulation World Views.” In: Johansson B, Jain S,

Montoya-Torres J, Hugan J, Yücesan E (Eds.), Proceedings of Winter Simulation Conference,

Baltimore (MD), USA, 643−651. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

Vigna, S. 2016. “PRNG Shootout.” Accessed April 29, 2016. http://xorshift.di.unimi.it/

Wagner, G. 2014. “Tutorial: Information and Process Modeling for Simulation.” In Proceedings of the

2014 Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S.

Buckley and J. A. Miller, 103–117. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc. Available from: http://informs-sim.org/wsc14papers/includes/files/012.pdf

Wagner, G. 2015. “JavaScript Summary.” Accessed April 28, 2016. http://web-engineering.info/

SummariesCheatsheetsPosters.

Wagner, G. 2016. “Introduction to Simulation Using JavaScript.” Accessed July 1, 2016. http://web-

engineering.info/sim

AUTHOR BIOGRAPHIES

GERD WAGNER is Professor of Internet Technology at the Dep. of Informatics, Brandenburg Univer-

sity of Technology, Germany, and Adjunct Associate Professor at the Dep. of Modeling, Simulation and

Visualization Engineering, Old Dominion University, Norfolk, VA, USA. His research interests include

modeling and simulation, foundational ontologies, knowledge representation and web engineering. His

email address is G.Wagner@b-tu.de.

162

