
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

SIMULATION OPTIMIZATION IN DISCRETE EVENT LOGISTICS SYSTEMS:
THE CHALLENGE OF OPERATIONAL CONTROL

Timothy Sprock
Leon F. McGinnis

School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

Simulation optimization tools have the potential to provide an unprecedented level of support for the design
and execution of operational control in Discrete Event Logistics Systems (DELS). While much of the
simulation optimization literature has focused on developing and exploiting integration and syntactical
interoperability between simulation and optimization tools, maximizing the effectiveness of these tools to
support the design and execution of control behavior requires an even greater degree of interoperability
than the current state of the art. In this paper, we propose a modeling methodology for operational
control decision-making that can improve the interoperability between these two analysis methods and their
associated tools in the context of DELS control. This methodology establishes a standard definition of
operational control for both simulation and optimization methods and defines a mapping between decision
variables (optimization) and execution mechanisms (simulation/ base system). The goal is a standard for
creating conforming simulation and optimization tools that are capable of meeting the functional needs of
operational control decision making in DELS.

1 INTRODUCTION

Increasing scale, complexity, and connectedness have accentuated a need to improve decision-making
support in Discrete Event Logistics Systems (DELS), a class of dynamic systems that create value by
transforming discrete flows through operations performed by a network of interconnected subsystems
(Mönch et al. 2011). These systems share a common abstraction: set of products flowing through a set of
processes being executed by resources configured in a facility. The DELS domain includes supply chains,
manufacturing systems, transportation networks, warehouses, and health care delivery systems.

One approach to improving decision-making in DELS is to make the use of simulation optimization
methods more accessible to DELS decision makers. While improving optimization and simulation methods
themselves would contribute to this goal, it is not enough. A more important improvement would be to
achieve DELS-specific semantic as well as syntactic interoperability. This would support making simulation
optimization methods a routine analysis, as well as addressing the difficult of interfacing individual simulation
and optimization tools, generating and evaluating large-scale simulations, and interfacing with data sources
and execution systems (Sprock and McGinnis 2015).

As we have argued elsewhere, a formal system model enables many of these requirements to be met
(Sprock and McGinnis 2015). However, while good progress is being made on modeling the structure and
behavior of DELS, there is an unmet requirement for a specification and conforming analysis methods for
operational control. The lack of a formal model of operational control makes defining and searching the
control policy space difficult, which often to leads to simplifications such as exploring a pre-defined set of
control policies, such as FIFO in queues or round-robin routing. An agreed upon and explicit definition that
integrates both the decision variables in the optimization model and the control execution mechanisms in

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 1170

Sprock and McGinnis

simulation would provide a significant step forward in facilitating interoperability between the two analysis
methods.

This paper provides a brief overview of simulation optimization methods for the DELS domain, then
identifies the need for a model of operational control that can provide the necessary infrastructure for
achieving interoperability between simulation and optimization methods and tools. We then address the
modeling gap by proposing a model of operational control that includes the fundamental set of DELS
operational control activities, as well as the necessary infrastructure to specify and execute control behavior.
Finally, we discuss a wide range of research and implementation challenges that must be addressed to make
this a usable and routine methodology for DELS decision support.

2 SIMULATION OPTIMIZATION METHODS IN DELS

Simulation optimization methods, which in their most general form aim to efficiently use a simulation
model as an evaluation function integrated with search algorithms, are a promising approach for providing
decision support for the DELS domain. In fact, simulation optimization methods already have been applied
to solve a number of problems in this domain; for a representative sampling see, e.g. supply chains (Truong
and Azadivar 2005), manufacturing (Kapuscinski and Tayur 1999), transportation (Cheng and Duran 2004),
warehouses (Rosenblatt et al. 1993), and healthcare (Ahmed and Alkhamis 2009).

For DELS, domain-specific simulation optimization methods already have been developed that exploit
several common characteristics of the domain to provide narrowly-scoped and well-structured search
neighborhoods, such as focusing on the network structure, resource investment and behavior, or operational
control policies. In genetic algorithms, e.g. the domain specific structure can be exploited through specialized
encoding schemes, initialization procedures, and local search operators, see e.g. (Azadivar and Tompkins
1999, Zhou et al. 2002, Syarif et al. 2002, Ding et al. 2009, Costa et al. 2010). In Tabu methods, domain
specific search neighborhoods can be integrated into the local search procedure, see e.g. (Alabas et al.
2002, Yang et al. 2004). Finally, knowledge-based optimization methods incorporate learning modules
that integrate domain specific information to guide the optimization search process (Huyet and Paris 2004).
However, all approaches reported to date have depended upon problem instance-specific optimization and
simulation formulations.

2.1 Simulation Optimization Interoperability

One of the challenges in developing plug-and-play simulation optimization tools is the difficulty of bridging
between the two generic tools because the syntax of the simulation and optimization methods and their tools
are fundamentally different. While optimization methods can use more general or abstract representations
which maximize the method’s applicability to a broader class of problems, simulation methods, and the
resulting models, almost always operate on concrete semantics of a particular problem domain. Bridging
between the abstract semantics of optimization and the concrete semantics of simulation is necessary to
achieve interoperability of their respective solvers. The SimOpt library (Pasupathy and Henderson 2011)
and the related research have focused on developing syntactical interoperability, which has allowed the
development of more generic optimization methods, see e.g. COMPASS (Xu et al. 2010) or evolutionary
algorithms (Zhang and Li 2007).

As is often the case with integrating COTS tools, the mapping between tools with different syntaxes,
i.e. integrating a generic optimization tool suite with a new simulation tool, is done once for each pair of
tools (Fu et al. 2014). Then a second mapping is required for each particular problem instance to align
their semantics. However, the burden of mapping and translating the output of the optimization model
falls on the interface to the simulation tool; e.g. translating a semantic free array of values from the
optimization solver into a network structure, e.g. supplier selection, or resource sizing and selection, e.g.
parallel machine counts at each workstation, or the selection of a particular control rule from a pre-defined
collection. The mapping from a simulation parameter to an optimization variable is done by hand for each

1171

Sprock and McGinnis

system instance by “promoting” a particular tunable simulation value, i.e. for a given simulation model,
manually selecting the set of simulation parameters that can be modified during the optimization process.

The interface to any particular optimization solver is, in general, quite straightforward because there
is a trivial mapping from the abstract semantics of the analysis model to the concrete semantics of the
associated solver. The same is not true on the simulation side, in particular, because there is no generic
abstract semantics for a simulation analysis model –there is only the concrete semantics of a particular
simulation language (and its associated solver). The main consequence of this asymmetry is that it is
relatively easy to change optimization solvers, but quite difficult to change simulation solvers. Moreover,
because the semantics and syntax of various simulation solvers are so different from one another, it
is practically impossible to have a generic, reusable abstract model of system behavior and control. A
common modeling language would enable a natural mapping between the abstract mathematical description
of solution algorithms and the system models that provide the necessary context and data, and is critical
to bridging the gap between these analysis models and practical implementations of their corresponding
tools.

2.2 Bridging Between Simulation and Optimization Methods Using a System Model

Several modeling methodologies have been proposed that use a system model independent of the simulation
model to enable more generic interoperability between the simulation and optimization tools. Jeong (2000)
develops a conceptual framework rooted in the IDEF standard for optimizing a simulation-based scheduling
system. This conceptual framework suggests several requirements for implementation including generating
DES from a production database, interfacing simulation and optimization tools, and implementing a rule-
based controller for scheduling policies. Sivakumar (1999) uses UML to model the system and generate
the associated interfaces between the simulation, optimization, and data sources.

Extending these approaches, the simulation and optimization methods can be mediated with a formal
system model, where the simulation model is a view generated from the complete system model and the
optimization model must translate its output into the language of the system model (Sprock and McGinnis
2015). Generating and updating a simulation model from a single model of the system allows the optimization
results to be used to modify the structure of the simulation model, e.g. network optimization or building
state machine representations of resource or control behavior. Also, it allows multiple views, or simulation
models of varying resolution and fidelity, to be generated consistently from a single representation of the
system.

While facilitating interoperability between simulation and optimization tools with a system model that
provides a semantic description of the structure and behavior of the DELS has been previously addressed
in (Sprock and McGinnis 2015), a canonical model of control for the DELS domain, especially one that
can be implemented in discrete event simulation tools, remains elusive. That is, there does not exist a
universally accepted model of the control decisions that are routinely required to guide the operational
behavior of a DELS or a method to implement those decisions in tools without resorting to ad-hoc code.
For example, control specifications are notably absent from standards such as SCOR or CMSD (Leong,
Lee, and Riddick 2006, SCOR 2012). Even within ISA-95, the Level 3 specification for manufacturing
operations management does not provide complete guidelines on control decision making (Scholten 2007).

3 MODELING OPERATIONAL CONTROL

Implementing supervisory control requires some external decision process (control) to be applied to the
resources executing processes in order to guide the evolution of the system’s behavior. However, for DELS,
there is no formal, canonical specification or design methodology for this external control process. Many
of the formalisms used to model and design control, e.g. controlled Markov chains, controlled petri nets, or
extended petri nets, require some external function to be applied to the system to help it evolve. There is not
a definitive way to construct these functions as they “follow no general rules, but depend on the logic of the

1172

Sprock and McGinnis

specific problem at hand and the desired system behavior” (Valavanis 1990). A standard representation of
the set of operational control problems would enable a uniform interface to solution tools thereby creating
opportunities for interoperable, or plug-and-play, analysis tools. The operational control model that we
propose addresses this issue by proposing three essential control functionalities: 1) an analysis-agnostic
and functional definition of the control mechanisms themselves, 2) a mapping between decision-variables
(optimization) and execution mechanisms (system/simulation), and 3) the representation of the operational
control decisions or the interface between the simulation/optimization tools.

3.1 Separation of Plant and Control Specifications

Modeling operational control mechanisms first requires the separation of plant and control within the system
specification, as well as conforming simulation models. Consider the contrasting approaches for designing
the control logic of discrete event systems discussed in (Holloway et al. 1997). In the controlled behavior
approach, the open-loop behavior of the Petri Net is modified until it exhibits the desired closed-loop
behavior; however, then the control logic must be extracted from the Petri Net to produce the required
code. This is typical in the status quo where the control behavior in simulation languages is embedded in
the blocks that execute the behavior, e.g. queuing discipline is modeled as a property of the queue block.
This is quite different the logic controller and control theoretic approaches, the design method is “[focused]
on the direct design and implementation of the controller for the plant” and there is a “clear distinction
between the plant and the controller” (Holloway et al. 1997).

This separation between plant and control is essential for developing operational control design methods
that specify the control behavior separately from its execution by a control actuator in the plant. However in
the DELS domain, there remains a need for discrete event simulation language support for specifying control
rules and methods in such a way that they can provide a pathway from design and analysis of controllers to
prototyping and testing to deployment. This problem already has been addressed in mechatronic or other
engineered systems, where the control logic can be designed in Simulink and then ported directly into a
real controller deployed within the actual system being designed (Grega 1999, Piltan et al. 2012). While
it appears that the SimEvents simulation tool (Mathworks 2015), which is closely related to Simulink and
allows for the control behavior to be specified as a finite-state machine, is promising approach, there remains
a need for more prevalent control design methodologies and tools that explicit separate the designed control
behavior from the system specification (see Figure 4 in section 3.4.3 for further details).

3.2 Extant Research on Control Policy Optimization in DELS

Control policy optimization methods are quite diverse, from static design methods to dynamic, online
scheduling methods, as is their output, from rules to artificial neural networks (Kusiak and Chen 1988,
Davis et al. 1992, Kim and Kim 1994, Lee et al. 1997, Pierreval and Mebarki 1997, Huyet and Paris 2004,
Mouelhi-Chibani and Pierreval 2010, Nie et al. 2010, Kapanoglu and Alikalfa 2011, Zhang and Rose 2014,
Branke et al. 2016). There is a significant amount of research conducted in the area of simulation-based
scheduling and dispatch for semiconductor and flexible job shop classes of problems. However, there is
limited research on the other facets of operational control decision making or applying these methods to
other classes of DELS.

Complex but static priority rules seek to optimally sequence tasks for a broad range of system states,
see e.g. the use of hyper-heuristics to produce an optimal priority dispatch rule (Branke et al. 2016) or
gene expression programming to optimize a priority rule expressed as a grammar (Nie et al. 2010).

Ranking and selection control methods enumerate and simulate n control policies, and then select the
best performing rule to implement (Davis et al. 1992, Kim and Kim 1994). The controller then waits
until the expected performance or schedule deviates significantly from the planned trajectory, and repeats
the process. In a contemporary treatment of this method, Zhang and Rose (2014) evaluate the dispatching

1173

Sprock and McGinnis

problem as an online sequential decision problem where the simulation-based method also simulates future
decision points, where the dispatching rule may be changed again.

Dynamic rule selection methods in the form of decision trees or rules can be configured offline and
incorporated into the controllers decision making, see, e.g. (Lee et al. 1997, Pierreval and Mebarki 1997,
Huyet and Paris 2004, Kapanoglu and Alikalfa 2011). Lee et al. (1997) apply genetic algorithms and
machine learning techniques to contruct decision trees that select the rules to release of jobs into shop floor.
Genetic algorithms can also be applied to configure ‘if-then’ priority rules based on the state of the system
(Kapanoglu and Alikalfa 2011). More general simulation optimization methods can be used to determine
the numerical thresholds for dynamically selecting a rule from a collection of predetermined priority rules
(Pierreval and Mebarki 1997).

Artificial neural networks (ANN) also can be used to support the selection of the dispatch rules
dynamically to meet changing goals or new requirements, and can be trained off-line using simulation-
optimization experiments (Mouelhi-Chibani and Pierreval 2010). Furthermore, a rule-based representation
can be extracted from a trained ANN (Andrews et al. 1995). Operations research techniques can be used
to design rule-based systems, and various architectures consider operations research analysis models and
solutions tool as part of their structure, e.g. tandem expert systems (Kusiak and Chen 1988).

In the status quo, there is simply no broad methodological and tool support for designing and executing
complex control behaviors for DELS. Applying these methodologies for designing and executing dynamic
control methods to the broader DELS domain requires a more abstract model of operational control.

3.3 Fundamental Control Questions

Designing the operational control mechanisms for DELS first requires an explicit description, specification,
or model of the complete set of operational control problems that any controller must be able to solve in
order to be effective in managing the behavior of the system. This section describes a fundamental set of
control questions that can be extracted from a relatively small collection of distinct control problems that
are addressed in the literature.

Deriving a canonical set of control questions can be viewed from the perspective of defining a
comprehensive functional specification of all the control mechanisms that a controller needs to be able to
provide. We believe the canonical set of questions is: (1) “Should a task be served?” (admission); (2) if so,
then “when should the task be serviced?” (sequencing); and, (3) “by which resource?” (assignment); (4)
finally, “where should the task be sent after it’s complete?” (routing); (5) as well as the resource-related
“when does the state of the resource need to be changed?” (resource state change). The associated decisions
are illustrated in Figure 1.

Figure 1 also captures all of the decision points, or actuators, that each job interacts with or can be
influenced by as it flows through the DELS. These actuators must interface with the controller (dashed
lines) that provides control instructions which are then executed by the actuator in the base system.

While many existing analysis models address one or more of these questions jointly in order to achieve
better quality solutions, a model of the atomic control decisions is necessary for specifying and designing
the underlying execution mechanism. That is, a complete model of the individual control mechanisms
provides a concise and reusable mapping of control decisions to execution mechanisms. For example, the
scheduling decision is executed by two different control actuators, the one that sequences jobs and the one
that then routes/assigns them to the target resource and “seizes” the resource from the pool. A complete
discussion and argument for the completeness of this collection of control behaviors for the DELS domain
is beyond the scope of this paper, but interested readers can see (Sprock 2015).

3.4 Proposed Control Model

The control questions help to identify the interoperability mechanism by linking the decision variables in
the optimization model to the execution mechanisms in the simulation model (or “real” base system). For

1174

Sprock and McGinnis

Figure 1: Stylized DELS process map with control ‘actuators’.

each control question, the proposed control model defines a consistent interface for formulating control
analysis models (section 3.4.1), uses rules and state machines to provide an interoperable definition of the
control behavior (section 3.4.2), and provides a uniform execution mechanism and actuator in the plant
(section 3.4.3).

Throughout this section, the admission control mechanism for a manufacturing workstation is used to
illustrate an implementation of the control model that pairs a control execution mechanism (the actuator)
with a control decision mechanism (FSM). The simulation tool SimEvents provides a library of primitive
simulation components, which allows an explicit modeling of the separation of plant and control and the
actuator mechanisms in the system. The control behavior is implemented using the state machine model
provided in the StateFlow library.

3.4.1 Formulating a Control Analysis Model

Formulating an analysis model to answer a particular instance of a control question should rely on a
reusable and extensible mapping from the system model to an analysis model that is centered on the
abstract question definition. This reusable mapping is important because for each control question, there
may be several analysis methods available to provide an answer, each with different solution quality and
run-time performance guarantees. To answer a particular control question, the controller should rely on
the context of the question and the system model to construct a particular answering analysis model.

A uniform interface to analysis models and their corresponding tools enables each controller to access
a wide variety of solution methods for each control question. The idea of a uniform interface is embodied
by the strategy pattern (Gamma et al. 1994), which defines a family of algorithms, encapsulates each one,
and makes them interchangeable. The formulation component is configured with an abstract strategy class
for each control question to formulate the corresponding analysis models, where the target question defines
the decision variables, the motivation defines the objective function, and the system model provides the
instance data, including the constraints associated with each task and resource. Each concrete strategy uses
this information in different ways to construct different analysis models, but the uniform interface allows
the details of this construction process to be encapsulated, or hidden, in the class’s behavior definition.

The example in Figure 2 illustrates the strategy pattern approach. Two possible admission strategies are
given an incoming task as input and determine whether to admit the task or not. For illustrative purposes,
these strategies are simple and only consider the amount of WIP in the system (simpleCapacity) and the
priority of the incoming task (capacitatedPriority).

1175

Sprock and McGinnis

Figure 2: The strategy pattern defines a consistent interface invoking control analysis methods.

3.4.2 Control Behavior Formalism — The Importance of Rules

Formulating an analysis model that can be shared with a solver typically requires translating the problem
into mathematical syntax, thereby stripping any domain knowledge or semantics from the problem. As
a consequence, the solver solution provides an answer to the control question in the same semantic-free
abstraction. Therefore, there remains a need for a formal specification of the output of optimization solvers
that adequately expresses the optimal control decisions to be executed. Rules in the form of condition/action
(production rules), event/condition/action (ECA rules), or pattern/action (complex rules) are knowledge
representation methods capable of capturing control behavior, see, e.g. (Iassinovski et al. 2008, Shirazi
et al. 2010) for applications in the DELS domain. Finite state machines (FSM) and production rule systems
(PRS) are capable of organizing these rules and providing an execution mechanism to decide when and
which rules to activate. In Figure 3, the output of the admission strategy discussed in section 3.4.1 is
captured as a FSM that can be translated into simulation code.

Figure 3: The finite state machine formalism corresponding to the two strategies in Figure 2.

The result is an explicit mechanism for implementing the output of analysis tools by first restoring the
semantic content to the analysis solution and transforming that solution into formal rules, which then can
be executed using a finite state machine, production rule system, or a comparable tool. This is an important
requirement for interoperability between analysis tools and mechanisms to execute control actions in the
system, especially with a wide variety of control behavior representations used in the literature (section
3.2).

3.4.3 Control Execution

While finite-state machines provide a formalism to model the control behavior, a uniform, well-defined
execution mechanism is the last component required to facilitate interoperability because it specifies
the expected behavior from the system, or simulation model. The execution behavior consists of three
components: (1) a computational rule (which provides the abstract specification of the execution behavior),
(2) an actuator that implements the execution behavior, and (3) a callBehavior method that the controller
uses to invoke the actuator’s behavior.

1176

Sprock and McGinnis

For the admission control behavior, the computational rule specifies that the AdmitTask behavior adds
the incoming task (or job) to the system’s task-set (queue).

AdmitTask(task) =De f System.TaskSet∪{task}

This execution behavior is implemented by the Admission Gate actuator block in Figure 4. In this
SimEvents example, the Admission Gate is implemented as an admission routing block so rather than
invoke the callbehavior AdmitTask, the AdmitTask behavior routs incoming jobs into the system which adds
it to the system’s queue. In Figure 4(a), there is clear separation of plant (red blocks) and control (gray
blocks) in the system model with a well defined interface for exchanging data and control (the -T- blocks).
The StateFlow block Admission-Control contains the control behavior specified as a FSM (Figure 4(b)),
which implements the capacitatedPriority behavior from Figure 3.

(a) The simulation model of the admission mechanism. (b) The finite state machine captures the admission
control behavior.

Figure 4: The simulation model reflects clear separation of plant (red blocks) and control (gray blocks).
The admission control mechanism is implemented as a admission routing block and a finite state machine.

4 RESEARCH AND IMPLEMENTATION CHALLENGES

A properly defined interface between the simulation and optimization tools is only part of the solution, the
tools themselves need to conform to the formal domain model and the associated interface. Currently, there
remains a need for discrete event simulation language support for specifying control rules and methods in
such a way that they can provide a pathway from design and analysis of controllers to prototyping and
testing to deployment. Limitations for modeling complex and dynamic control behaviors in discrete event
simulation tools are discussed as side-notes in (Jeong 2000, Van der Zee 2006, Yan and Wang 2007)

Adding to these challenges, modeling complex control behavior typically is embedded into the actuator
block, e.g. sequencing logic is embedded within the queue block with a pre-defined list of control rules. In
the case of sequencing control behavior and the queue ‘actuator’, modeling more complex control methods
requires a more transparent queue block or component, a more general method to specify the sequence
of entities in the queue, e.g. using an index variable rather than a sort key, and the ability to change the
priority rule throughout the simulation run.

These challenges are illustrated in Figures 5 and 6. While the FSM allows for a consistent control behavior
representation, the actuator mechanisms (the queue itself) require different configurations depending on

1177

Sprock and McGinnis

the behavior it is expected to execute. To dynamically change the priority rule during the simulation run,
Figure 5 illustrates an execution mechanism that uses one queue for each priority rule and allows the queued
tokens to flow into the queue that implements the currently selected priority. To increase the transparency
of the queued tokens, Figure 6 divides the tokens into several classes, each with its own individual queue.
Therefore the control behavior can use each token’s customer class, job type, and current age in the system
to decide which token to service next. This challenge could be addressed by increasing the transparency of
queues and allowing the control behavior to inspect each token in the queue, or at least the data associated
with each token.

Figure 5: Switching dynamically between priority rules using a state machine to enable a priority queue.

Figure 6: Implementing the complex dynamic sequencing behavior requires unique, and ad-hoc, queuing
mechanisms.

The obvious solution to many of the limitations of existing COTS tools is to develop a custom
simulation tool for a particular application. However, this approach has the same fundamental shortcoming
as discussed above, albeit for a different reason. Without a formal model of the system behavior and control,
the simulation model is built with implicit assumptions about the control behavior and the implementation
and execution mechanisms are written in an ad-hoc manner. This approach limits the reusability of the
resulting analysis model and tool. Moreover, the specificity of any particular solution may not conform to
a broader architecture for the domain.

1178

Sprock and McGinnis

5 CONCLUSION

To simultaneously address the complexity and scale of DELS, simulation and optimization offer comple-
mentary views of the system model; simulation is more adept at capturing and evaluating the dynamic
behavior of the system, while optimization is more effective at tackling the scale and searching the design
space of the system. In order to maximize the effectiveness of these two methods, we have proposed a
modeling methodology that can improve interoperability between these two analysis methods and their
associated tools. This modeling methodology relies on facilitating semantic interoperability by using a
formal model of the domain to define the interface between the simulation and optimization tools. However,
there remains a modeling gap in the context of operational control for DELS. To address this gap, in this
paper we have proposed a model of operational control that can bridge from the decision variable in the
optimization model to the control behavior and execution mechanism required by the simulation model. As
noted in section 4, there is ongoing work on identifying implementation gaps and developing corresponding
analysis methods and tools that conform to this model of operational control.

ACKNOWLEDGMENTS

This research effort has been sponsored by the National Institute of Standards and Technology under grant
No. 70NANB15H234.

REFERENCES

Ahmed, M. A., and T. M. Alkhamis. 2009. “Simulation optimization for an emergency department healthcare
unit in Kuwait”. European Journal of Operational Research 198 (3): 936–942.

Alabas, C., F. Altiparmak, and B. Dengiz. 2002. “A comparison of the performance of artificial intelligence
techniques for optimizing the number of kanbans”. Journal of the Operational Research Society:907–914.

Andrews, R., J. Diederich, and A. B. Tickle. 1995. “Survey and critique of techniques for extracting rules
from trained artificial neural networks”. Knowledge-based Systems 8 (6): 373–389.

Azadivar, F., and G. Tompkins. 1999. “Simulation optimization with qualitative variables and structural
model changes: A genetic algorithm approach”. European Journal of Operational Research 113 (1):
169–182.

Branke, J., S. Nguyen, C. W. Pickardt, and M. Zhang. 2016. “Automated design of production scheduling
heuristics: a review”. IEEE Transactions on Evolutionary Computation 20 (1): 110–124.

Cheng, L., and M. A. Duran. 2004. “Logistics for world-wide crude oil transportation using discrete event
simulation and optimal control”. Computers & Chemical Engineering 28 (6): 897–911.

Costa, A., G. Celano, S. Fichera, and E. Trovato. 2010. “A new efficient encoding/decoding procedure for
the design of a supply chain network with genetic algorithms”. Computers & Industrial Engineering 59
(4): 986–999.

Davis, W., A. Jones, and A. Saleh. 1992. “Generic architecture for intelligent control systems”. Computer
Integrated Manufacturing Systems 5 (2): 105–113.

Ding, H., L. Benyoucef, and X. Xie. 2009. “Stochastic multi-objective production-distribution network
design using simulation-based optimization”. International Journal of Production Research 47 (2):
479–505.

Fu, M. C., G. Bayraksan, S. G. Henderson, B. L. Nelson, W. B. Powell, I. O. Ryzhov, and B. Thengvall.
2014. “Simulation optimization: A panel on the state of the art in research and practice”. In Proceedings
of the 2014 Winter Simulation Conference, edited by A. Tolk, S. D. Diallo, I. O. Ryzhov, L. Yilmaz,
S. Buckley, and J. A. Miller, 3696–3706. Piscataway, NJ, USA: IEEE Press.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design patterns: elements of reusable object-
oriented software. Pearson Education.

Grega, W. 1999. “Hardware-in-the-loop simulation and its application in control education”. In Frontiers
in Education Conference, 1999. (FIE’99)., Volume 2, 1286–7. IEEE.

1179

Sprock and McGinnis

Holloway, L. E., B. H. Krogh, and A. Giua. 1997. “A survey of Petri net methods for controlled discrete
event systems”. Discrete Event Dynamic Systems 7 (2): 151–190.

Huyet, A., and J. Paris. 2004. “Synergy between evolutionary optimization and induction graphs learning for
simulated manufacturing systems”. International Journal of Production Research 42 (20): 4295–4313.

Iassinovski, S., A. Artiba, and C. Fagnart. 2008. “A generic production rules-based system for on-line simula-
tion, decision making and discrete process control”. International Journal of Production Economics 112
(1): 62–76.

Jeong, K.-Y. 2000. “Conceptual frame for development of optimized simulation-based scheduling systems”.
Expert Systems with Applications 18 (4): 299–306.

Kapanoglu, M., and M. Alikalfa. 2011. “Learning IF–THEN priority rules for dynamic job shops using
genetic algorithms”. Robotics and Computer-Integrated Manufacturing 27 (1): 47–55.

Kapuscinski, R., and S. Tayur. 1999. “Optimal policies and simulation-based optimization for capacitated
production inventory systems”. In Quantitative Models for Supply Chain Management, 7–40. Springer.

Kim, M. H., and Y.-D. Kim. 1994. “Simulation-based real-time scheduling in a flexible manufacturing
system”. Journal of Manufacturing Systems 13 (2): 85–93.

Kusiak, A., and M. Chen. 1988. “Expert systems for planning and scheduling manufacturing systems”.
European Journal of Operational Research 34 (2): 113–130.

Lee, C.-Y., S. Piramuthu, and Y.-K. Tsai. 1997. “Job shop scheduling with a genetic algorithm and machine
learning”. International Journal of Production Research 35 (4): 1171–1191.

Leong, S., Y. T. Lee, and F. Riddick. 2006. “A core manufacturing simulation data information model for
manufacturing applications”. In Simulation Interoperability Workshop, Simulation Interoperability and
Standards Organization, 1–7.

Mathworks 2015. SimEvents 2015b User’s Manual. 4.4.11 ed. Mathworks.
Mönch, L., P. Lendermann, L. F. McGinnis, and A. Schirrmann. 2011. “A survey of challenges in modelling

and decision-making for discrete event logistics systems”. Computers in Industry 62 (6): 557–567.
Mouelhi-Chibani, W., and H. Pierreval. 2010. “Training a neural network to select dispatching rules in real

time”. Computers & Industrial Engineering 58 (2): 249–256.
Nie, L., X. Shao, L. Gao, and W. Li. 2010. “Evolving scheduling rules with gene expression programming for

dynamic single-machine scheduling problems”. The International Journal of Advanced Manufacturing
Technology 50 (5-8): 729–747.

Pasupathy, R., and S. G. Henderson. 2011. “SimOpt: A library of simulation optimization problems”. In
Proceedings of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach,
K. P. White, and M. Fu, 4075–4085. Piscataway, NJ, USA: IEEE.

Pierreval, H., and N. Mebarki. 1997. “Dynamic scheduling selection of dispatching rules for manufacturing
system”. International Journal of Production Research 35 (6): 1575–1591.

Piltan, F., S. Emamzadeh, Z. Hivand, F. Shahriyari, and M. Mirazaei. 2012. “PUMA-560 robot manip-
ulator position sliding mode control methods using MATLAB/SIMULINK and their integration into
graduate/undergraduate nonlinear control, robotics and MATLAB courses”. International Journal of
Robotics and Automation 3 (3): 106–150.

Rosenblatt, M. J., Y. Roll, and D. Vered Zyser. 1993. “A combined optimization and simulation approach
for designing automated storage/retrieval systems”. IIE Transactions 25 (1): 40–50.

Scholten, B. 2007. The road to integration: A guide to applying the ISA-95 standard in manufacturing.
ISA.

SCOR 2012. “SCOR: The Supply Chain Reference Model Version 11.0”.
Shirazi, B., I. Mahdavi, M. Solimanpur et al. 2010. “Development of a simulation-based intelligent decision

support system for the adaptive real-time control of flexible manufacturing systems”. Journal of Software
Engineering and Applications 3 (07): 661.

Sivakumar, A. I. 1999. “Optimization of a cycle time and utilization in semiconductor test manufacturing
using simulation based, on-line, near-real-time scheduling system”. In Proceedings of the 1999 Winter

1180

Sprock and McGinnis

Simulation Conference, edited by P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans,
727–735. ACM.

Sprock, T. 2015. A Metamodel of Operational Control of Discrete Event Logistics Systems (DELS). Ph. D.
thesis, Georgia Institute of Technology, Atlanta, GA.

Sprock, T., and L. F. McGinnis. 2015. “A simulation optimization framework for discrete event logistics
systems (DELS)”. In Proceedings of the 2015 Winter Simulation Conference, edited by L. Yilmaz,
W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, 2776–2787. Piscataway, NJ,
USA: IEEE Press.

Syarif, A., Y. Yun, and M. Gen. 2002. “Study on multi-stage logistic chain network: A spanning tree-based
genetic algorithm approach”. Computers & Industrial Engineering 43 (1): 299–314.

Truong, T. H., and F. Azadivar. 2005. “Optimal design methodologies for configuration of supply chains”.
International Journal of Production Research 43 (11): 2217–2236.

Valavanis, K. P. 1990. “On the hierarchical modeling analysis and simulation of flexible manufacturing
systems with extended petri nets”. IEEE Transactions on Systems, Man, and Cybernetics 20 (1): 94–110.

Van der Zee, D. 2006. “Modeling decision making and control in manufacturing simulation”. International
Journal of Production Economics 100 (1): 155–167.

Xu, J., B. L. Nelson, and J. Hong. 2010. “Industrial Strength COMPASS: A Comprehensive Algorithm and
Software for optimization via Simulation”. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 20 (1): 3.

Yan, Y., and G. Wang. 2007. “A job shop scheduling approach based on simulation optimization”. In
Industrial Engineering and Engineering Management, 2007 IEEE International Conference on, 1816–
1822. IEEE.

Yang, T., Y. Kuo, and I. Chang. 2004. “Tabu-search simulation optimization approach for flow-shop
scheduling with multiple processors - a case study”. International Journal of Production Research 42
(19): 4015–4030.

Zhang, Q., and H. Li. 2007. “MOEA/D: A multiobjective evolutionary algorithm based on decomposition”.
IEEE Transactions on Evolutionary Computation 11 (6): 712–731.

Zhang, T., and O. Rose. 2014. “Simulation-based dispatching in job shops”. In ASIM 2014, 22. Symposium
Simulationstechnik 2014 - Berlin. ASIM.

Zhou, G., H. Min, and M. Gen. 2002. “The balanced allocation of customers to multiple distribution centers
in the supply chain network: a genetic algorithm approach”. Computers & Industrial Engineering 43
(1): 251–261.

AUTHOR BIOGRAPHIES

TIMOTHY SPROCK is a Postdoctoral Fellow in the Stewart School of Industrial and Systems Engineering
at Georgia Tech. He holds a PhD in Industrial Engineering from Georgia Tech. His research interests
include model-based systems engineering methodologies for discrete event logistics systems. His email
address is tsprock3@gatech.edu.

LEON F. MCGINNIS is Professor Emeritus in the Stewart School of Industrial and Systems Engineering
at Georgia Tech and founder of the Keck Virtual Factory Lab. He is internationally known for his leader-
ship in the material handling research community and his research in the area of discrete event logistics
systems. A frequent speaker at international conferences, he has received several awards from professional
societies for his innovative research, including the David F. Baker Award from IIE, the Reed-Apple Award
from the Material Handling Education Foundation, and the Material Handling Innovation Pioneer award
from Material Handling Management Magazine. His current research explores the use of formal systems
modeling methods to support systems engineering of discrete event logistics systems. Professor McGinnis
is a Fellow of the Institute of Industrial Engineering. His e-mail address is leon.mcginnis@gatech.edu.

1181

