
Proceedings of the 2016 Winter Simulation Conference

T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

EXTENSIBLE DISCRETE-EVENT SIMULATION FRAMEWORK IN SIMEVENTS

Wei Li

Ramamurthy Mani

Pieter J. Mosterman

MathWorks

1 Apple Hill Dr.

Natick, MA 01760, USA

ABSTRACT

A simulation framework is introduced that facilitates hierarchical definition and composition of discrete-

event systems. This framework enables modelers to flexibly use graphical block diagrams, state charts,

and MATLAB textual object-oriented programming to author custom domain-specific discrete-event

systems. The framework has been realized in an implementation that spans multiple software simulation

tools including SimEvents, Stateflow, Simulink and MATLAB.

1 INTRODUCTION

Over the past several years, an important development has been taking place in the field of embedded

control systems. Previously, the implementation of digital control would rely on microcontroller

architectures that were uniform in their single threaded and instruction set nature. More recently,

however, much more heterogeneous target architectures are being exploited. Multi-core processors are

now combined with graphics processing units (GPU) and field programmable gate arrays (FPGA) in an

attempt to keep pace with the rapidly growing needs for computationally intensive applications. For

example, architectures to support self-driving cars require not only traditional low latency and high

performance feedback control loops but also high throughput video processing functionality, which may

best be implemented on a GPU or FPGA.

In addition to the variability in target architecture, another recent development stems from the

increasing connectivity of systems (e.g., 'things' in the Internet of Things). For example, vehicles may

communicate with each other to share improvements in functionality thanks to machine learning

techniques. Moreover, systems may configure into system ensembles to collaborate on tasks such as

emergency response (Mosterman and Zander 2016; Mosterman et al. 2014).

 Both of these developments have put forward an urgent need for powerful and sophisticated discrete

event modeling methods because they are uniquely suited to characterize target architecture performance

and system-level properties. Because of the increasing variability in architectures and system

configurations these characterizations are essential in design feasibility as well as in trade studies.

Importantly, such characterizations and related models have risen to prominence with the abandonment of

the formerly more uniform and fixed forms of architectures and configurations.

The discrete event modeling methods must also integrate with other models of computation such as

discrete time to model sampled control behavior, continuous time to model physical behavior, state

transition logic to model supervisory control, sequence control, etc., and imperative algorithmic

computation to model signal and image processing, convolutional neural network learning, performance

optimization, etc. An integrated framework would be essential to facilitate design and analysis of highly

complex systems that are coming online such as fleets of self-driving cars, swarms of robots, airspace

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 943

Li, Mani, and Mosterman

sharing autonomous and manned vehicles, highly interconnected power grid nodes, etc. (Sztipanovits et

al. 2013). The complexity of these systems mandates abstraction to efficiently and effectively address the

very heterogeneous functionality they embody and integrate (e.g., computer vision algorithms, feedback

control laws, optimization programs, machine learning networks, supervisory plans, and batch control

operations).

 Another trend is the emerging Industry 4.0 paradigm (Industrie 4.0 Working Group 2013) that

integrates enterprise level information flows with manufacturing cell operations to achieve optimized

manufacturing plant operation across the various operational layers of the entire enterprise. Such

optimization may rely on a generative approach that defines a flexible and powerful interface between the

problem space (the optimization problem) and the solution space (the manufacturing plant operations).

This interface may be in the form of a Knowledge Interface Broker (KIB) to combine discrete event

simulation with model predictive control (MPC) optimization algorithms that operate on a much larger

time scale (Godding, Sarjoughian, and Kempf 2007; Huang et al. 2009). The value of an integrated

architecture that refines the KIB has been shown to enable solving generative optimization problems for

resources allocation (Li, Cassandras, and Clune 2006; Hubscher-Younger et al. 2012). This exploits the

potential of discrete-event modeling and simulation technology that is integrated with other models of

computation.

 In 2006, Mathworks introduced SimEvents® (MathWorks 2016c) as a tool that adds Discrete-Event

Simulation (DES) capabilities to the Simulink® (MathWorks 2016d) modeling platform. Clune,

Mosterman, and Cassandras (2006) illustrated how the product was equipped to mix the multidomain

time-driven computation of Simulink with event-driven simulation for modeling complex hybrid systems.

Since that time, SimEvents has been successfully applied to simulate a variety of application scenarios

including modeling of real-time operating systems, communication networks, operations research

problems in manufacturing and logistics, and hardware modeling. However, analysis of the product and

comparison to existing solutions (Gray 2007) have identified certain desirable characteristics that are not

present in the tool including the lack of a framework for customization and the lack of a published

formalism (Schwatinski et al. 2010; Seo et al. 2014).

This paper presents the new Discrete-Event Simulation framework that was introduced in SimEvents

by MathWorks (2016). The new framework overcomes these shortcomings and is in a position to serve as

a foundation upon which modelers can easily build application and domain-specific systems. By drawing

on the formal system engineering research effort by Wymore (1993), the aim is to provide a framework

that is as powerful and versatile as other similarly inspired efforts such as the DEVS formalism (Zeigler

1984; Concepcion and Zeigler 1988; Wainer 2009).

Thanks to this new SimEvents framework, modelers have access to the combined use of multiple

graphical and textual modeling languages to create highly customized discrete-event systems. These

modeling languages include the graphical, queueing-system based language of SimEvents, the graphical,

finite-state machine based language of Stateflow® (MathWorks 2016e), and the textual, objected-oriented

programming language of MATLAB® (MathWorks 2016b). In conjunction with the discrete-

event/continuous-time hybrid simulation engine of the original SimEvents (Clune, Mosterman, and

Cassandras 2006), a single simulation model can include both discrete-event components implemented by

all of the above three languages, and continuous-time components implemented by Simulink.

 Section 2 describes the modeling formalism that the proposed simulation framework establishes.

Section 3 discusses the simulation framework including common modeling primitives and the differing

language representations in SimEvents, Stateflow, and MATLAB. Section 4 gives an application example

to demonstrate how these multi-domain and hybrid simulation capabilities can help the design of today’s

cyber-physical system. Section 5 summarizes and presents a look to the future.

2 MODELING FORMALISM

Previous versions of SimEvents predating 2016 relied on a simulation engine that performed simulation

through run-time handshaking between atomic DES components. The implication of this is that the

944

Li, Mani, and Mosterman

engine did not compile a network of interconnected components into a composite system description

before simulating the abstract composition. As a result of not relying on a composable formalism to

describe a DES system, these SimEvents versions did not publish a system definition upon which

modelers could define their specialized domain-specific components. This directly caused a lack of

customization observed by Gray (2007). To overcome these issues, SimEvents (MathWorks 2016c)

defines a new formalism inspired by the systems theoretic foundations research of Wymore (1993) that

describes a discrete system as the quintuple:

𝑍 = (𝑆, 𝐼, 𝑂, 𝑁, 𝑅)
where:

𝑍 is the 𝑛𝑎𝑚𝑒 of the system,
𝑆 is the set of 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑆 ≠ ∅,

𝐼 is the set of 𝑖𝑛𝑝𝑢𝑡𝑠,
𝑂 is the set of 𝑜𝑢𝑡𝑝𝑢𝑡𝑠,
𝑁 is the 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑁 ∈ 𝐹𝑁𝑆(𝑆 × 𝐼, 𝑆) if 𝐼 is not empty, otherwise 𝑁 ∈ (𝑆, 𝑆),
R is the 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑅 ∈ 𝐹𝑁𝑆(𝑆, 𝑂) if 𝑂 is not empty, otherwise 𝑅 = ∅ .

 Within this new formalism, termed SimEvents Entity-Storage (SEES) formalism, an abstraction

termed ‘entities’ is introduced as packets of data whose handling and transport in the discrete-event

system produces events. Additionally, the formalism provides a built-in primitive abstraction of a

discrete-event component called ‘storage’ (for entities) which maps to queues and servers that are

common in various flow-based DES simulation packages. Storages are effectively containers for entities

that may be defined as follows:

𝐼 = {
(generate, entity), (destroy, entity), (entry, entity), (exit, entity),

(blocked, entity),(timer, entity),(iterate)
}

𝑂 = {
(schedule_generate), (schedule_destroy, entity), (schedule_exit,entity),

(schedule_timer,entity), (schedule_iterate)
}

𝑆 = {occupancy ∈{0,1}∗, storage ∈ entity*, custom state}

 Here, I and O are sets of input and output events that correspond to a storage location. Additionally,

in SEES, five specific functions are recognized that advance the state of the system and also produce

outputs based upon the occurrence of five classes of input events: (1) Generate: creation of a new entity,

(2) Entry: entry of an input entity, (3) Iterate: iteration over the contents of the storage, (4) Blocked:

failure of an output event for entity from this storage, and (5) Timer: expiry of a timer. Also, the SEES

component has two additional functions that may advance the state of the system but not produce any

output based on the occurrence of the following events: (1) Exit: exit of an entity from that storage and

(2) Destroy: destruction of an entity.

 Coupled SEES components are natural in the Simulink environment where components are

represented by blocks that have a port based interface and where directed entity connections are

established between ports. The core architecture implementing SEES uses the connections to analyze and

synthesize the coupled formalism prior to commencing the simulation. The simulation then relies on

simulating the coupled model directly. In addition, entities are associated with the notion of priority

which helps act as the basis for implementing a tie-breaker function. The management of the complex

temporal events of the SEES system are arbitrated by an event calendar that relies on this tie-breaker

function.

 Note that the coupling between atomic components in SEES is similar to the notion of coupled DEVS

(Zeigler 1984). Like SEES, a coupled DEVS model introduces extra concepts of (1) external input

couplings, external output couplings, and internal couplings to capture connections between atomic

DEVS components, and (2) a tie-breaker function to determine which atomic DEVS in a composition

takes precedence during a collision of events.

945

Li, Mani, and Mosterman

 Providing support in SEES for atomic and coupled discrete-event components has the potential to

enable modelers to leverage various powerful analysis and verification techniques that have emerged in

research (Holzmann 2004). Additionally, by building the abstraction of entity and storage, the framework

aims to help very quickly compose complex flow-based systems common in DES applications. The next

section discusses how such compositions may be created using graphical block diagrams, state charts, and

textual programming all working in union. As demonstrated in the next two sections, these abstractions

allow modelers to quickly express their discrete-event system as interconnections of storages interacting

via entities while also being firmly grounded in the underlying formalism.

3 MODELING FRAMEWORK

The introduced formalism is realized within MATLAB and Simulink as a framework that includes

various graphical and textual programming paradigms. This variety of programming choices provides

modelers with the ability to choose the paradigm that is appropriate for the modeling context. Each of the

paradigms and the notion of entity is described in the remainder of this section.

3.1 Entity

An entity consists of structured data (called attributes) that is bundled as payload of the events at the

inputs and outputs of DES systems in SEES. By providing such a general notion of data, one can

associate a rich set of domain-specific data with an event. For example, in a communication modeling

context, an entity could encapsulate a communication message whose data fields include attributes related

to the message’s destination address, encoding, and payload. SEES components that model the

communication channel would accept and produce events that correspond to the arrival and departure of

such messages. Additionally, when the entity is within a storage, its attributes implicitly become part of

the state of that storage. As will be illustrated in the remainder of this section, one can have access to the

data/attributes in each of the programming paradigms of SEES with the syntax of a MATLAB structure

datatype.

Entity lines and ports define interfaces of SEES components for data sharing and event triggering.

Connecting two SEES components via an entity line establishes a route for instantaneous transfer of

entities accompanied by triggering of the input and output events defined in the previous section. In

addition, SEES components can also share their internal state by using Simulink signal lines and ports.

Similar to semantics of Simulink, a signal line is simply a persistent value that has no implications on

event triggering. For example, in the model of Figure 6, three SEES blocks transfer entities using entity

lines (i.e., double-line style). In addition, the Entity Terminator block produces a signal as output

(i.e., single-line style) for the purpose of plotting its internal state corresponding to number of entities that

have arrived at the Terminator.

3.2 Graphical Programming

SEES introduces a set of basic blocks that can be used to compose a discrete-event system from primitive

components. These blocks, which are each built from one ‘storage’ component introduced in the previous

section, include Generators, Queues, Servers, and Sinks. In addition, there are blocks for routing such as

Switches and Gates that only influence the coupling functions of a DES composition and are not atomic

discrete-event components themselves. Advanced functions such as replication, combining, and batching

are also included that are themselves atomic or coupled discrete-event components. Finally, the graphical

blocks may also be connected directly to time-driven components of Simulink to integrate DES with

time-driven simulations as described by Clune, Mosterman, and Cassandras (2006).

 The graphical programming paradigm derives its extensibility from allowing modelers to specify the

various functions corresponding to the input events described in the previous section for the underlying

storage discrete-event component. Each of these functions is represented as a specialized ‘event action’

that is associated with that specific class of event. For example, the Entity Generator block of the M/M/1

queueing system (Cassandras 2009) model shown in Figure 1 has a ‘Generate’ action as shown by Figure

946

Li, Mani, and Mosterman

2. This custom code illustrates how one of the attributes of the entity is being initialized by a random

number in the ‘Generate’ action associated with the ‘Generate’ event. The action is expressed in the

familiar MATLAB language syntax with the data/attributes of an event/entity being accessed as

MATLAB structures. One can similarly access the other functions (such as Entry and Exit functions) in a

user-interface dialog for the Queue and Server blocks in this model.

Figure 1: A M/M/1 queueing system model with custom state-transition functions.

Figure 2: Custom event actions of Entity Generator block.

3.3 State Charts

SEES also extends seamlessly to the state chart paradigm (Harel 1987) supported by Stateflow, a tool for

modeling state transition behavior. A new type of state chart has been introduced called DES chart that

has entity ports (referred also as ‘message’ ports in the GUI). The chart itself may be an atomic discrete-

event component as illustrated below where the chart is used to implement the server in an elementary

M/M/1 system. The notion of SEES storage discussed in the previous section underlies every entity port

in Stateflow. The state-transition language may then be used to express the functions described in Section

2 with a combination of previously available Stateflow syntax.

 As illustrated in the example implementation of the Server of Figure 3 in Figure 4, the state transition

functions are directly annotated on the transition actions from one state to the next. When Server is in

‘Idle’ state, upon entry of an entity at the ‘Input’ port, Server transits its state to ‘Busy’. As a part of the

transition action, the ‘forward’ keyword is used to declare an event that forwards the incoming entity to

an internal storage (named ‘Job’) of the chart. Additionally, the ‘after’ keyword is used to scheduler a

Timer event as well as Timer Function. A detailed description of the use of this notation is documented in

the SimEvents User’s Guide (MathWorks 2016c).

947

Li, Mani, and Mosterman

Figure 3: Example custom event actions of Entity Generator block and Entity Sever block.

Figure 4: Example custom server modeled using a discrete-event Stateflow chart (DES chart).

 In addition to expressing atomic discrete-event components as state charts, one can also compose a

coupled discrete-event component directly in Stateflow. This involves either declaring additional event

ports or internal ‘storage’ within the chart. The SEES architecture once again is able to analyze and

synthesize the coupled discrete-event model before DES simulation is performed.

3.4 Textual Programming

For maximal flexibility modelers can program arbitrarily complex discrete-event systems using a

MATLAB class-based program. A MATLAB class extension that realizes SEES components has been

developed as the MATLAB Discrete-Event System (MDES). A critical advantage of this approach is that

the class can interoperate with all MATLAB functions and toolboxes. Additionally, the ability to

programmatically define arbitrary compositions of atomic storage components offers a platform for

quickly defining large networks such as a wireless computer network or sensor network.

 The MDES extension is in spirit akin to the multi-language S-Function API (MathWorks 2016f) of

the Simulink platform and allows the authoring of arbitrary systems in the discrete-time model of

computation. In addition, the MDES extension directly builds upon the MATLAB System Object notation

(MathWorks 2016a), and is supported by the Simulink platform. In this manner, arbitrary systems can be

represented in a discrete-time model of computation using the MATLAB language. While reusing

features of the notation such as the definition of input and output (ports), component parameters, and

component states, the new extension adds the ability to define entity input and output ports, and an

arbitrary number of atomic discrete-event storage components. Modelers can then couple these atomic

components using specialized notation that defines their connectivity. Finally, modelers can also once

948

Li, Mani, and Mosterman

again define custom code for the functions defined in Section 2. A full definition of the API is provided in

the SimEvents User’s Guide (MathWorks 2016c).

 Figure 5 shows a simple example of defining a server block as in a M/D/n queueing system

(Cassandras 2009). The program specifies component parameters as well as the definition of a single

storage that is already pre-configured as a FIFO queue within the getEntityStorageImpl method of the

class. In addition, code for ’Entry’ function that handles the ‘entry’ event is shown. The line with

‘eventForward’ then registers both a ‘timer’ event and an additional ‘exit’ event to forward the

corresponding entity to the output port of the block upon Timer expiry. As illustrated in Figure 6, the

component defined in Figure 5 can now be simply imported as a block into Simulink. SEES then uses

analysis to compose this block with other interconnected blocks to perform a full DES simulation.

classdef myServer < matlab.DiscreteEventSystem
 % Custom server with capacity and service time configured as parameters
 properties (Nontunable)
 % Number of servers (nontunable parameter)
 Capacity = 5;
 end
 properties
 % Service time (tunable parameter)
 ServiceTime = 1.0;
 end

methods (Access = protected)
 function [storageSpec, I, O] = getEntityStorageImpl(obj)

 % Create storage with capacity from parameter value
 storageSpec = obj.queueFIFO('entity', obj.Capacity);
 I = 1; % Connect storage to input port

 O = 1; % Connect storage to output port
 end
 function [entity, events] = entryImpl(obj, storage, entity, from)

 % Forward entity to output port after service completes
 events = obj.eventForward('output', 1, obj.ServiceTime);
 end
 end
end

Figure 5: Example custom server defined using a MATLAB Discrete-Event System.

Figure 6: Example of a MATLAB® Discrete-Event System block and its GUI dialog.

949

Li, Mani, and Mosterman

4 APPLICATION EXAMPLE

As discussed in Section 1, simulation of today’s complex multicore and distributed systems requires the

combined use of multiple modeling paradigms and hybrid simulation technologies with discrete-event

simulation. The ability to perform such simulations in SEES is illustrated with the example shown in

Figure 7. The model in Figure 7 represents a prototype robotic system (modeled as a cart with an inverted

pendulum) that has a camera mounted on it. The system receives commands for the cart to go to a new

position along the horizontal x-axis periodically. The primary high speed control loop with a sampling

time of 10 msec then attempts to reach this new position while keeping the robot (i.e., the pendulum)

balanced. Additionally, the robot also receives periodic requests for setting a new camera position. This is

achieved using a slow control loop with a sampling time of 1 sec. Sporadic health monitoring requests are

received approximately every 10 msec. To study practical feasibility of deploying this system in real-time

hardware, the effects of running this prototype system on a ‘virtual’ real-time operating system that

supports preemption are emulated and a comparison is made between system performance with a single-

core and two-core architecture.

 The model in Figure 7 consists of:

 Simulink continuous-time components of the motion dynamics of the pendulum system and the

camera labeled ‘Plant’.

 Simulink discrete-time runnable modeled using Simulink function-call subsystem notation

labeled as ‘Control Algorithms’ that model the two Control loops and Health monitoring

components.

 Discrete-event Stateflow chart in the ‘Plant’ section that specifies the power-up sequence of the

pendulum system and its embedded controller, as well as the generation of the health monitoring

requests.

 MATLAB discrete-event System block and SimEvents Server block that model the real-time

operating system shown in the ‘Real-Time Environment Emulation’ section. These blocks rely on

a ‘Runnable Broker’ to dispatch the Simulink control algorithm computation based on timing

from the operating system (OS) emulation component. The OS Emulator block is implemented

with MATLAB Discrete-Event System technology and models a pre-emptible multicore

operating system using a few hundred lines of MATLAB code. The parameters of this block are

captured using the GUI dialog shown in Figure 8. This GUI helps configure the computational

latencies of each runnable that the model will attempt to emulate. For example, Runnable

‘Cont1Ctrl’ corresponding to the core pendulum controller is expected to require 1.5 msec +/-

0.5 msec for every execution. It is assumed that the modeler obtained this number either as a

design budget or from estimation on the actual hardware.

When the simulation is performed while emulating a single core system, the yellow plot in Figure 9 is

obtained for the position error of the pendulum. One can clearly see the effect of jitter caused in

scheduling because of pre-emption by the health monitoring task of the pendulum controller. If the

number of cores is changed from 1 to 2 simply by modifying the value on the GUI dialog of the OS

emulator block, one sees that the addition of a dedicated core for handling the health monitoring interrupt

eliminates the jitter in the green plot of Figure 9.

This example conveys the power of being able to integrate discrete-event simulation into a classical

control problem in the context of emerging needs for studying the effect of multicore scheduling.

Additionally, it also illustrated how such a system can leverage the capabilities of a single framework that

flexibly supports multiple paradigms to express DES components.

950

Li, Mani, and Mosterman

Figure 7: Application example of real-time operating system.

Figure 8: Configuring the amount of time each Runnable requires (i.e., computational latency).

951

Li, Mani, and Mosterman

Figure 9: Results of running the simulation that show deviation of the pendulum from vertical. The

yellow line shows the pendulum position that is influenced by scheduling jitter on a single-core system.

The green line shows the elimination of jitter by using a two core system.

5 SUMMARY AND NEXT STEPS

A new framework for Discrete-Event System (DES) modeling and simulation is introduced that is built

upon the existing platform provided by MATLAB and Simulink. The framework introduces abstractions

that help easily express and compose DES systems in various graphical and textual programming

paradigms. The framework draws inspiration from system theoretic work by Wymore (1993) which aims

to position it well for future work on analysis and verification techniques. The well founded SimEvents

Entity-Storage formalism (SEES) intends to allow modelers to efficiently design and reason about

systems built in this framework. In future work, exploring a formal relationship between SEES and DEVS

will help bring a well-studied theoretical basis to SEES and provide possible new avenues of research for

DEVS.

REFERENCES

Industrie 4.0 Working Group. 2013. Securing the Future of German Manufacturing Industry.

Recommendations for Implementing the Strategic Initiative. National Academy of Science and

Engineering, Munich.

Cassandras, C. G., and S. Lafortune. 2009. Introduction to Discrete Event Systems. Springer Science &

Business Media.

Clune, M. I., P. J. Mosterman, and C. G. Cassandras. 2006. “Discrete Event and Hybrid System

Simulation with SimEvents”. In Proceedings of the 8th International Workshop on Discrete Event

Systems: 386-387.

Concepcion, A. I., and B. F. Zeigler. 1988. “DEVS Formalism: A Framework for Hierarchical Model

Development”. IEEE Transactions on Software Engineering 14(2): 228.

Godding, G., H. Sarjoughian, and K. Kempf. 2007. “Application of Combined Discrete-Event Simulation

and Optimization Models in Semiconductor Enterprise Manufacturing Systems”. In Proceedings of

the 2007 Winter Simulation Conference. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D.

Tew, and R. R. Barton, eds.: 1729-1736. Piscataway, New Jersey: Institute of Electrical and

Electronics Engineers, Inc.

Gray, M. A. 2007. “Discrete Event Simulation: A Review of SimEvents”. Computing in Science &

Engineering 9(6): 62-66.

952

Li, Mani, and Mosterman

Harel, D. 1987. “Statecharts: A Visual Formalism for Complex Systems”. Science of Computer

Programming 8(3): 231-274.

Holzmann, G. J. 2004. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley.

Huang, D., H. S. Sarjoughian, W. Wang, G. Godding, D. E. Rivera, K. G. Kempf, and H. Mittelmann.

2009. “Simulation of Semiconductor Manufacturing Supply-Chain Systems with DEVS, MPC, and

KIB”. IEEE Transactions on Semiconductor Manufacturing 22(1).

Li, W., C. G. Cassandras, and M. Clune. 2006. “Model-Based Design of a Dynamic Voltage Scaling

Controller Based on Online Gradient Estimation Using SimEvents.” In Proceedings of the 45th IEEE

Conference on Decision & Control, San Diego, California.

Hubscher-Younger, T., P. J. Mosterman, S. DeLand, O. Orqueda, and D. Eastman. 2012. “Integrating

Discrete-Event and Time-Based Models with Optimization for Resource Allocation.” In Proceedings

of the 2012 Winter Simulation Conference. C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and

A. M. Uhrmacher, eds.: 2690-2704. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers, Inc.

MathWorks. 2016a. DSP System Toolbox™ Users Guide. MathWorks®, Release R2016a, Natick, MA.

MathWorks. 2016b. MATLAB® User’s Guilde. MathWorks®, Release R2016a, Natick, MA.

MathWorks. 2016c. SimEvents®, User’s Guide. MathWorks®, Release R2016a, Natick, MA.

MathWorks. 2016d. Simulink® User’s Guide. MathWorks®, Release R2016a, Natick, MA.

MathWorks. 2016e. Stateflow® User’s Guide. MathWorks®, Release R2016a, Natick, MA.

MathWorks. 2016f. Writing S-Functions. MathWorks®, Release R2016a, Natick, MA.

Mosterman, P. J., and J. Zander. 2016. “Cyber-Physical Systems Challenges: a Needs Analysis for

Collaborating Embedded Software Systems.” In Software & Systems Modeling 15(1): 5-16.

Mosterman, P. J., D. E. Sanabria, E. Bilgin, K. Zhang, and J. Zander. 2014. “A Heterogeneous Fleet of

Vehicles for Automated Humanitarian Missions.” In Computing in Science & Engineering 12(3): 90-

95.

Schwatinski, T., T. Pawletta, S. Pawletta, and C. Kaiser. 2010. “Simulation-Based Development and

Operation of Controls on the Basis of the DEVS Formalism”. In Proceedings of the 7th EUROSIM

2010 Congress, Prag, Czech Republic.

Seo, K. M., C. Choi, T. G. Kim, and J. H. Kim. 2014. “DEVS-Based Combat Modeling for Engagement-

Level Simulation.” Simulation 2014: 0037549714532960.

Sztipanovits J., Ying S., Cohen I., Corman D., Davis J., Khurana H., Mosterman P.J., Prasad V., and

Stormo L. 2013. “Foundations for Innovation: Strategic Opportunities for the 21st Century Cyber-

Physical Systems – Connecting Computer and Information Systems with the Physical World.” Report

by the Steering Committee for Foundations in Innovation for Cyber-Physical Systems, National

Institute of Standards and Technology (NIST).

Wainer, G. A. 2009. Discrete-Event Modeling and Simulation. CRC Press, Taylor & Francis Group, Boca

Raton, FL.

Wymore, A. W. 1993. Model-Based Systems Engineering. CRC Press.

Zeigler, B. 1984. Multifacetted Modeling and Discrete Event Simulation. Academic Press Professional,

Inc.

AUTHOR BIOGRAPHIES

WEI LI received his B.S. (1998) and M.S. (2001) degrees in Control Engineering from Tsinghua

University, Beijing, China, and his Ph.D. degree (2005) in Systems Engineering from Boston University.

From 2006 he has been working in software development at MathWorks, Inc. His current interests

include discrete-event and hybrid simulation technologies, quantitative analysis, formal verification and

optimization of discrete-event systems, embedded system architecture modeling, network simulation, and

operations research. His email address is wei.li@mathworks.com.

953

Li, Mani, and Mosterman

RAMMURTHY MANI works in software development at MathWorks, Inc. His interests include

simulation technologies, distributed systems and simulation, discrete-event simulation, signal processing,

embedded architectures, systems engineering, and computational biology. He received his PhD (1998) in

Electrical Engineering from Boston University. His email address is ramamurthy.mani@mathworks.com.

PIETER J. MOSTERMAN is a Senior Research Scientist at MathWorks in Natick, Massachusetts. He

also holds an adjunct professor position at the School of Computer Science of McGill University. Prior to

this, he was a research associate at the German Aerospace Center (DLR) in Oberpfaffenhofen. He earned

his Ph.D. in Electrical and Computer Engineering from Vanderbilt University in Nashville, Tennessee,

and his M.Sc. in Electrical Engineering from the University of Twente, the Netherlands. His primary

research interests are in Computer Automated Multiparadigm Modeling (CAMPaM) with principal

applications in design automation, training systems, and fault detection, isolation, and reconfiguration. In

2009, he received the Distinguished Service Award of The Society for Modeling and Simulation

International (SCS) for his services as editor in chief of SIMULATION: Transactions of SCS. Dr.

Mosterman also has been guest editor for special issues on CAMPaM of SIMULATION, IEEE

Transactions on Control Systems Technology, and ACM Transactions on Modeling and Computer

Simulation. His email address is pieter.mosterman@mathworks.com.

954

