
THE BUSINESS PROCESS SIMULATION STANDARD (BPSIM):
CHANCES AND LIMITS

Ralf Laue
Department of Computer Science

University of Applied Sciences of Zwickau
Dr.-Friedrichs-Ring 2a, 08056 Zwickau, Germany

Ralf.Laue@fh-zwickau.de

Christian Müller
Faculty of Business, Computing, Law

Technical University of Applied Sciences Wildau
Hochschulring 1, D-15745 Wildau, Germany

christian.mueller@th-wildau.de

KEYWORDS

Event driven simulation, business processes, process
analysis, Business Process Modeling and Notation
(BPMN), Business Process Simulation Interchange
Standard (BPSim)

ABSTRACT

This paper provides a critical analysis of the BPSim
standard, a specification by the Workflow Management
Coalition. The aim of this standard is to make it possible
to exchange simulation models between different
modeling and simulation tools. We discuss the
expressiveness of BPSim model and come to the
conclusion that it will be sufficient for certain cases, but
also lacks some important features.

INTRODUCTION

Business processes models are usually specified in
graphical languages. The most popular standard for such
a language is Business Process Model and Notation
(BPMN) [BPMN 2013].

For simulation purposes, the models have to be enriched
by additional information and transformed into formal
specifications that can be processed by a simulation tool
[Anthony Wallner et. al. 2006, Raimar Scherer 2011].
The Business Process Simulation Interchange Standard
(BPSim) is a BPMN extension for process simulation. It
was developed by some industrial actors (Fig. 1) and
published as a standard specification [BPSim 2013,
BPSim 2014].

Not all products of the contributors are fully supporting
the BPSim specification. Known implementations were
provided by Trisotech, Lanner, Sparx and jBPM.

A BPSim simulation engine is not only an extension of
an BPMN engine, because the aim of a BPMN engine is
process automation and not simulation. Such an
automation engine must store its data persistently in a
database. Simulation runs must be fast, hence a
simulation engine should store the data in internal
memory. For this reason, implementing a simulation
engine in a BPMN suite requires considerable effort.

In this paper, we discuss the main ideas of BPSim as
well as its chances and limits.

BPMN DIAGRAMS AND SERIALIZATION

Before we start discussing BPSim as an extension of
BPMN2 (version 2.0 is the current version of the BPMN
standard), we will describe the basic ideas of BPMN2.
Its aim is the modeling of business processes for
documentation and automation purposes. The standard
[BPMN] defines the graphical representation of models,
its semantics and an XML-based serialization format. In
Fig. 2, we show a BPMN diagram that we will use as an
example throughout this paper. First, a decision task is
executed. At a subsequent gateway, the process path
splits depending on the outcome of the decision.

The basic (simplified) XML file structure for this
process fragment is shown in Fig. 3. A definitions
element contains the required resources and processes.

Proceedings 30th European Conference on Modelling and
Simulation ©ECMS Thorsten Claus, Frank Herrmann,
Michael Manitz, Oliver Rose (Editors)
ISBN: 978-0-9932440-2-5 / ISBN: 978-0-9932440-3-2 (CD)

Figure 2 Example Process

The process element includes its events, tasks, gateways
and sequence flow arcs. The XML file contains also
information about resources and data that is not shown
in the diagram: The resource tag describes the performer
of a task and has a model-wide scope. In contrast to
this, the property element belongs to a certain process. It
describes a variable with a scope of a process instance.
It is also possible to use a so-called datastore for
variables with a model-wide scope (not just referring to
a single process execution). In our example, we did not
use this feature.

The decision logic is modeled at the outgoing arcs of the
gateway by 2 expressions, deciding which arc is used.

<definitions xmlns="...">
 <resource id="resource:id" />
 <process id="process_id" >
 <property id="property_id" name="report"/>
 <startEvent id="start_id" />
 <sequenceFlow sourceRef="start_id" targetRef="task_id"/>
 <task id="task_id">
 <performer id="performer_id" >
 <resourceRef>resource_id</resourceRef>
 </performer>
 </task>
 <sequenceFlow sourceRef="task_id" targetRef="gatw_id"/>
 <exclusiveGateway id="gatw_id" />
 <sequenceFlow sourceRef="gatw_id" targetRef="task2_id">
 <conditionExpression>
 <![CDATA[decision == 'simple_report';]]>
 </conditionExpression>
 </sequenceFlow>
 <sequenceFlow sourceRef="gatw_id" targetRef="task3id">
 <conditionExpression>
 <![CDATA[decision == 'long_report';]]>
 </conditionExpression>
 </sequenceFlow>
 …..
 </process>
 <bpmndi:BPMNDiagram><!--Refers to graphical
diagram layout--></bpmndi:BPMNDiagram>
</definitions>

Figure 3

BPSIM EXTENSION

BPMN supports extensions for different purposes. One
such extension is the Business Process simulation

Interchange Standard (BPSim) [BPSim 2013, BPSim
2014] for simulating business processes. Using the
bpsim namespace (http://www.bpsim.org/schemas/1.0),
it adds additional information to an XML serialization in
the BPSimData node (Fig. 4).

A BPSim model is organized in different simulation
scenarios with start, duration, seed and replication
values (Fig 5). A parameter for a warm-up period is
missing, but some vendors have extended their
implementation by this parameter. For working with
variations of scenarios, the inheritance of scenarios is
supported.

<definitions>
 <resource /> <process /> ..
 <bpmndi:BPMNDiagram> </bpmndi:BPMNDiagram>
 <relationship type="BPSimData">
 <extensionElements>
 <bpsim:BPSimData xmlns:bpsim=
 "http://www.bpsim.org/schemas/1.0">
 </bpsim:BPSimData>
 </extensionElements>
 </relationship>
</definitions>

Figure 4

It is possible to assign simulation parameters to BPMN
nodes and arcs by means of an elementParameter in a
scenario definition. E.g., it is possible to define a
durationParameter for task nodes (Fig. 5).

Various time parameters (such as setup time or
processing time) can be added to tasks. Control
parameters allow to define how often / with which
probability certain events or certain decisions occur.
Resources can be defined and it is possible to assign
resources to tasks. In addition, tasks can have priorities.
Fixed costs and costs per unit can be assigned to both
tasks and resources. All these attributes can be defined
depending on calendar definitions, for example by
specifying that the availability of resources depend on
workdays or shifts.

All the parameters described above can be either fixed
values, historical data series or defined as realization of
random variables that follow a certain distribution. The
standard allows to use 13 types of distributions (that can
be parametrized) for this purpose. This is clearly

positive – the authors are aware of several business
process simulation tools that work with a too limited set
of distributions.

<bpsim:Scenario id="default" name="Scenario" ….>
 <bpsim:ScenarioParameters
 replication="2" seed="999" … >
 <bpsim:Start>
 <bpsim:DateTimeParameter value="2016-01-01T00:00:00"/>

 </bpsim:Start>
 </bpsim:ScenarioParameters>
 <bpsim:ElementParameters elementRef="task_id">
 <bpsim:TimeParameters>
 <bpsim:ProcessingTime>
 <bpsim:DurationParameter value="PT1H"/>
 </bpsim:ProcessingTime>
 </bpsim:TimeParameters>
 </bpsim:ElementParameters>
</bpsim:Scenario>

Figure 5

In a BPMN model, properties and data objects are used
to control the execution of the model instances. In
addition, BPSim allows to add properties to each node
and arc by means of ElementParameters. The relation
between BPMN and BPSim parameters is not specified
and depends on the simulation engine, e.g., it is not
clear how a model should be interpreted if its BPMN2
parameters for resource usage contradict to the BPSim
ResourceParameters.

For extending our model to a classical simulation model
with a capacity of e.g. 10 resources and a requirement of
e.g. 2 resources per task we can use the following
parameters of Fig. 6 (all belonging to the BPSim
namespace):

<ElementParameters elementRef="resource_id">
...<ResourceParameters>
…...<Quantity>
…......<NumericParameter value="10"/>
…...</Quantity>
...</ResourceParameters>
</ElementParameters>

<ElementParameters elementRef="task_id">
...<ResourceParameters>
…...<Selection>
…......<ExpressionParameter value=

"bpsim:getResource('resource_id', 2)" />
…...</Selection>
...</ResourceParameters>
</ElementParameters>

Figure 6

This definition (as given in [BPSim 2014]), runs in the
simulation engine from Lanner, but it contradicts to the
standard specification ([BPSim 2013, Sect. 7.3]) that
defines that ResourceParameters are not associated to a
task_id but to the performer_id, which belongs to the
task element.

For modeling a time schedule, the standard allows
calendar-depended parameters. Unfortunately, this
feature is not supported by all tools.

Parameters can be marked as ResultRequest (Fig. 7) in
order to collect the results of a simulation run. This
allows to ask for minimum, maximum and mean values
(for example of costs or durations), sums (aggregated
values, e.g., total time spent in a certain task) and for the
number of occurrences (for example of a certain event).

<ElementParameters elementRef="task_id">
...<TimeParameters>
…...<WaitTime>
…......<ResultRequest>sum</ResultRequest>
…...</WaitTime>
…...<ProcessingTime>
…......<ResultRequest>sum</ResultRequest>
…...</ProcessingTime>
...</TimeParameters>
</ElementParameters>

Figure 7

CHANCES AND LIMITS OF BPSIM

A lot of simulation models for business processes have
simple scenarios. For such cases, the BPSim approach
(adding parameters to BPMN elements by means of the
BPSim extension) works well: For these models its a
great improvement that BPSim allows formulating
simulation models independently from modeling tools
and simulation engines.

However, in a practical test, we found that on the one
hand, some tools implement only a subset of the
standard. On the other hand, they provide useful (but
proprietary) vendor extensions. E.g. the Trisotech
modeler does not support the assignment of a resource
parameter to a task. For running a simulation with
resources, the model must be changed by hand in text
editor. Hopefully, such problems will be solved by time.

A reason for the current situation may be that BPSim is
a new standard and there currently only a few
competitors on the market.

However, the BPSim specification has also some
structural problems that will be discussed in the
following sections.

Use of Expression Parameters has Limits

For many scenarios, adding parameters to BPMN
elements by means of the BPSim extension works well.
For more complicated cases, BPSim allows to add
properties to a process instance as well as to BPMN
elements.

For example, in our reporting process, a property of a
process instance could be the number of pages of the
report. Such process instance properties can be regarded

as global variables that can be read and written in the
context of each BPMN element. If the upper path in the
diagram of Fig. 1 is taken, a simple report has to be
compiled (number of pages = 30) while otherwise a
long report has to be compiled (number of pages = 100).
When the decision has been taken, the property
“numberOfPages” is set to the appropriate number.
Using so-called expression parameters, it is also
possible to define that the costs for the task “print
report” depends on the number of pages (say 2 cents per
page). This way, by reading and modifying properties,
some additional logic (that cannot be seen in the BPMN
diagram) can be added to the model.

<bpsim:CostParameters>
...<bpsim:fixedCost>
…...<bpsim:ExpressionParameter value=
 "bpsim:getProperty('numberOfPages') *0.02"/>
 </bpsim:fixedCost>
</bpsim:CostParameters>

Figure 8

In this case, BPSim specifies that the parameter
bpsim:CostParameters (Fig. 8) is serialized as an XML
element, and the content of this element can be an
expression parameter.

The situation is different if we try to model the
processing time of the print task in the same manner. We
can specify that the time is given by a truncated normal
distribution with a mean of 70 (and a minimum and
maximum value) as follows (Fig. 9):

<bpsim:TimeParameters>
 <bpsim:ProcessingTime>
 <bpsim:TruncatedNormalDistribution
 max="1000" mean="70" min="0"
 standardDeviation="10"/>
 </bpsim:ProcessingTime>
</bpsim:TimeParameters>

Figure 9

In Fig. 9, the distribution parameters such as “mean” are
attributes (in this case with the data type Double) in the
XML serialization, and the standard provides no means
to express them as a calculated value (i.e. as an BPSim
expression parameter) as it was the case for the costs.

BPSim Semantics is Interrelated with BPMN
Semantics

Let’s assume that we want to interrupt the task “print
report” if it took more than 5 minutes. This can be
expressed in plain BPMN: A boundary timer event is
added to the task (see Fig 2), and it is provided with a
TimerEventDefinition attribute that specifies that the
event fires 5 minutes after the task has been started (Fig.
10):

<boundaryEvent id="cancelPrintTimer_id"
 name="Cancel Print" cancelActivity="true"
 attachedToRef="PrintTaskID">
 <timerEventDefinition>
 <timeDuration>PT5M</timeDuration>
 </timerEventDefinition>
</boundaryEvent>

Figure 10

In this case, the timing behavior is completely defined
in BPMN (not using the BPSim extension), and BPSim
does not provide a standard way to say “interrupt the
task if it took more than 5 seconds multiplied with the
current value of the “number of pages” attribute.
Although the timing behavior of the boundary event
could be defined using BPSim as well, this would not be
appropriate because the BPSim attribute InterTrigger
Timer that would have to be used for this purpose
cannot be related to the point of time when the task
“print report” has been started. What would be needed,
but is not included in the standard, is the possibility to
deal with different timers which can be reset when a
task starts (or in general: when an event occurs).

Resource Model not yet Fully Elaborated

Next, let’s assume that before starting to print, the
printer needs a warm-up period of 3 minutes if the last
print job ended more than 20 minutes ago. For modeling
such a situation, the possibility to reset a timer (this time
when a task ends) would be required again. In addition,
it would be useful if the printer (a resource) would have
a time parameter denoting the needed warm-up time as
well as a property parameter for storing the information
when the last print job ended. Unfortunately, according
to BPSim, both kinds of parameters are not allowed for
resources.

Altogether, BPSim uses an advanced, but not yet fully
elaborated resource model. Resources can have more
than one role. Priorities can be assigned to activities.
Also, the availability of resources can be defined
depending on time intervals (e.g. representing shifts). It
is possible to model the (un)availability of resources as
a random variable in order to deal with illness or
malfunction of technical resources. However, there are
still things missing. Although activities can have
priorities, the standard does not say anything about the
semantics of such a priority attribute. It can be assumed
that the meaning of priorities is that a resource when
becoming available is assigned to the activity with the
highest priority (a feature that [Wal06] requires for
useful business process simulation) – but it should be
possible to define other resource allocation strategies as
well. Even if two activities have no priority information
(or both have the same), it should be possible to specify
whether a resource is allocated to a random activity, to
the most recent one (LIFO), to the one which has been
waiting for the longest time (FIFO), etc.

There is no means for modeling consumable resources
(such as raw material) that will not be released when a

task that needs a resource is completed. While such
information could be modeled as a property of a process
instance, such a way of modeling is less intuitive than
having a richer resource model. In particular, resources
should be allowed to have user-defined property
parameters (which is currently not the case).

A richer resource model would also be very useful for
modeling working preferences, locations and working
speed of resources. In [Wil M. P. van der Aalst et. al
2009], it is discussed that current simulation tools often
use oversimplified resource models. Among others, it is
not taken into account that people do not work on a
constant speed and tend to work part times or in
batches. Other than assuming that a resource is available
as soon as it is required by a task, simulation models
should be able to support various resource patterns
[Nick Russel et. al. 2005]. While the support of such
rich resource models has been announced as one of the
goals of the BPSim initiative [Jan11], the resource
model in version 1.0 of the standard has still room for
improvement.

Working with historical process data sets

Often, simulation models have a lot of parameters such
as duration times, interarrival times and probabilities for
decisions. Accordingly, a lot of replications are required
to get statistical valid interpretations of the simulation.

In a typical process improvement projects, the data of
historical process instances are known from the logs of
BPM engines. In order to build a realistic simulation
model, it makes sense to use randomly generated values
only for those parts of the model, for which no historical
data are available. This approach reduces the number of
randomly generated parameters, and the number of
required replications can be reduced considerably.

BPSim supports working with historical datasets. In a
BPSim model, these datasets are assigned to simulation
parameters such as decisions or duration times of
tasks . However a weakness of the approach is that this
assignment is always done in the context of the whole
process and does not refer to process instances. In our
example (Fig. 1), this would mean that historical data
can be used for simulating the decisions and the
duration of the tasks in the process. However, the fact
that the task “print report” takes longer when the
decision “long report required” has been taken, would
not be considered in the model.

Result Types are Insufficient

A weakness of the BPSim standard is that the result
types that can be requested from a simulation are too
limited. Allowed result types are the number of
occurrences, minimum, maximum and mean values.
However, average, best and worst case scenarios
(represented by the minimum and maximum values) are
often not enough to describe the statistical distribution

of the simulation results. At least, an information about
standard deviation and skewness is desirable. In
addition, we have to ask for percentiles as well if we
want to deal with service-level agreements such as
“95% of the requests have to be handled within n time
units”. Unfortunately, such descriptors have not been
considered in the BPSim standard. In general, it would
be desirable to require that a simulation tool should
write a log (in a standardized format) containing all
events and decisions happening during a simulation run.
This would allow any analysis after a simulation run.

CONCLUSIONS

The motivation behind the BPSim specification was to
close the gap between the well-established BPMN
standard for modeling and a great variety of simulation
tools, each one requiring a proprietary input format.
Having such a standard can help to promote the use of
business process simulation and to build tools for
modeling simulation models independently from
simulation tools.

BPMN and BPSim are powerful enough to create
models for business process which are „static“ in the
sense that parameters may be random variables, but the
distribution of those random variables does not change
during the process. However, we see from the above
examples that the BPSim standard needs improvement
for cases where probability distributions change when
the process is executed.

Also, it has to be noted that neither BPMN nor BPSim
has a fully elaborated resource model. For simulation
purposes, a more detailed metamodel for resources (a
suggestion can be found in [Cristina Cabanillas 2011])
would be desirable.

Additionly, the semantics of BPMN and its extension
BPSim can lead to contradictions. Also, historical data
and result types do not support the im- and export of
raw data. At this point BPSim shoud extended.

Neither in the investigation for [Christian Müller et. al.
2015a and 2015b] nor in the preparation on this paper
we found tools that have a full BPSim support. All
current tools support the standard partially and have
additional vendor extensions. In one case it was
necessary to modify a model generated by a BPSim
modeler with a text editor for running it in a simulation
engine. These examples show that, in contradiction to
the BPMN environment, the interchangeability of
models between tools is not yet satisfactory. The authors
hope that this will be changed by time.

REFERENCES

Wil M. P. van der Aalst; Joyce Nakatumba; Anne
Rozinat and Nick Russell 2009: Business Process
Simulation: How to get it right? International
Handbook on Business Process Management,
Springer, 2009

BPMN 2013: ISO/IEC International Standard 19510:
Information Technology – Object Management
Group Business Process Model and Notation,
Document Number ISO/IEC 19510:2013(E), 2013

BPSim 2013: Workflow Management Coalition: BPSim
– Business Process Simulation Specification,
Document Number WFMC -BPSWG-2012-1, 2013

BPSim 2014: Workflow Management Coalition: BPSim
Implementer’s Guide, 2014

Cristina Cabanillas, Manuel Resinas, Antonio Ruiz-
Cortés 2011: RAL: A High-Level User-Oriented
Resource Assignment Language for Business
Processes, BPM 2011 Workshops, LNBIP Vol 99,
Springer, 2011

Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter
Hofstede, David Edmond 2005: Workflow Resource
Patterns: Identification, Representation and Tool
Support. CAiSE 2005: 216-232

John Januszczak, Geoff Hook 2011: Simulation
standard for business process management. Winter
Simulation Conference 2011: 741-751

Christian Müller et al. 2015A: Gegenüberstellung der
Simulationsfunktionalitäten von Werkzeugen zur
Geschäftsprozessmodellierung, TH Wildau,
http://nbn-resolving.de/urn/resolver.pl?
urn:nbn:de:kobv:526-opus4-4354

Christian Müller, Klaus Bösing 2015b: Vergleich von
Simulationsfunktionalitäten in Werkzeugen zur
Modellierung von Geschäftsprozessen, in AKWI
2015, http://dx.doi.org/10.15771/978-3-944330-47-
1_2015_1

Raimar Scherer 2011: Process-Based Simulation
Library for Construction Project Planning, Winter
Simulation Conference 2011

Anthony Waller, Martin Clark, Les Enstone 2006: L-
SIM: Simulating BPMN Diagrams with a Purpose
Built Engine, Winter Simulation Conference 2006

AUTHORS BIOGRAPHIES

RALF LAUE studied mathematics at the
University of Leipzig, Germany. After
graduating, he worked as a system
programmer before returning to the
University of Leipzig in 2003. He
obtained a PhD in computer science in
2010. Since 2011, he is a full professor for

software engineering at the University of Applied
Sciences in Zwickau, Germany. His research interests
include the correctness and understandability of visual
models in computer science.

His email address is: ralf.laue@fh-zwickau.de

CHRISTIAN MÜLLER has studied
mathematics at Free University Berlin. He
obtained his PhD in 1989 about network
flows with side constraints. From 1990 until
1992 he worked for Schering AG and from
1992 until 1994 for Berlin Public Transport

(BVG) in the area of timetable and service schedule
optimization. In 1994 he got his professorship for IT
Services at Technical University of Applied Sciences
Wildau, Germany. His research topics are conception of
information systems plus mathematical optimization
and simulation of business processes.

His email address is: christian.mueller@th-wildau.de
and his web page is http://www.th-wildau.de/cmueller/ .

mailto:ralf.laue@fh-zwickau.de
http://www.th-wildau.de/cmueller/
mailto:christian.mueller@th-wildau.de

	BPSim Semantics is Interrelated with BPMN Semantics
	Resource Model not yet Fully Elaborated
	Result Types are Insufficient
	Conclusions

