
SIMULATION AND SELECTION OF EFFICIENT DECISION RULES IN BANK’S
MANUAL UNDERWRITING PROCESS

Mikhail Konovalov
Institute of Informatics Problems

of the FRC CSC RAS, Moscow, Russia,
Email: mkonovalov@ipiran.ru

Rostislav Razumchik
Institute of Informatics Problems

of the FRC CSC RAS, Moscow, Russia,
Peoples’ Friendship University of Russia,

Moscow, Russia
Email: rrazumchik@ipiran.ru

KEYWORDS
bank’s underwriting, optimal rule, scheduling, dispatch-
ing, simulation

ABSTRACT
Bank’s manual underwriting involves a group of under-
writing inspectors, which perform a known set of pro-
cedures with the loan applications submitted by the bor-
rowers, in order to determine the risk of providing a loan
and eventually approve or disapprove it. Due to the fact
that the evaluation process of applications must satisfy
quality of service requirements usually set at legislator
level and the bank resources are limited, one has to de-
fine such dispatching rules, that specify which applica-
tion must be sent to which inspector and when in such a
way that the requirements are met. This paper presents a
case study of the application of “computer-aided schedul-
ing” to the new problem of optimal management of ap-
plications, which is seen in the bank manual underwrit-
ing process. Here it is shown that the problem of optimal
distribution of applications between the inspectors in the
bank’s manual underwriting can be represented as an op-
timal dispatching problem, commonly encountered in the
distributed processing environment. We build the simula-
tion model of the corresponding dispatching system and
find best decision rule with the help of computational
simulations. The realization of best decision-making is
done by finding in a given set of dispatching rules the best
one (either static or adaptive) for a given criterion and by
estimating its parameters (if needed). By virtue of nu-
merical examples it is shown how the quality of service
requirements are met using different dispatching rules.

INTRODUCTION
The problem which is being considered in this paper fre-
quently arises in the bank manual underwriting process
and concerns algorithms, which are implemented in the
bank information support systems and are used to man-
age incoming loan applications1. In banking, underwrit-
ing is the process of approving or denying of a loan,

1Documents that provide the essential financial and other kind of
information about the borrower on which the bank bases the decision
to lend.

based on the financial information and credit history of
the borrower. An appropriate information support sys-
tem is usually used for the the management of the under-
writing process. Up to now there are two types of under-
writing systems: automatic and manual. In an automatic
underwriting system (credit scoring system), the infor-
mation from the application is entered by a bank worker
into a computer program which determines whether the
borrower financially fits the loan conditions. Usually it
takes from 5 minutes up to 5 hours to make a decision.
If the loan is approved through an automatic system, the
bank will proceed with it. If it is not, then the bank either
rejects the application or hands it further for the manual
underwriting.

In the manual underwriting2 a bank worker (under-
writing inspector) performs a set of procedures instead of
a computer program and eventually determines the risk
of providing a loan. In cases of high risks he can pro-
pose new conditions under which the loan can be pro-
vided. These procedures are specific for each bank and
can be very different from the procedures run inside the
automatic system. For example, they can include sending
official requests to the federal state services, checking of
the persistent arrears problems, evaluation of financial in-
formation, contacting internal bank services (such as se-
curity service). It is being reported that in case of manual
underwriting it takes from 1 to 10 days to make a decision
but this period heavily depends on the bank, application
type and size of a loan. Despite the fact that in this case
underwriting is done almost manually, a bank needs a
supporting information system which will manage appli-
cations and track their status. Another goal of the system
is to distribute applications among the available under-
writing inspectors in order to keep them equally or un-
equally loaded3. But due to the fact that applications
must be evaluated within the given time limits (dead-
lines), which are usually specified at a legislator level,
the supporting information system must be able to make
such dispatching decisions (i.e. specify which applica-
tion must be sent to which inspector and when), that al-

2In general the manual underwriting is used for commercial (or
business) loans.

3The objectives may be very different and usually depend on the
bank’s goals.

Proceedings 30th European Conference on Modelling and 
Simulation ©ECMS Thorsten Claus, Frank Herrmann, 
Michael Manitz, Oliver Rose (Editors) 
ISBN: 978-0-9932440-2-5 / ISBN: 978-0-9932440-3-2 (CD) 



low the bank to meet the required deadlines. From the
given rough description of the manual underwriting pro-
cess, it is clear that the evaluation process of an applica-
tion requires a random amount time even if the bank has
well-established internal underwriting procedures. This
fact in combination with the unpredictability of the appli-
cation submission times and the requirement to meet the
target deadlines makes the dispatching decisions com-
plicated. The situation becomes even rougher as soon
as one tries to take into consideration more and more
details of the manual underwriting such as skills of the
underwriting inspectors, working schedule, priorities of
the applications, load balancing etc. It can also turn out
that the deadlines and other quality of service (QoS) re-
quirements, that may be specified at a legislator level (or
within the bank) in order to increase its competitiveness,
cannot be met by the bank. In the latter case the rea-
son may not be in the bank’s internal underwriting proce-
dures, but in the deficit of the number of inspectors or in
the lack of experienced stuff. The true reason is not that
easy to figure out because, for example, the given number
of employees cannot cope with the flow of applications
because the incoming applications are distributed among
them in a wrong way, which can be optimized. It can be
seen in practice, that when the bank realizes that it cannot
cope with the current flow of applications, the dispatch-
ing decisions are taken under manual control of the exec-
utive manager, who decides when and who must evaluate
which application. Eventually this leads to the accumula-
tion of expired applications and inevitable consequences
like penalties. Now most of the banks have an appro-
priate information support system for the manual under-
writing and the bank’s main goal is to tune it in a proper
way so that the QoS requirements are met. In order to
tune the system one has to answer the question: given
that the bank understands its internal manual underwrit-
ing procedures and has relevant statistical information on
how well (quantitatively and qualitatively) these proce-
dures were performed for a certain period of time in the
past, what is the best strategy (algorithm) to distribute the
incoming applications between underwriting inspectors,
which allows one to meet the QoS requirements? De-
spite a great generality of the question, from our point of
view, the answer to it can be given by using computer-
aided scheduling techniques and by seeing an analogy
between the described information support system and
the task/resource allocation problems typically met in the
field of the distributed computations. The idea is that
firstly one represents the problem of distribution of in-
coming applications among inspectors under given con-
straints (inspector skills, application priorities etc.) as a
resource allocation problem (or a dispatching problem).
Secondly one identifies QoS requirements that need to
be met (for example, not more than 10% of overdue ap-
plications). Thirdly, one builds the simulation model of
the system, which (at least to some extent) can reproduce
the values of the chosen performance characteristics pro-
vided by the information support system currently oper-

ated by the bank. Fourthly, one finds the best possible
solution by simulation and generates the improved dis-
patching rule. Finally, the bank, having implemented the
new rule in the information support system, keeps track-
ing of the QoS requirements. As soon as it detects severe
violations, the simulation model is re-built (if there were
any changes in the underwriting procedures or staff) and
run again with the updated historical data eventually gen-
erating the new rule, that is implemented in place of the
previous one and used until the next violation.

Even though the idea is simple4 it has a number of
drawbacks. The first step looks to be the most difficult
one because of the high level of ambiguity: there are
many ways in which manual underwriting procedures
can be formalized. Some procedures can be left out of
consideration, others cannot and it is hard to determine
what the right granularity level is. Another aspect is the
performance evaluation of the underwriting procedures.
Inter alia this includes the understanding of performance
characteristics of underwriting inspectors (how fast one
copes with different stages of application evaluation pro-
cess), estimation of the true times needed to fulfil the in-
ternal procedures and external official requests. The lat-
ter is not possible without enough historical data. More-
over the estimations of time frames can be done only on
the probability basis. Finally, making the simulation re-
sults conform to the results achieved in real-life is an-
other challenge which can be done only through trials
and errors. Additionally, the need to re-build model each
time the underwriting processes are changed, requires
such a simulation framework in which models are built
in an algorithmic manner. Given that simulation exper-
iments are cheap compared to real-life implementation,
trials and errors may have the price that can be paid.
Our experience shows that in close cooperation with the
bank these difficulties can be overcome at some abstrac-
tion level. Even if the abstraction level is high, which
means that only basic procedures are being formalized,
simulation can be advantageous, because the optimal de-
cision rules may depend exactly on these basic proce-
dures5. By building even a rough though consistent sim-
ulation model one obtains a basis to judge if the QoS
requirements can be met without any changes in the un-
derwriting procedures or staff number.

The case study presented in this paper demonstrates
that the proposed idea indeed can be fulfilled. To our
knowledge there are no studies on this topic in the lit-
erature. Here we demonstrate that the management (in-
cluding assignment) of applications by inspectors during
the manual underwriting process can be seen as a service
process in a dispatching system. We give a short descrip-
tion of our algorithmic simulation framework and present
the results of the numerical experiments based on syn-

4And not new. It is reported to be quite common approach in pro-
duction scheduling in the field of industrial manufacturing. See, for
example, Harmonosky and Robohn (1987).

5Of course, this is not always the case. But in the situation when one
needs a more or less argumentative improved decision rule, this looks
to be a feasible approach.



thetic data, which show how the QoS requirements of the
manual underwriting process are met using different dis-
patching rules. Even though the comparison of the sim-
ulation results with the results from real-life experiments
is not given here, one can see that in considered environ-
ment complex rules may be advantageous to simple ones.
However the great increase in the rule’s complexity does
not lead to the prospective increase in the performance.
Thus the appropriate rule is a matter of trade-off.

MANUAL UNDERWRITING PROCESS AS A DIS-
PATCHING PROCESS

On a certain abstraction level one can see that the man-
ual underwriting processes flow within one system, com-
posed of typical objects: applications and inspectors.
Typically there are several types of applications, that the
bank works with and a pool of inspectors with different
qualifications, which indicate the types of applications
the inspector is allowed to evaluate. The manual under-
writing process itself is just a sequence of actions that
an inspector performs with each application. The num-
ber and sequence of actions depend on the type of the
application and are usually fixed and are rarely changed
within the bank. Due to the fact that the evaluation of
the application requires contacting internal and external
services, inspector is not busy with the evaluation of a
single application during all his working time. It can be
seen in practice that one inspector is evaluating several
applications in parallel. The number of applications that
an inspector can evaluate at the same time depends on his
qualification level and rules of the bank. Each inspector
is busy with the evaluation of the assigned applications
strictly according to his working schedule: thus there are
periods of unavailability when the applications are post-
poned until an inspector becomes available. The bank
launches the underwriting process for each new applica-
tion. Thus each application has a start time (when the
application is submitted) and a finish time (when the ap-
plication is approved or disapproved). In order to meet
the quality of service requirements the bank has to ap-
propriately control the objects of the system. But there
is not too much in the system that can be controlled. For
example, the bank cannot control the submission times of
new applications; they arrive in stochastic manner. Time
frames during which applications are evaluated are not
deterministic and can vary significantly due to different
reasons such as sudden illness of the inspector or unex-
pected delay at external service. Most of the unknown
values can be estimated only on the probabilistic basis
and the bank possesses only one major control option:
set the rule according to which arriving applications are
distributed between the inspectors.

The analogy between the described system and the dis-
patching system is apparent. In a dispatching system,
each server (underwriting inspector) has its own queue
and the task is to assign the arriving jobs (applications)
to servers either immediately upon arrival or later, in or-

der to meet the objectives. Each job consists of several
tasks (actions which inspector perform on the applica-
tion), which have to be served in a prescribed sequence.
The next subsection contains the detailed description of
the dispatching system, which models key aspects of a
manual underwriting process.

DESCRIPTION OF THE DISPATCHING SYSTEM

The dispatching system consists of N of servers with-
out a dedicated queue each. There are M types of job
flows that arrive at the system. Flows are independent
and times between successive arrivals in each flow are
i.i.d. random variables. A job within each flow has a
deadline, consists of a number of tasks, which have to be
served sequentially, one by one and a job is considered to
be completed when all tasks it is comprised of are com-
pleted. Each task within a job is served in two steps. The
first step is the preparation phase6, which does not re-
quire the processing time of the server. The second step
is the service phase, when the server processes the task.
Preparation and service times are considered to be i.i.d.
random variables with cumulative distribution functions
(CDF) DI and DII , respectively, which are considered
to be known7. Thus each task T can be described by a
pair (DI ,DII), which defines how long a task is prepared
and then served. Thus in order to introduce different task
types one only needs to change CDF DI and/or DII . Jobs
within one flow are homogeneous: a job J in a flow can be
described by a set (d,T1, . . . ,Tk), where d is a deadline
of a job, k is the total number of tasks within a job and
Ti is the task type8. Finally, each flow F can be defined
by a pair (D, J), where D is the CDF of the inter-arrival
times of job J. The joint arrival flow in the system can be
described by a set F = (F1, . . . ,FM).

Each server can handle a certain number of jobs in
parallel and this number is called the server’s capacity,
which we denote by c. Servers’ capacities can be differ-
ent and are assumed to be known9. The server is consid-
ered to be busy when it has at least one job in service.
Due to the fact that jobs consist of several tasks and each
task is performed in two stages we have to specify how
the service process goes on. When a job arrives at the
server, its first task immediately starts getting prepared.
This (preparation) time does not require server’s process-
ing power and though the server is considered to be busy
it is in fact idle and ready to process other, already pre-
pared tasks (if any are present). When one has finished

6The preparation phase is introduced in order to model times when
the application is served by internal and external services. During these
times the server (i.e. inspector) is not performing any work and is only
considered to the busy. Thus it can process other tasks which are al-
ready prepared.

7We assume that these times can be estimated using historical data.
8Here one can observe clear resemblance with practice. If one con-

siders the flow of a certain type of applications, when it is clear that
applications are homogeneous, require the same number and type of
actions from the inspector.

9This corresponds to the fact that an inspector can handle several
applications at a time.



the preparation of the task and the server is idle, it starts
processing the task and the service time is determined
by server’s speed r (which can be different for different
servers) and task’s service time v, and is equal to v/r.
In the meanwhile the next task of the job starts getting
prepared (which again does not require server’s process-
ing power). The server can process only one task at a
time and if at the moment when the server becomes idle
there are prepared tasks it starts to process a next task10.
The speeds of the servers are assumed to be known. We
also assume that server’s availability is periodic11 and de-
note by t0 and t1 the availability and unavailability peri-
ods correspondingly. Note that the preparation of each
task does not depend on the server’s availability (except
for the fact that it can be started only when the server is
available). But the server can become unavailable, even
if it currently serves the task. The pre-emption of tasks is
not allowed. Thus the type of a server can be described
by the set R = (c, r, t0, t1) and the specification of the sys-
tem’s resources is given by R = (R1, . . . ,RN). We again
note that the set of parameters (F,R) is considered to be
known a priori.

CONTROL IN THE SYSTEM AND THE COST
FUNCTION

The dynamics of the described dispatching model de-
pends on the dispatching rule for the incoming jobs12. As
each job is admitted into the system and each server can
handle several jobs at a time, then the dispatching rule
must specify how the server is assigned for the newly ar-
riving job and how the server (upon service completion)
chooses the next task to be served. Here a variety of op-
tions exists. For example, the assignment of the job to a
server can be based on server’s current utilization13 and
the choice of the next task can depend on the total number
of prepared tasks and on jobs’ deadlines. In order to limit
the number of options we assume that the system has a
two-level hierarchical structure. All servers are grouped
into K disjoint sets (clusters). Number of servers in the
i-th cluster is ni, i = 1, . . . ,K, and servers within a clus-
ter may be non-homogeneous14. Clearly,

∑K
i=1 ni = N.

These K clusters form the bottom level. The upper level
of the system consists of a single entity called dispatcher.
Each newly arriving job firstly goes to the dispatcher,
which routes it immediately to one of the clusters. When
a job arrives at the cluster and there are available servers
in the cluster for this job, it is immediately assigned to

10It means, that we consider only work-conserving disciplines.
11This corresponds to working schedules of the inspectors.
12This directly corresponds to our assumption that the bank can con-

trol the underwriting process only by assigning newly submitting appli-
cations to inspectors.

13But in the considered problem it is unclear how to uniquely de-
termine server’s utilization. This is due to the fact that tasks which
comprise a job are served in two stages: preparation phase and service
phase. During the preparation phase the server either may process an-
other task (if any) or may be free (though is still considered to be busy)
if there are no other already prepared tasks.

14That is of different capacities and speeds.

one of them. Otherwise it is kept in a virtual queue of
the cluster until one of the appropriate servers becomes
available. Note that once the job has entered a cluster it
cannot leave it.

For such a two-level hierarchical structure one can
introduce an agent based structure of a dispatching
rule. Dispatcher agent A0 makes decisions whereto route
newly arriving jobs. Decisions are made at once. Agent
Ai, i = 1, . . . ,K, are responsible for assigning jobs within
i-th cluster. Specifically the agent Ai consists of two
agents (A′i ; A′′i ). Agent A′i decides whereto route the job
when it arrives at the i-th cluster. Due to the fact that at
that moment all appropriate for the job servers may be
busy, the agent may decide to put a job in a queue. Agent
A′′i is responsible for assigning jobs, which are waiting
in a queue, to servers each time when a server in the i-th
cluster becomes available. Because a server may be busy
with multiple jobs at a time, then upon service comple-
tion of a task there may be several other tasks ready for
service. Agents Aki are responsible for choosing the next
task when server k in the i-th cluster finishes service of
the previous task.

Thus a dispatching rule A consists of (K+N+1) agents
and symbolically can be written as

A = (A0; A′; A′′; Ã),

where A′ = (A′1, . . . , A
′
K), A′′ = (A′′1 , . . . , A

′′
K). Ã =

(Aki, i = 1, . . . , nK ; k = 1, . . . ,K).
For the considered dispatching problem it is hardly

possible to find analytically an optimal dispatching
rule A. Following the common practice, we will use
heuristic rules in conjunction with simulation in order
to find the best rule in the given set of rules. Here we
will present the results for the following common heuris-
tics15: uniform random, least loaded first, first-in-first-
out. Each dispatching rule A is assumed to be constructed
from one or several of these heuristics16. In the next sec-
tion we show the efficiency of different dispatching rules
with respect to the cost function which is equal to the
mean number of on-time jobs (i.e. mean number of jobs
that were served within their deadlines). It is important
to note that this cost function is not fair. Indeed it im-
plies that some jobs may not be served at all (in case of
high load) or may starve (i.e. may be served with severe
deadline violations), which does not influence the aver-
age value of the cost function. A number of ways exist to
make it fair (for example, one can introduce progressive
penalties which grow with the growth of deadline viola-
tion times) but we don’t consider them here.

OBTAINING THE BEST POSSIBLE SOLUTION
The optimization is based on the statistical simulation
techniques. The problem considered in this paper lies in

15A review of dispatching policies up to 2011 can be found, for ex-
ample, in Semchedine et al. (2011).

16For example, the agent A0 may route newly arriving jobs either to
a random cluster, or least loaded one.



the area of distributed computing and evolutionary com-
putation. Not need to mention that in this area there are
numerous research papers devoted to solving dynamic
optimization problems using simulation which resulted
in a variety of methods. Among the latest ones which
include reviews on the topic one can refer, for example,
to Kolodziej (2012); Doroudi et al. (2014); Broberg et al.
(2006); Harchol-Balter et al. (1999). Below we describe
in short our approach and highlight its peculiar features
(for the details one can refer to Konovalov (2007)).

The solution of the optimization problem is found by
building the simulation model and using adaptive opti-
mization algorithms on simulated trajectories. For the
first step we use our flexible simulation framework for
job allocation problems in distributed processing sys-
tems. It allows one to build logical processes govern-
ing jobs’ handling, is algorithmic and, to some extent,
allows assembly of complex models from simple ones.
Its formal description is based on the concept of com-
municating sequential processes introduced by C.A.R.
Hoare (see Konovalov and Razumchik (2014); Kono-
valov (2014, 2007)).

The simulation model allows one to obtain the value
of the cost function for any dispatching rule A. By car-
rying out series of experiments with different dispatch-
ing rules one can find the one which leads to the best
value of the cost function. But there are reasons which
may make this exhaustive search inapplicable. One rea-
son is the time needed to obtain the stable value of the
cost function. This time depends on the rate of conver-
gence in the strong law of large numbers and may take
too long. Exhaustive search becomes also difficult when-
ever the number of dispatching rules under test is infi-
nite. We try to overcome these kind of difficulties by
using adaptive search algorithms for partially observable
Markov decision processes. Such algorithms use a single
trajectory for each dispatching rule and tune its parame-
ters in such a way that the probability of better values of
the cost function is increased. For the detailed descrip-
tion of the algorithms used one can refer to Sragovich
(2007); Konovalov (2007).

NUMERICAL EXAMPLE

Consider a bank which has 5 different business lines and
thus the bank’s manual underwriting process must handle
5 different types of loan applications. The specification
of each application flow is given in Table 3. One can
see that each flow is considered to be Poisson and on av-
erage the bank has 26 applications per day. We assume
that the bank identifies 5 different actions (i.e. task types)
that can be performed by an inspector when evaluating an
application. The assumptions concerning the task types,
including preparation and processing times, are stated in
Table 1. We assume that each application type (i.e. job
type) consists of 3 tasks and jobs differ from one another
only by types of tasks they consist of (see Table 2). A
total of 55 underwriting inspectors work in the bank and

have different qualifications17. Bank ranges inspectors
by granting each one a certain category. We assume that
there are 5 different categories (from 1 to 5), with # 1 de-
noting the highest one. In practice the category indicates
which types of applications are available to the inspector.
Usually the higher category of the inspector, the more
important applications is allowed to evaluate. Within one
category all inspectors are assumed to behave identically.
The specification of each of the inspector’s category is
given in Table 4. One can see that, for example, inspec-
tors belonging to the 1st category are able to handle 4 ap-
plications at a time, have 720 working minutes (12 hours)
which are succeeded by 720 off-work minutes.

We also introduce an assumption that all inspectors are
grouped into clusters (or teams). As mentioned in the
previous section this artificial hierarchical view is intro-
duced purely in order to make a decision process a little
simpler. Table 5 shows the specification of each cluster.

Table 1: Specification of the task types

Task type Time to prepare, DI Service time, DII

DI ∼ Pareto(xmin, a) DII ∼ N(m, σ)
T1 xmin = 800, a = 6 m = 960, σ = 20

mean=960
T2 xmin = 480, a = 3 m = 480, σ = 20

mean=720
T3 xmin = 320, a = 3 m = 240, σ = 10

mean=480
T4 xmin = 160, a = 3 m = 480, σ = 1

mean=240
T5 xmin = 80, a = 3 m = 120, σ = 1

mean=120

Table 2: Specification of the job (application) types

Job type Types of task deadline, d in min.
J1 T1, T2, T3 8640
J2 T1, T2, T5 7200
J3 T1, T3, T4 5760
J4 T2, T3, T4 5760
J5 T2, T3, T5 4320

The cost function under consideration is the mean
number of jobs served within their deadlines. We define
several dispatching rules (see Table 6) and look for the
one, which allows us to make the value of the cost func-
tion as high as possible. In Fig. 1 and Fig. 2. one can see
the values of the cost function and corresponding values
of the mean sojourn time (i.e. mean evaluation time for
an arbitrary application) for each of the dispatching rules.

One can see from the figures that the best result one
managed to achieve is little more than 86% of jobs served
on time (dispatching rule A5). But the dispatching rule
A1, which is much easier to implement, is worse only by
less than 1%. Moreover the rule A4, which does not take

17For example, security classification, experience with stock market
clients, municipalities.



Table 3: Specification of the flow (application) types.
Times between successive arrivals for each flow are ex-
ponential

Flow Rate Job Suited servers
(application) (application) (inspectors)

type type
F1 0, 006 J1 R2, R4

≈ 9 per day
F2 0, 002 J2 R1,

≈ 3 per day
F3 0, 003 J3 R1, R3

≈ 5 per day
F4 0, 001 J4 R4

≈ 2 per day
F5 0, 005 J5 R2, R5

≈ 7 per day

Table 4: Specification of the servers (inspectors)

Server Capacity, c Speed, r Schedule Total
(inspector) (on/off) number

type
R1 4 3 720/720 5
R2 3 2.5 600/840 10
R3 3 2 600/840 10
R4 2 1.5 600/840 10
R5 2 1 480/960 20

Table 5: Specification of the clusters (teams)

Number of servers (inspectors) of type
R1 R2 R3 R4 R5

Cluster 1 1 2 2 2 4
Cluster 2 1 3 4 0 0
Cluster 3 1 3 2 3 4
Cluster 4 1 1 2 3 2
Cluster 5 1 1 0 2 10

Figure 1: Percent of the jobs served within a deadline for
each dispatching rule

into account type of incoming job, is worse by less than
2% than the best rule A5. Finally the simplest rule with
random choice is worse by only 10% (approx. 10 hours).
Here one can see that the complication of the dispatch-
ing rule does not lead to significant increase in the value
of the cost function but may require too much for imple-
mentation (see, for example, Konovalov and Razumchik

Figure 2: Mean evaluation time of an application (in
hours) for each dispatching rule

(2014)). A simple heuristic rule (for example, decision
based only on the number of applications) may lead to
very good performance. As our experiments indicate the
gain of the dispatching rule is very sensitive to the struc-
ture of the system (i.e. number of inspectors, number
and types of applications etc.) and sometimes a change
of a dispatching rule may lead to 20-30% performance
increase.

SUMMARY
Here one has demonstrated that the bank’s manual un-
derwriting process can be played back in a large-scale
dispatching system, which is a common mathematical
model for various distributed processing systems. The
goal of such modelling is to select a decision rule un-
der which the bank’s manual underwriting process will
perform at a given level of quality of service. The idea,
which was utilized to select an efficient decision rule, is
well-known: perform search in a given set of heuristic
rules using simulation. Due to the complexity of the sys-
tem it is analytically intractable and this idea is appar-
ently the only one which allows one to obtain an ade-
quate solution. The special simulation framework and
algorithms that we have used18 allowed us to carry sim-
ulation experiments with fairly large-scale systems (500
servers/inspectors) on a stand-alone PC. It is worth notic-
ing that even a simple model of the manual underwriting
process may be of an advantage for a bank because it
allows to select an appropriate decision rules based on
something more that intuition and expert’s opinion. Gen-
erally speaking it is possible to build an adequate model
of the bank’s manual underwriting process, which will
take into account not only those basic properties men-
tioned in this paper, but also many specific ones: skills
of the inspectors, restricted access to applications, occa-
sional events (illnesses), load balancing. Such model will
not require much more computational resources and thus
will not incur huge extra cost from the bank. Though
in this paper the control is restricted only to the most

18Reader can refer to Konovalov and Razumchik (2014) and Kono-
valov (2007) for more details.



Table 6: Specification of the decision rules used

Decision rule Rule for A0 Rule for A′k Rule for A′′k Rule for Aki

A1 minimum load per flow typea minimum load per flow FIFO FIFO
A2 random random random random
A3 minimum number of jobs minimum number of jobs FIFO FIFO
A4 minimum mean backlogb minimum mean backlog FIFO FIFO
A5 minimum load per flow type minimum mean backlog with thresholdsc FIFO FIFO

aThis value is calculated as the mean total service time of all jobs in a cluster of the same type as the incoming one.
bThis value is calculated as the mean total service time of all jobs in a cluster.
cThis value is calculated as the product (mean total service time of all jobs in a cluster of the same type as the incoming one)× (threshold value).

This is the analogue of the threshold policy used, for example, in Hyytia (2013).

common case – routing of applications, – one can also
speculate whether the performance of the manual under-
writing process depends on the staff structure (i.e. the
number and type of inspectors and teams). Our experi-
ments show that if one has control over this component
as well, the performance of the underwriting processes
can be improved even more.

Acknowledgements This work was supported by the
Russian Foundation for Basic Research (grant 15-07-
03406).

REFERENCES

Haruhiko, S., Hiroaki, Sa. 2013. Online Scheduling in Manu-
facturing. A Cumulative Delay Approach. Springer-Verlag
London.

Min Hee Kim, Yeong-Dae Kim. 1994. Simulation-based real-
time scheduling in a flexible manufacturing system. Journal
of Manufacturing Systems. Vol. 13. Issue 2. Pp.85–93.

Harmonosky, C.M., Robohn, S. F. 1991. Real-time schedul-
ing in computer integrated manufacturing: a review of re-
cent research. International Journal of Computer Integrated
Manufacturing. Vol. 4. No. 6. Pp. 331–340.

Konovalov, M., Razumchik, R. 2014. Simulation Of Task Dis-
tribution In Parallel Processing Systems. Proceedings of the
6th International Congress on Ultra Modern Telecommuni-
cations and Control Systems. Pp. 657–663.

Konovalov, M. G. 2014. Building a simulation model for solv-
ing scheduling problems of computing resources. Systems
and Means of Informatics. Vol. 24. No. 4. Pp. 45–62. (in
Russian)

Konovalov, M. G. 2007. Methods of Acaptive Information Pro-
cessing and Their Applications. Moscow: IPI RAN. (in Rus-
sian)

Sragovich V.G. 2005. Mathematical Theory Of Adaptive Con-
trol. Singapore: World Scientific.

Hyytia, E. 2013. Optimal Routing of Fixed Size Jobs to Two
Parallel Servers. INFOR: Information Systems and Opera-
tional Research. Vol. 51. No. 4. Pp. 215–224.

Konovalov M. G., Razumchik R. V. 2015. Approximate op-
timization of resource allocation strategy: the case of bank
underwriting system. Systems and Means of Informatics.
Vol. 25. No. 4. Pp. 31–51. (in Russian)

Semchedine, F., Bouallouche-Medjkoune, L., Aissani, D. 2011.
Review: Task assignment policies in distributed server sys-
tems: A survey. J. Netw. Comput. Appl. Vol. 34. No. 4. Pp.
1123–1130.

Kolodziej, J. 2012. Evolutionary Hierarchical Multi-Criteria
Metaheuristics for Schedulingin Large-Scale Grid Systems.
Studies in Computational Intelligence Series. Vol. 419.
Berlin-Heidelberg: Springer.

Doroudi, S., Hyyti0Ł1, E., Harchol-Balter, M. 2014. Value
Driven Load Balancing . Performance Evaluation. Vol. 79.
Pp. 306–327.

Broberg, J., Tari, Z., Zeephongsekul, P. 2006. Task assignment
with work-conserving migration. Journal of Parallel Com-
puting. Vol. 32. Pp. 808–830.

Harchol-Balter, M., Crovella, M., Murta, C. 1999. On Choos-
ing a Task Assignment Policy for a Distributed Server Sys-
tem. Journal of Parallel and Distributed Computing. Vol. 59.
Issue 2. Pp. 204–228.

AUTHOR BIOGRAPHIES
MIKHAIL KONOVALOV is a Doctor of Sciences in
Technics and holds position of the principal scientist
at Information Technologies Department at Institute
of Informatics Problems of the Federal Research
Center ”Computer Science and Control” of the Russian
Academy of Sciences. His research activities are focused
on adaptive control of random sequences, modelling and
simulation of complex systems. His email address is
mkonovalov@ipiran.ru.

ROSTISLAV RAZUMCHIK received his Ph.D. degree
in Physics and Mathematics in 2011. Since then, he
has worked as a senior research fellow at Institute of
Informatics Problems of the Federal Research Cen-
ter ”Computer Science and Control” of the Russian
Academy of Sciences (FRC CSC RAS). Currently
he holds the position of Head of the Information and
Telecommunication System Modelling section at the
FRC CSC RAS and associate professor position at
Peoples’ Friendship University of Russia. His current
research activities are focused on queueing theory and
its applications for performance evaluation of stochastic
systems. His email address is rrazumchik@ipiran.ru




