
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

INTRODUCTION TO SAS SIMULATION STUDIO

Ed Hughes
Emily Lada

SAS Institute Inc.
100 SAS Campus Drive
Cary, NC 27513, USA

ABSTRACT

An overview is presented of SAS Simulation Studio, an object-oriented, Java-based application for building
and analyzing discrete-event simulation models. Emphasis is given to Simulation Studio’s hierarchical,
entity-based approach to resource modeling, which facilitates the creation of realistic simulation models
for systems with complicated resource requirements, such as preemption. Also discussed are the various
ways that Simulation Studio integrates with SAS and JMP for data management, distribution fitting, and
experimental design.

1 INTRODUCTION

SAS Simulation Studio is a SAS application that uses discrete-event simulation to model and analyze
systems. Simulation Studio is based on the Java programming language and is a flexible, general purpose,
object-oriented package designed to provide the necessary modeling and analysis tools for users ranging
from novice to advanced. To facilitate the construction of simulation models, a visual programming
environment based on a flow chart paradigm is provided, along with a programmatic interface for running
models in batch mode.

Simulation Studio provides a comprehensive set of model-building blocks and features; however, it is
not designed as a black box that takes model inputs and autonomously produces model outputs. Instead, it
includes features that enable you to customize your models and tailor them to meet your specific modeling
needs. One modeling feature in particular that can be easily customized in Simulation Studio is resource
management. In general, a resource is a system component that provides service. Examples of resources
in manufacturing systems include machines, operators, space in storage for finished products, cranes, and
forklifts. Resources in a hospital include nurses, doctors, operating rooms, and beds in a recovery room.
The users (or consumers) of resources are entities (Schriber and Brunner 1998). The available resources
in a model might be unlimited, limited, or fixed. In the latter cases, entities may be required to wait for
use of a resource. The number of available resource units may vary throughout a simulation run, perhaps
governed by a predefined schedule or random failure.

Resources are an essential part of most simulation models because they often control or restrict the
flow of entities. In Simulation Studio, resources may be modeled as special types of hierarchical entities
that can be seized and released by other entities to fulfill varying resource demands. Furthermore, resource
entities can be assigned attributes and can flow through the model. Using entity type and attribute values,
a specific resource entity can easily be located in a model, thereby giving you a high degree of control
over resource behavior and related actions, such as preemption.

While an extensive collection of modeling tools is important in simulation software, advanced analysis
capabilities are critical as well. Because analyzing the data generated by discrete-event simulation models
often requires the use of advanced statistical methods, SAS Simulation Studio is designed to interact with

3630



Hughes and Lada

both SAS (SAS Institute Inc. 2015a) and JMP statistical discovery software (SAS Institute Inc. 2015d) for
analysis of simulation results. Data generated by a simulation model can easily be saved as a SAS data set
or a JMP table, and it is possible to run a SAS or JMP program and utilize its output during a simulation
run; e.g., to parameterize or direct some elements of the remainder of the run. Simulation Studio also
integrates seamlessly with JMP for design of experiments and input analysis.

The purpose of this paper is to provide an overview of Simulation Studio and highlight its modeling
and analysis capabilities. In Section 2, an overview of Simulation Studio’s organizational structure is
provided, while Section 3 describes Simulation Studio’s hierarchical, object-based approach to resource
management. Section 4 highlights Simulation Studio’s data management and analysis capabilities, including
distribution fitting and experimental design. Section 5 discusses issues related to model execution. Section
6 summarizes the paper.

2 OVERVIEW OF SIMULATION STUDIO

The fundamental modeling objects in Simulation Studio include entities, data values, blocks, ports, and
links. During a simulation, entities and data values can travel among blocks to satisfy various processing
needs. Data values designate information such as numbers, character strings, and Boolean values. Entities
are discrete objects that can traverse a simulation model and be assigned attributes, or properties. Simulation
Studio also enables you to define new entity types, possibly with their own default attributes, in which the
primary usage of each new type can be as either a regular entity or a resource entity. Both regular and
resource entities can be used to represent physical or conceptual components in a model, such as telephone
calls in a telecommunications system, customers in a retail store, or ships in a harbor.

In Simulation Studio, blocks are the most fundamental units used to build a model. Each block typically
encapsulates some well-defined and specialized functionality. Communication between blocks occurs via
input and output ports, classified as value ports and entity ports. For example, the OutLength output value
port on a Queue block communicates the length of the associated queue of waiting entities. In Simulation
Studio, you create a link between the ports on blocks to define a path for values or entities to flow (SAS
Institute Inc. 2015b). The OutLength port on a Queue block can be connected, for example, to an input
port of a Formula block so that the current queue length is used as part of an expression whose result is
used to route entities to different parts of the model.

After you build a model in Simulation Studio, you create an experiment to control the initialization and
running of the model. Simulation Studio includes an Experiment window that by default contains columns
for controlling the system parameters (start time, end time, and number of replications) for a model. You
can also use the Experiment window to control the initialization of block parameters, thereby providing
an efficient means for investigating the effects of different input parameters (or factors) on model outputs
(or responses).

Models and experiments in Simulation Studio are organized into projects. A project must contain at
least one model and one experiment, but may contain multiple models and experiments. Projects also
provide a storage mechanism for factor and response definitions, so that they can be shared across all models
and experiments in a project. When you execute a model/experiment pair, Simulation Studio must map the
factors and responses included in an experiment to specific block parameters in the model. This process
is accomplished using anchors, each of which defines the link between a factor or response defined on a
project and an actual block parameter in a specific model. This mapping technique provides an efficient
and effective means of reusing models and experiments, because multiple models can be linked to the same
experiment and a single model can be linked to multiple experiments.

3 MODELING RESOURCES IN SIMULATION STUDIO

For building models, Simulation Studio provides a comprehensive set of tools that includes standard blocks
for modeling fundamental concepts, such as queueing, switching (or branching), cloning, and batching.

3631



Hughes and Lada

In addition, Simulation Studio provides unique and highly flexible tools for modeling resources. Because
resources are a fundamental part of most simulation studies, we devote this section to an overview of
Simulation Studio’s resource modeling capabilities and, in particular, the use of both stationary and mobile
resource objects.

3.1 Stationary Resources

Entity holding blocks (such as Queue, Server, and Delay blocks) represent stationary resources in a
Simulation Studio model. These stationary resources are created at model-building time and are used to
model one type of resource. Holding blocks have a capacity (which may be infinite), and they hold or
delay entities for some period of time. Furthermore, entities may compete for available space in a holding
block. This contrasts with nonholding blocks (such as a Switch block), in which entities flow through
without the simulation clock advancing.

To illustrate the use of stationary resources, Figure 1 shows a Simulation Studio model of a bank lobby
in which there are three tellers and one queue for waiting customers. Customer arrivals to the bank are
modeled using an Entity Generator block (labeled Arriving Customers). A Numeric Source block (labeled
Interarrival Time) generates a sample from a specified distribution, and the Entity Generator block pulls
that value through its InterArrivalTime value port to schedule the arrival of the next customer. When an
entity (representing a bank customer) leaves the Entity Generator block, it is pushed to a Queue block
(labeled FIFO Queue). The Queue block in this model has infinite capacity and a first-in-first-out queueing
discipline. When an entity arrives at the Queue block, it attempts to push the entity to a Server block
(labeled Tellers). The Server block has a specified capacity of three and represents the three bank tellers.
If a unit of the Server is available (that is, one of the bank tellers is idle), then the Server block accepts the
customer entity; otherwise, the entity waits in the Queue. When a unit of the Server becomes available, it
requests an entity from the queue. When an entity arrives at the Server block, a service time is sampled
from a Numeric Source block (labeled ServiceTime) and pulled by the Server through its InServiceTime
value port. Once the entity completes service, it is pushed out to the Disposer block (labeled Departing
Customers) and leaves the system.

Figure 1: The banking system model in Simulation Studio using stationary resources.

In the model shown in Figure 1, there are two stationary resources: the Queue block (with infinite
capacity) and the Server block (with finite capacity). Each block holds entities for some time period and
represents one type of resource. Using a holding block such as a Queue or a Server is the simplest way
to model resources in Simulation Studio. However, if the system being modeled has a complex resource

3632



Hughes and Lada

structure (perhaps so that several different types of resources are required simultaneously to fulfill a demand),
then mobile resources are needed.

3.2 Mobile Resources

Mobile resources, which are dynamic and created during the simulation run, are resource objects that flow
in the model. Mobile resources are a special type of entity (called a resource entity) and possess all of the
capabilities and attributes of regular entities. They can be processed and managed by the blocks for regular
entities. All resource entities in Simulation Studio have a predefined entity attribute named ResourceUnits,
which is the capacity (number of units) of the resource. In addition to the ResourceUnits attribute, each
resource entity also has run-time state information, such as seized status and resource state, that is used by
the simulation system to perform resource management during the run. From a user’s point of view, the
resource state can be either functional or nonfunctional.

Most importantly, functional resource entities fulfill resource requirements by being seized by other
entities (including other resource entities) in a simulation model. Once resource entities have been allocated
and seized by a controlling entity, an entity hierarchy is formed with the controlling entity at the top level
and each seized resource at the next level. The controlling entity then typically continues to flow through
the model, along with its seized resource entities.

Figure 2 shows an alternative Simulation Studio model of the same bank lobby system described in
Figure 1. Recall that in the model in Figure 1, the bank tellers are modeled as a stationary resource (a
Server block), unable to flow or move through the model. In Figure 2, the bank tellers are modeled as
resource entities, created at model run-time. An Entity Generator block (labeled Create Teller) generates
three resource entities (one for each teller) at time zero and sends those entities to a Resource Pool block
(labeled Teller Pool) to wait until needed. The arrival of customers to the bank is modeled in the same
way as in Figure 1. However, as shown in Figure 2, a Seize block (labeled Seize Teller), a Resource Pool
block (Teller Pool), a Delay block (Hold Teller), and a Release block (Release Teller) work together to
reproduce the functionality of the Server block in the model in Figure 1.

Figure 2: The banking system model in Simulation Studio using mobile resources.

When a customer entity arrives at the FIFO Queue block, the Queue block notifies the Seize block
(labeled Seize Teller) that a customer is waiting. The Seize block then checks to see if a bank teller resource
entity is available in the Resource Pool block. If one is not available, then the customer entity remains in
the queue. If a bank teller resource entity is available, the Seize block accepts the customer entity from

3633



Hughes and Lada

the Queue block, pulls a bank teller resource entity from the Resource Pool block, and attaches it to the
customer entity, forming a hierarchy of entities. As the customer entity flows through the simulation model,
it brings the teller resource entity along with it. After seizing a teller resource entity, the customer entity
is sent to a Delay block (labeled Hold Teller) where it is held (along with the teller resource entity) until
its service is completed. It is then routed to a Release block where the teller resource entity is extracted
from the customer entity. The two entities flow out of different ports on the Release block and are sent to
different locations: the customer entity is routed to a Disposer block (labeled Departing Customers) and
the teller resource entity is routed back to the Resource Pool block, where it waits to be seized by another
customer entity.

A hierarchical entity-based approach to resource modeling greatly facilitates the modeling of scenarios
that require multiple types of resources simultaneously. Any entity (including a resource entity) can seize
multiple resources of the same or different types simultaneously and then release them (perhaps partially)
as needed. For this simple banking system, using a stationary resource (that is, a Server block) to model
the bank tellers is sufficient, and mobile resources are not really required. However, suppose at some point
a bank teller requires the assistance of a manager in order to service a customer. For this scenario, the
bank tellers must be modeled as mobile resource entities as in Figure 2. After seizing a teller resource
entity, a customer entity could then seize a manager resource entity. Following a delay (representing service
time), the customer entity could then release both the teller resource entity and the manager resource entity
simultaneously, or it could release them at different points in the model. Because the released resources are
also entities, each can flow either to a holding block (like a Resource Pool) to wait to be seized by another
entity or to other blocks in the model before returning to a Resource Pool block. For example, suppose a
teller needs to complete clerical work before assisting the next customer. This scenario is easily modeled
in Simulation Studio by sending the teller resource entity to a Delay block (representing the clerical work
completion time) before sending it back to a Resource Pool where it can subsequently be seized by another
customer entity.

A major benefit of modeling with resource entities is the ability to depict planned or spontaneous
changes in the availability level or operational status of system resources during the run of your simulation
model. Even though the individual resource entities may be scattered throughout the model during a
simulation run, it is fairly easy to locate a specific resource entity using resource entity rules, which you can
define using entity characteristics such as type and attribute values. Once the resource entity is located, its
state or capacity can be adjusted as needed according to a specified resource schedule, or it can be allocated
to another entity to fulfill a demand. To help ensure that adjustments in resource entity availability levels
accurately depict resource availability changes in the system you are modeling, Simulation Studio also
provides a range of policies for managing increases or decreases in the available units of resource entities.

3.3 Preemption

Simulation Studio supports two types of resource preemption: priority-based and scheduled. Priority-based
preemption is used primarily for preempting entities occupying stationary resources (entity holding blocks),
including the Queue, Server, and Delay blocks. An entity attempting to enter a holding block is considered
to be a consumer of the stationary resource represented by that block. Allocation of stationary resources
usually involves the acceptance of entering entities into the holding block to occupy space. Preemption of
stationary resources forces out one or more entities currently holding a space in the block. The preempted
entity is pushed out a dedicated OutPreempt port and can be routed to any part of the model, as dictated
by the system logic. For example, an entity preempted from a Server block can be routed first to another
block that computes its remaining processing time, and then back into a Queue block to wait for space in
the Server block to complete its processing time.

To facilitate priority-based preemption, Simulation Studio provides an Entity Group object that is a
collection of entity references. An entity reference contains information that uniquely identifies a particular
entity. Thus, an Entity Group holds information about a collection of entities, but not the actual entities

3634



Hughes and Lada

themselves. Each Simulation Studio holding block has an OutHoldings port that other blocks can use to
access an Entity Group object that contains references to all entities held by the block. The Simulation
Studio holding blocks also each provide an InPreempt port that accepts an Entity Group object as input.
These blocks compare the entity references in the Entity Group object to the entities currently held by
the block and preempt any matches. With this design, it is possible to preempt any number of units of
a stationary resource. Also, determining which entities to preempt from service is specific to the system
being modeled, and the Entity Group construct enables you to control exactly which entities are preempted.

Scheduled preemption is used for preempting mobile resources (resource entities) and is based on the
requirements of a resource schedule. Within a defined resource schedule, you indicate whether a capacity or
state change should be preemptive. You can specify resource entity rules as part of a schedule to precisely
indicate which resource entities (according to type and attribute values) the schedule should be applied to.
Sometimes an allocated and seized resource entity needs to be preempted from its current controlling entity
because (i) the resource entity needs to be reallocated to a different controlling entity, (ii) the resource
entity needs to be sent to some other part of the model for processing, or (iii) the resource entity has a
scheduled capacity reduction or state change. The entity holding blocks provide an OutResource output
port for routing the preempted resource entity so that you can decide (through modeling) how to handle
the post-processing of preempted entities.

4 DATA INPUT, COLLECTION, AND ANALYSIS

The subject matter of a simulation investigation or the sophistication of a model often dictates what type of
data you need to collect from each simulation run and the amount of data required to perform an appropriate
analysis. Simulation Studio is well-integrated with both SAS and JMP to take advantage of the rich and
powerful data processing and analysis capabilities available in each package. In this section, we provide
an overview of the various ways in which Simulation Studio interacts with both SAS and JMP for data
management, distribution fitting (input analysis), and experimental design.

4.1 Input Data Management

Simulation Studio provides two special data object types to manage the collection of data during a simulation
run. The first, a data model object, can be viewed as an in-memory representation of a SAS data set or
JMP table during a simulation run. It contains information and/or values specified in rows, columns, and
cells. The second type, an observation object, represents one row from a data model object. It can be
viewed as the simulation-time representation of a data observation from a SAS data set or a data row from
a JMP table. The data model and observation objects are used in Simulation Studio blocks to represent
data for various access and collection tasks. For example, you can use the Dataset Holder block as a
holding facility for a data model object, making it useful for matrix computations, as well as for modeling
scenarios that require repeated access to a data set (or look-up table) to perform a particular computation.
During a simulation run, the contents of a data model object (individual data cell values and observation
objects) stored in a Dataset Holder block can be pulled through user-defined output ports and passed to
other blocks in the model.

In a Simulation Studio model, you can use the Numeric Source, Text Source, and Observation Source
blocks to input data to a model. The Numeric Source and Text Source blocks can be used to read a column
of numbers or strings from a SAS data set or JMP table, while the Observation Source block provides a
stream of data observation (row) objects from a SAS data set or JMP table. For example, you can use the
Observation Source block to read the rows from a data set and either assign an entire row as attributes on
an entity or assign a subset of the data cell values in the row as attributes. The Observation Source block
can also be used to read in an entire SAS data set or JMP table.

Figure 3 shows a Simulation Studio model of a machining center, in which an Observation Source
block (labeled Read Dataset) reads in a SAS data set and stores it in a Dataset Holder block for use as a

3635



Hughes and Lada

Figure 3: The machining center model in Simulation Studio using the Dataset Holder block.

look-up table indicating the routing of parts of various types through the stations in the machining center.
In this system, each part type is processed in a distinct sequence at some or all of four different stations.
In this example, a Dataset Holder block with one user-defined output port (located at the bottom right of
the Dataset Holder block) is used to hold the machining sequence data set, which is displayed by using
a Table block (located at the bottom left of Figure 3). The data set value that is pulled from the bottom
right output port is a particular cell value based on part type; it indicates the next station in the processing
sequence. In this example, the Dataset Holder block holds a data set that is used repeatedly by all entities.
An alternative is to store the information in the machining sequence data set as entity attributes, but that
would result in the same data being stored multiple times. The Dataset Holder block enables the data to
be stored once and accessed as needed for each part type.

4.2 Output Data Storage and Analysis

Simulation Studio includes a number of blocks that can accumulate data and store it as a data model object.
A data model can be accessed by other blocks in the simulation model via an OutData port. For example,
a plot or table block can be connected to the OutData port of a Queue Stats Collector block to visually
display the queue statistics (such as average waiting time) while the simulation model is running. You can
also save the contents of a data model at the end of a run as a SAS data set or a JMP table.

Furthermore, you can use a Dataset Writer block to save the contents of a data model object as either
a SAS data set or a JMP table at any point during a simulation run. The data saving operation is triggered
by a Boolean signal that is sent to the Dataset Writer block from another block in the model.

In addition to the data collection blocks, Simulation Studio includes a SAS Program block that you
can use to execute a SAS program or a JMP script at any point during a simulation run. For example, in
a simulation model of an inventory system, you might need to update a production plan data set based
on the current state of the system. If the number of backlogged orders exceeds a certain level, you can
signal a SAS Program block to execute a SAS program that generates a new production plan data set that
specifies production levels downstream in the model.

3636



Hughes and Lada

4.3 Input Analysis

The process of building a simulation model may include the need to identify probability distributions that
faithfully represent the behavior of the random input processes driving the system under study. Given a data
set of values that represent observations of a particular random input process, it is first necessary to identify
an appropriate distribution family and then estimate the corresponding distribution parameters. The accuracy
of the simulation results depends on the quality of the distribution fit, making input modeling one of the
critical problems in the design and construction of a simulation model. The automatic distribution-fitting
procedure of JMP provides you with a list of candidate distributions and corresponding estimated parameters
for a specified data set. The distribution fits are ranked using the Akaike information criterion (Akaike
1974). Simulation Studio is integrated with JMP for input modeling capabilities so that you can easily
access the JMP automatic distribution-fitting procedure through the Numeric Source block in Simulation
Studio.

Figure 4 shows the results of JMP automatic distribution fitting, applied to a column of data labeled
bvar. The first distribution listed in the Compare Distributions section of the output (Weibull) is the
top-ranked fit. After analyzing the fit results in JMP and selecting a distribution, you can use the Commit
to Simulation Studio button to pass the selected distribution and its parameter values back to a
Numeric Source block in Simulation Studio.

Figure 4: Automatic distribution-fitting in JMP.

4.4 Design of Experiments

After building a simulation model and ensuring the system under investigation is accurately reflected, a
typical next step is to systematically study the impact of various model input parameters on the simulation
output. You can use experimental design techniques to generate an efficient and effective plan to guide your
simulation runs. Generating an experimental design begins by defining the input parameters, or factors,
for a particular model. Possible factors for a simulation experiment might include staffing levels, rates of
work, or maximum lengths for queues. In general a simulation experiment can have many factors, and each
factor is defined on a range of values, called levels. Next, you define the simulation performance measures,
or responses. Examples of responses include average waiting times in queues, utilization of resources, and
total cost.

A design is a matrix in which each column corresponds to a factor and each row (called a design point)
corresponds to a particular combination of factor levels. Examples of classic experimental designs include
factorials, fractional factorials, central composite, and Latin hypercube. After you establish a design, the
simulation model is run for each design point and the corresponding values of the responses are recorded.
The primary goals of experimental design are (i) to identify those factors that have the greatest impact
on the responses; (ii) to categorize the nature of the impact of a particular factor on the responses (for

3637



Hughes and Lada

example, is the effect increasing, linear, or quadratic); and (iii) to determine if factor interactions exist—that
is, to determine if the levels of some factors influence the effects that other factors have on the responses
(Sanchez and Wan 2009).

Once the factors and responses are defined in Simulation Studio for a particular model, you can use
JMP to generate an experimental design. Simulation Studio interfaces with JMP so that given the factor
and response definitions, a default design is created by the JMP custom designer (SAS Institute Inc. 2015c)
and automatically passed back to the Experiment window in Simulation Studio. You can alter the default
JMP design by adding, for example, design points, replicates, or interaction terms.

Figure 5 shows the Experiment window for a model of a repair shop. The three factors (yellow columns)
denote staffing levels at the Quality Control, Repair, and Service locations. The responses (pink columns)
include the number of units fixed and the average wait at the Quality Control, Repair, and Service locations.
The default design generated by JMP has 9 design points, and five replications are run for each design
point. Design point number 7 has been expanded to show the results for each of its five replications.
The remaining design point rows display the average for each response over the five replications. After
running an experiment, the results (that is, the entire contents of the Experiment window) can be passed
directly back to JMP for analysis. For example, the simulated results can be used to estimate a statistical
model, which in turn can be used to determine optimal levels of the factors so that a particular response is
maximized or minimized. The results can also be saved as a SAS data set or a JMP table for later analysis.

Figure 5: An experimental design in the Simulation Studio Experiment window.

5 RUNNING A MODEL

Before you can run your simulation model, you must select an active model and an active experiment,
and the active experiment must have at least one design point selected or highlighted in the Experiment
window. Although a project can have multiple models and experiments associated with it and multiple
windows visible in the Project window, only one model and one experiment are considered active at any
particular time. After you have a valid model and experiment selected (that is, active), you can start the
simulation running by selecting the Start icon on the toolbar or by selecting Start from the Run menu.
As a model is executing, an animated progress bar is displayed in the upper right corner of the Simulation
Studio window. The progress bar displays the percentage of the total number of replications (across all
selected design points) that have completed execution.

5.1 Parallel Mode

If you are building and running a simulation model on a machine that has a multicore processor, then in
Simulation Studio you can select the Parallel Mode option from the Run menu or select the corresponding

3638



Hughes and Lada

toolbar icon to improve the run-time performance of the model. When you select parallel mode, different
design points and replications are executed on different cores simultaneously. The actual distribution of
design points and replications among cores depends on the number of cores available, along with the
number of design points and replications that you have selected to run. If you do not select parallel mode,
then a single core is used to run the model. In parallel mode, the progress bar displays the percentage
of replications that have completed execution, and you can use the run-time commands Start, Pause,
Augment, and Reset in the same way as in nonparallel (serial) mode.

5.2 Model Execution Controls

Because controlling the details of model execution is important to ensuring that the model runs as intended
and produces results that accurately reflect the behavior of the system you are modeling, Simulation Studio
includes several features that enable you to specify and control how a model executes.

As mentioned in Section 2, Simulation Studio blocks include input and output ports that enable entities
and data to flow between blocks. Many ports are static and are a permanent component of their block, but
some ports are dynamic and are created by the choices you make in configuring the block. For example,
in a Formula block, adding an input and specifying that it is supplied via a port causes a corresponding
dynamic value input port to be created. Controlling the order of execution among multiple dynamic input
(or output) value ports is important to a blocks correct operation—for example, ensuring that a block
receives or updates a critical data value before it attempts to send the value to another block. Accordingly,
in Simulation Studio, blocks that can create multiple dynamic value ports also include controls that enable
you to increase or decrease the relative priority of any of these ports. This gives you direct control over
their order of execution.

Figure 6 shows the port ordering controls for a Modifier block. The execution order for the input value
ports carrying the attribute values can be critical. If, for example, the calculation of the Priority attribute
value depends on the current value of the Complexity attribute, then the Complexity port must execute
before the Priority port. If you choose to add other dependent attributes later in the modeling process, you
can use the port priority ordering features to place them correctly among the sequence of input value ports.

Figure 6: Port Ordering Controls for a Modifier Block

It’s equally important that you be able to control the order of activation among multiple links that are
connected to the same port. This is another aspect of controlling communications and the flow of entities
and values between blocks. For any port with multiple connections to ports on other blocks, the Port
Connections dialog box permits you to manage these connections. You can use the dialog to determine the

3639



Hughes and Lada

order in which the links are used and to delete links as needed. This dialog is available for all Simulation
Studio blocks.

In Figure 7, the Port Connections dialog box sets a priority ordering among the three Queue blocks
connected to the InEntity port of a Server block. When there is space available in the Server block, it
always tries to pull first from the Queue block whose connecting link has the highest priority.

Figure 7: Port Connections Dialog Box for a Server Block

Lastly, you need to ensure that events simulated during the run of your model occur in the order you
intend, according to the conventions of the system you are modeling. If events are scheduled to occur at
identical times, then you need to control how such ties are broken. In Simulation Studio, the RankValue
property of a block is an integer value that can be used to resolve ties for events that are scheduled in
the Simulation Studio event queue. If two or more blocks in your model schedule events to occur at the
same time, then the event corresponding to the block with the highest rank value occurs first. The Block
Ranking dialog box enables you to change the rank values of blocks that can schedule events (Delay, Entity
Generator, Queue, Server, Stopper, and Resource Scheduler). Using a simple graphical interface, you can
change the relative rank values of the blocks and, in turn, control the relative priority ordering of the events
they schedule. A Block Ranking dialog box corresponding to the first bank lobby model from section 3.2
appears in Figure 8. In this instance the Entity Generator block is ranked first, followed by the Teller and
FIFO Queue blocks.

Figure 8: Block Ranking Dialog Box

3640



Hughes and Lada

6 CONCLUSIONS

SAS Simulation Studio is an object-oriented, Java-based application for discrete-event simulation that
features a hierarchical, entity-based approach to resource management. These resource entities can be
processed by the modeling blocks for regular entities, and they can be seized by other entities to fulfill
resource demands. There are many advantages to an entity-based approach, including greater control over
complicated resource management issues such as scheduling and preemption.

Simulation Studio is closely integrated with SAS and JMP for data management and analysis capabilities.
Special data model and observation objects are used to manage the collection of data during a run and
facilitate the inputting of SAS data sets or JMP tables to a model. Data model objects can be saved as
either a SAS data set or JMP table at any point during a simulation run. To systematically study the effect
of specific input parameters on the simulation model output, experimental designs can be created in JMP
and passed back to the Experiment window in Simulation Studio. JMP can also be used to fit a distribution
to a specified data set, and the distribution, along with the corresponding estimated parameters, can easily
be passed back to Simulation Studio for use as a model input. Simulation Studio enables you to take
advantage of parallel processing in running a model, and it provides several types of controls on the details
of model execution.

Simulation Studio is available as a component of SAS/OR software for operations research and is
supported on Microsoft Windows platforms.

REFERENCES

Akaike, H. 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic
Control AC-19 (6): 716–723.

Sanchez, S. M., and H. Wan. 2009. “Better Than a Petaflop: The Power of Efficient Experimental Design.”
In Proceedings of the 2009 Winter Simulation Conference, edited by M. D. Rossetti, R. R. Hill, B.
Johansson, A. Dunkin, and R. G. Ingalls, 60–74. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

SAS Institute Inc. 2015a. SAS 9.4 Language Reference: Concepts, Fifth Edition.
SAS Institute Inc. 2015b. SAS Simulation Studio 14.1: User’s Guide.
SAS Institute Inc. 2015c. JMP 12 Design of Experiments Guide.
SAS Institute Inc. 2015d. Using JMP 12.
Schriber, T. J., and D. T. Brunner. 1998. “How Discrete-Event Simulation Software Works.” In Handbook

of Simulation, edited by J. Banks, 765–811. New York: John Wiley & Sons, Inc.

AUTHOR BIOGRAPHIES

ED HUGHES is a product manager at SAS Institute Inc. He is a member of INFORMS and his e-mail
address is Ed.Hughes@sas.com.

EMILY LADA is a research and development team lead at SAS Institute Inc. She is a member of INFORMS
and her e-mail address is Emily.Lada@sas.com.

3641


