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ABSTRACT 

Norovirus is a highly contagious gastrointestinal illness that causes the rapid onset of vomiting, diarrhea 

and fever.  The virus relies on fecal-oral transmission making children particularly susceptible because of 

their increased incidence of hand-to-mouth contact. Side effects from the virus’ symptoms can be 

problematic for children, i.e. severe dehydration. This paper examines transmission of the virus among 

elementary school classrooms, evaluating policies to reduce the number of children who become infected.  

The model focuses on the daily activities that allow for students’ exposure to the virus including 

classroom activities and lunch/recess.  Two policies that limit the amount of student-student interaction 

and were derived from guidelines published by the Center for Disease Control were explored. The results 

demonstrated that implementation of either policy helps reduce the number of students who become ill 

and that the sooner the policy is implemented the shorter the duration of the outbreak. 

1 INTRODUCTION 

Norovirus, or “Norwalk-like viruses”, are a highly contagious form of viral gastroenteritis (Teunis et al. 

2008).  The virus causes an onset of nausea, vomiting, diarrhea, and low-grade fever, often described as 

“flu-like” symptoms and spreads easily through food, water and surfaces contaminated with the virus 

(Center for Disease Control and Prevention (CDC) 2015).  Illness can come from contact with as few as 

18 particles of the virus (Teunis et al. 2008; Stals et al. 2015) and has rapid incubation period of 12 to 48 

hours (Hall et al. 2011) making venues such as cruise ships, hospitals, retirement homes, schools, and 

daycares ideal for outbreaks to occur (Robilotti et al. 2015).   

An estimated 21 million people a year contract the Norovirus in the United States (CDC 2015). The 

virus is most often not fatal, however can be more dangerous to younger children and the elderly because 

the virus’ symptoms can lead to secondary effects such as dehydration (CDC 2015). This brings rise to 

concerns in environments where children may be exposed to the virus. For example, in the fall of 2015 

Alice Springs elementary school in Reno, Nevada experienced a Norovirus outbreak that resulted in over 

100 children experiencing nausea, vomiting and diarrhea, and more than 80 students being absent on a 

single day (Stockwell 2015). This equates to more than 10% of the students experiencing symptoms and 

just under 10% of the students in the school being absent. Decreasing the number of students who fall ill 

not only helps keep the individual student healthy but it also helps to keep the contacts, such as friends 

and family, of the student healthy as well. This paper develops a model that demonstrates how the spread 

of Norovirus in a classroom might look in order to experiment with policies that may decrease the spread 

of the virus and the duration of the outbreak in the school environment. The policies implemented in the 

model were derived from CDC guidelines on the virus. 
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2 BACKGROUND 

Between 2009 and 2010, almost 1 million of the children who contracted the virus received some form of 

pediatric care with the combined cost of treatment costing an estimated $273 million (CDC 2013a). These 

costs included outpatient visits and hospitalization. Young children are more prone to having side effects 

from the symptoms of norovirus making them a more at risk group when the virus is contracted (CDC 

2015; European Centre for Disease Prevention and Control (ECDC) 2013). 

An infected individual sheds the virus in both their stool and vomit and passed to others through the 

fecal-oral route (Robilotti et al. 2015).  In a study looking at the quantity of virus particles infected food 

handlers can spread to working surfaces, it was found that 18±7 virus particles were collected from the 

working surface where it was concluded that 18 viruses produced a 50% risk of infection (Stals et al. 

2015). However, becoming infected with the virus does not always lead to illness, the illness rate from 

infection was about 10% when infected with a single dose (103 Norovirus genomes which is estimated as 

the 50% infection dose, i.e. 18 viruses) (Teunis et al. 2008).  

While, this rate of infection is recognized as extremely high for viruses (Teunis et al. 2008) and 

worrisome for adults, children have an increased vulnerability because of their increased hand-to-mouth 

rate.  One of the ways the virus, especially among youth, is spread by touching objects contaminated with 

the virus and then touching your mouth (CDC 2013a).  In a study conducted looking at children’s 

frequency of hand-to-mouth contact saw that children between the ages of three and 12 (mean age of 

seven) were observed to have hand-to-mouth contact 6.7 times per hour (Freeman et al. 2001, Xue et al. 

2007), making children, especially young children, particularly vulnerable to the spread of the norovirus 

infection.  

Looking further at children’s susceptibility of the Norovirus, the spread of the virus in the schools 

becomes an important focus area.  Schools allow a large (and in some cases extremely large) number of 

children to be in a single location at a single time giving the virus opportunity to transmit to a large 

population, followed potentially by their families and the community.   In recent history, outbreaks that 

occur in school settings have been handled by voluntary absenteeism (parents keeping children home to 

be safe), shutting the school down for a break (long weekend or early seasonal break) in conjunction with 

a disinfecting cleaning (Uren 2014, Wilson 2015).  Nevertheless, there is no single policy put in place 

when a norovirus outbreak is identified at the school or classroom level. In order to explore how a 

classroom level policy may affect the spread of an outbreak, a model was created to simulate the spread 

of norovirus through a series of elementary school classrooms.    

3 METHODOLOGY  

3.1 Overview 

Individual-based and transmission models have been used to evaluate influenza transmission and to assess 

policies implemented (in particular school closures) to help mitigate the spread of influenza among 

students and communities (Cauchemez 2008).  Falling in line with previous models evaluating policies 

for reducing school contagion spread, an agent based model (ABM) was built to simulate the spread of 

the Norovirus among classrooms in a school.  The model was built and run in Python using standard 

open-source packages, allowing different classes of agents to be built and evaluated.  The main agent 

interaction takes place at the student level, however, the classrooms are able to implement different 

policies and the models metrics are collected at the school (entire grade) level.  

The model focuses on the classrooms and students’ interactions. The students’ health status is based 

on the basic SEIR model, allowing students’ health states to be susceptible, exposed, infectious, or 

recovered.  This model focuses on three routes of exposure for students: seating arrangements 

(neighbors); daily group activities, which is the randomly pairing up students to work in groups of 2, 3 or 

4; and the students’ social interactions at lunch and recess.  The students’ social networks are represented 

using a small world network, which will be further described in Section 3.2.   
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Figure 1 shows a basic diagram of the daily routes of exposure for a student and the decision points 

used to model the exposure risks. Each route of exposure gives the student some level of risk to becoming 

infected.  The students’ infectious period is represented by a set number of days starting where the student 

is asymptomatic but infectious, followed by a set period where the student is symptomatic and removed 

from the classroom. Once the student enters the recovery stage, they return to the classroom and become 

healthy but susceptible since there is no immunity to norovirus.  The simulation ends once all students 

have returned to a healthy status. 

 

Is it a week day?

Student 

Go to Class 
Are you 

neighbors 
infectious?

Are your group 
members 

infectious?

Are your friends 
infectious?

Exposure Risk

Are you 
symptomatic?

End of Day
Adjust Health Status

YES

Is there group 
work?

NO

Affected by Policy 
Implementation 

NO

YES

YES

Exposure Risk

Is there grade 
wide lunch?

NO

NO

Exposure Risk

YES

YES

NO

NO

NO

YES

YES

 

Figure 1: Daily decision points for each students’ health.  

3.2 Creating Friendship Networks 

In order to properly represent the social ties of children for this model a modified small world network 

structure was created at the start of each set of runs. Homophily theories suggest that children who share 

similar attitudinal and behavioral characteristics will be friends with each other, such that friendships are 

built on similarities (Espelage et al. 2007; Cairns et al. 1995; Kindermann 1993).     

Studies looking at the nature of youth interactions have concluded that the small-world structure 

among students reflects the flow of various kinds of information and student contacts (Cotterell 2007). In 

another study on student’s daily contacts as it relates to influenza immunizations strategies revealed a low 

variance small-world network with in the school (Salathé et al. 2010).  

As found in small-world networks, the social structure of a school possesses clusters of reciprocal 

friendships and class ties that are distributed across all children to some degree (Espelage et al.2007; 

Cotterell 2007).  In order to properly represent these clusters intra-classroom and cross-classroom 

connections, two variables were used to build the simulated friendship network.  The basic network 

model is based on the Watts and Strogatz small-world network model (Watts and Strogatz 1998).  First all 

nodes were connected in a lattice structure, pairing to their neighbor on either side.  Then each node was 

given a 60% probability to rewire a connection.  That connection would be chosen at random from the 

nodes classmates, with a 10% chance to rewiring to a node from another class, therefore allowing students 

to have more friends within their own classroom than cross classrooms (Vu and Locke 2014).   

The rewiring probabilities were chosen based on experimentation with the resulting network 

parameters.  The final probabilities gave degree distribution, average shortest path, and clustering 
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coefficients that aligned with research that has been done on children’s friendship networks.  Table 1 

shows the simulated and reference values for the social network.  The reference values are based on 

studies from that examined social ties of students from K – 2
nd

 grade and 4
th
 – 6

th
 grade. Some of the 

variation in values was based on placement in the network, or the students status (i.e., popular or not), 

however, this is not being evaluated as part of the current model.  Also, it was found that at younger ages, 

pre-school, kindergarten, early elementary school, peer groups of male and female children are of similar 

size (Vu and Locke 2014), therefore, sex of the agent was not a factor in this model.   

Table 1: Parameters achieved with simulated small world network. 

Parameter 

Simulated 

Network Value 

Reference  

Value Source 

Group sizes 
range 3 - 8.5 

(stdv=0.8) 
range 3-9 Witvliet et al. 2010 

Average Degree 
4.5  

(stdv=0.5) 
3.9 to 4.5 Vu and Locke 2014 

Average Path Length 
5.0  

(stdv=0.4) 
-- 

 

Clustering Coefficient 0.113 -- 
 

 

As can be seen in Table 1, the simulated networks produced a network with acceptably similar 

features to that of the real world data. The small standard deviations of the simulated network provides 

that while the friendships between the students change with the random generation of each network the 

overall structure remains consistent across runs. An example of the randomly generated network is shown 

in Figure 2.  

 

Figure 2: Example network structure. 
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3.3 Initializing the Model 

Model runs use a standard United States (US) school week, where students go to school for five days and 

are home for two.  The model does not simulate exposure over the weekend in the home or public venues.  

The Maryland State Department of Education 2013 Class Size Report assessed the average elementary 

classroom size in the state of Maryland to be 20.1 (The Maryland State Department of Education 2013). 

Furthermore, Maryland elementary schools were found to have approximately were found to have 

approximately 120 students per grade (US Department of Education 2001). Based on this information, the 

model was initialized with a classroom size of 21 students and a total of six classrooms for the grade. 

Each classroom was set with assigned seats arranged in rows, giving each child two neighbors whose 

desk touches their own, with the exception of students with end seats who only have a single neighbor.   

In addition, the assumption is made that the majority of daily teaching is done within the same 

classroom setting, unlike classroom systems where students move around throughout the day (e.g. high 

school). This model focuses on classrooms taught by a self-contained teacher, or teachers who teach 

multiple subjects, keeping the class together throughout the day (Perie et al. 1997). This helps alleviate 

effects that could arise from students cross-contaminating classrooms. A study looking at the amount of 

time teachers spend teaching during a normal school day saw an average of six hours twenty-four minuets 

spent in the classroom per day, most of which is spent with a core class of student (Perie et al. 1997). This 

model aims to recreate the classroom exposure and the lunch/recess exposure. The current version of the 

model does not evaluate potential exposure risks that come with elective periods when classes move 

classrooms. 

For the five school days, the students have the opportunity to become infected with the virus by their 

assigned neighbors (based on assigned seats), students they connect with for group work, and their lunch 

and recess friends.  Each one of these networks holds a certain probability of exposure.  The neighbors of 

a sick student and group members of a sick student are given a 10% chance of becoming sick themselves. 

This is based on the assumption that virus shed by the sick neighbor to the shared desktops, which are 

hard surfaces, contains at least the single dose of the virus (18 virus particles) needed for infection 

(Teunis et al. 2008; Stals et al. 2015).  An 18 virus dose was studied to have a 50% probability of 

infection (Teunis et al. 2008), however, since the exact measure of virus particles exist on hard surfaces in 

schools experiencing outbreaks, it is assumed that the 18 virus particles is a minimal exposure and all 

students who are exposed become infected, but have only 10% chance of becoming sick (Teunis et al. 

2008; Stals et al. 2015).  Students in the infected students’ friendship network are given a very slightly 

increased probability of being infected (12% versus 10%).  This increase is assumed because of the 

increased hand-to-mouth contact that would take place during lunch time interactions.   

Once a student becomes sick, they are treated as asymptomatic for two days’ time (incubation period) 

during which time they can spread the illness to others (CDC 2015; CDC 2013b; Gemmetto  et al. 2014) 

while not showing symptoms themselves.  After the two day incubation period the sick student is sent 

home for an isolation period of three days.  Following the three day isolation, the student is assumed to 

have resumed a healthy status and returns to school (CDC 2015; ECDC 2013). The students ‘sick’/ 

‘healthy’ status is updated at the end of each day, as well as, there absentee status. If the student has 

completed 2 days with ‘sick’ status, they are temporarily removed from the school.  At the start of the 

simulation attendance is taken at the classroom and school level to identify the number of students that 

are absent and to assign policies (if implemented) as needed. Table 2 shows all the initial model 

parameters selected for the model, excluding those shown in Table 1 for the creation of friendship 

networks. 
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Table 2: Initial model parameters.  

Parameter  Value  Source 

Classroom Size  21 Students  The Maryland State Department 

of Education 2013 

US Department of Education 

2001 
Number of Classrooms 6  

Risk of Infection  50% Teunis et al. 2008 

Illness Rate (Post Infection) 10%  
Teunis et al. 2008, 

Stals et al. 2015 

Incubation Period 2 days 
CDC 2015, CDC 2013b 

Gemmetto et al. 2014 

Symptomatic Period 3 days CDC 2015; ECDC 2013 

School Days per Week 5 days  -- 

Weekend Days per Week 2 days --  

 

3.4 Policy 1 

Policy 1 follows the same procedures as the baseline except the classrooms keep count of the number of 

students absent and change their social interactions accordingly.  The classrooms make a daily decision 

based on the absenteeism rate (AR) on whether to implement the policy or not.  If the class reaches an AR 

higher than the defined limit, Policy 1 is implemented.  For example, an AR of 10% for a classroom of 21 

students would be 2 students absent when the policy is implemented; where as an AR of 40% would 

require 8 students to be absent before implementing the policy.   

Policy 1 instructs classrooms to stop conducting group work, thereby removing one of the routes of 

exposure as based on recommendations by the CDC for policies to use in Norovirus outbreaks in 

healthcare settings (CDC 2013b; CDC 2011).  For simulations running Policy 1, students can still become 

infected by seat neighbors and by friends at lunch/recess.  

3.5 Policy 2 

Policy 2 is implemented in the same manner as Policy 1. The classrooms take daily attendance and once 

the AR value has been reached the policy is implemented.  Policy 2 builds on the CDC recommendation 

used for Policy 1, discontinue all forms of group activities (CDC 2011).  In the first policy, group 

activities alone were restricted whereas Policy 2 suspends both group activities within the class and 

grade-wide lunches.  For a policy such as this to be implemented, the children would be required to eat in 

their classrooms to minimize contamination from outside their classroom.  When Policy 2 is implemented 

the only method of spread is through assigned seat neighbors because the students no longer interact with 

their group work or friendship networks.   

3.6 Implementation  

At the start of each simulation the following parameters were randomly assigned: the initial ‘sick’ student, 

the network connections of each student, the teacher assigned group (size and group members).  Based on 

the initial randomized parameter assignment, a single simulation should be run multiple times to explore 
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the variable space of that particular configuration.  Therefore each simulation of the model is run 4,000 

times in order for the average across the runs to stabilize.  Run increments were tested from 1,000 to 

10,000, however, 4,000 was the point where the averages reached a steady state. Table 3 shows the 

average outbreak duration, standard deviation and variance at four different run increments to 

demonstrate how increasing the number of runs beyond 4,000 did not provide a significant change to the 

output of the model. This was additionally tested with a traditional T-test to verify there was no 

significant difference in results between the 4,000 runs and 10,000 runs. Similar tables were created for 

the other variables to identify the minimum number of runs that appropriately capture the behavior of the 

model, all which resolved to 4,000 runs. This conclusion was also verified graphically as the point at 

which additional runs do not affect the models output and the averages reach a near steady state.  

Table 3: Stabilizing results across runs. 

Outbreak Duration (Days) 

Number of 

Runs Average 

Standard 

Deviation Variance 

4,000 22.32 2.56 6.57 

6,000 22.27 2.55 6.51 

8,000 22.31 2.67 7.17 

10,000 22.32 2.66 7.11 

 

Additionally, it should be noted that because the start of the virus is a randomly selected student and 

then transmission is based on probabilities relating to contact, approximately 3% of the runs resulted in no 

outbreak.  However, this percentage remained consistent regardless of the number of runs, i.e. an average 

of 30 runs per 1,000 saw no outbreak. Therefore the effect of the ‘no outbreak’ runs is proportional across 

the baseline or policy implementation results.   

The baseline, Policy 1 and Policy 2, with varying ARs, were each run for 100 simulations at 4,000 

runs per simulation.  The baseline simulations have no policy implementations and the virus is allowed to 

run its course through the school.   

4 RESULTS AND DISCUSSION  

4.1 Baseline  

The baseline simulation was run in an effort to verify that the model matched closely with reality, such 

that the influence of policies could be tested. From the baseline simulations the results (Table 4) showed 

the average outbreak duration was 22.1 days, average maximum absentee rate was 11 students (9%), and 

average total number of affected student population at the end of the outbreak was 31.8 students (25%). 

Since the baseline runs include 100 randomly simulated networks, the range of total affected students is 

also shown.  This rate ranged from 17% to 34% (21 to 43 students of the 126 total).  

A study that reviewed 47 Norovirus outbreaks across different venues provided information on the 

virus’ duration within a population.  The average duration across healthcare facilities (average 25 days), 

hospitals (average 22 days) and nursing homes (average 14 days) is reported at 20 days (combining all 

facility types) with a range of 9 – 92 days (Harris  et al.2010).  The average seen in the school simulation 

was 22.1 with a range of 5 – 100 days.    
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Table 4:  Baseline simulation results. 

 Simulated Values Reference Values Source 

Duration (Days) 22.1 20 Harris et al. 2010 

Duration Range (Days) 5 – 100 9 – 92 Harris et al. 2010 

Max Absentee Rate  11 (9%) Not available   
 

Total Number of 

Students Affected  
32 (25%) 

28%
1
, 25%

[2-7]
 

 

13% - 43%1 ,  

17% - 34%
[2-7]

 

1  
Matthews et al. 2012 

2  
CBS News 2014 

3  
ABC News 2015 

4  
Lopez 2012 

5  
Stockwell 2015 

6  
Uren 2014 

7  
Wilson 2015 

Range of Students 

Affected Across Runs  

21 - 43  

(17 -34%) 

 

Two methods were used to evaluate the attack rate, the overall number percent of the population 

affected by the virus.  A study that reviewed attack rates across 44 school outbreaks found an average of 

28%, with a range of 13% to 43% (Matthews et al. 2012).  This was complemented by a cursory look at 

recent (2012 – 2015) US school based Norovirus outbreaks. Five news reports were pulled to see how the 

reporting matched to the references.  The data pulled from the news reports is provided in Table 5.  The 

average attack rate was calculated at 25% with a range of 17% to 34%.  It is noted that these calculations 

are based on the total number of students infected at the time of the news report.  

Table 5: Statistics pulled for schools experiencing Norovirus outbreaks. 

Report 

Date School 

Approximate 

School 

Population* 

Reported 

Number 

Students Ill
ɫ
 

Calculated 

Attack 

Rate
ɫ
 Source 

2015 

Alice Smith 

Elementary School 

(Nevada) 

746 100 13% 
ABC News 2015 

Stockwell 2015 

2015 
Conger Elementary 

School (Oregon)
3
  

401 75 19% Uren 2014 

2014 
Garfield Elementary 

School (Minnesota) 
4
 

385 80 21% Willson 2015 

2014 

Condon Elementary 

School 

(Massachusetts)
5
  

800 150 19% CBS News 2014 

2012 
Medea Creek Middle 

School (California)
6
  

1127 320 28% Lopez 2012 

 * Based on 2015 data search for number of students (School Digger 2015)  
ɫ
At the time of the news report  

4.2 Policy Implementation  

Following the establishment of a baseline, the two policies were then modeled to test how the classroom 

policies affect the spread of the virus. The selected starting AR was 10%, meaning that classrooms would 

implement Policy 1 or 2 when more than 2 students were absent with norovirus symptoms.  The results 

implementing the policies in the simulation are shown in Table 6.  All the metrics for the simulation 

showed a significant drop, based on a 95% confidence, over the baseline.  Policy 2 showed a significant 

difference from Policy 1 at 95% confidence.  These results suggest that implementing either policy with a 
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10% AR would help reduce the duration of the outbreak, minimize absenteeism rates and decrease the 

total number of students affected by the illness.  

To examine how sensitive these results are to the AR, the AR was varied from 10% to 40% (2 student 

– 8 students) before policy implementation.  The results are shown in Table 6, all values are show 

significant reduction, with 95% confidence, except the maximum student absentee rate for Policy 1 at AR 

40%.  The value here was not statistically different from the baseline.   

The results from policy implementation demonstrate either policy at any point in the outbreak can 

help to reduce the number of students who fall ill and become absent, reducing the overall duration of the 

outbreak, AR and total number of students affected. Other mitigation models which look at minimizing 

school closures cite one reason to reduce the socio-economic impact of closure for parents and the 

community (Gemmetto  et al. 2014).  The policies suggested in this paper, do not require school closure 

only classroom and school day modification.  In addition the policies are limited to the classroom, when 

that classroom reaches its critical point, therefore not requiring entire school or entire grade participation. 

As one would expect, the longer delay between the start of the outbreak and the implementation of 

policy leads to diminishing returns for both Policy 1 and Policy 2.  An AR will be reached where it will 

too late to implement policies for any large benefit. The point where the policy was fully ineffectual was 

not reached in the simulations, AR 40% indicates that point being approached.  For Policy 1 at an AR 

40%, the maximum absentee rate seen does not differ with significance from the baseline.  While 

statistically not greatly different, the values for duration and attack rate for Policy 1 at 40% are 

approaching those of the baseline. As could be imagined, 40% of a single class being absent is extremely 

high and not likely to occur unprovoked by illness; more favorable results would come implementing 

policy prior to this point. 

Table 6: Results for Policy 1 and Policy 2 with varying AR. 

  

Duration 

(Days) 

Max Absentee 

Rate  

Total Number of  

Students Affected  

Range of Students  

Affected Across Runs  

Baseline  22 11 (9%) 32 (25%) 
21 - 43 

(17 -34%) 

Policy 1 

 AR 10%  17 8 (6%) 18 (14%) 
13 - 24 

(11 -19%) 

AR 20%  19 9 (7%) 24 (19%) 
17 - 35 

(14 -28%) 

AR 30%  21 10 (8%) 27 (22%) 
19 - 37 

(15 - 29%) 

AR 40%  21 11** (8%) 30 (24%) 
19 - 41 

(15 - 33%) 

Policy 2 

 AR 10%  9 5 (4%) 6 (5%) 
6 - 7  

(5%) 

AR 20%  13 7 (6%) 12 (10%) 
10 - 15 

(8 - 12%) 

AR 30%  16 9 (7%) 18 (15%) 
14 - 24 

(11 - 19%) 

AR 40%  19 10 (8%) 24 (19%) 
17 - 32 

(13 - 26%) 

**Not significant from baseline at p < 0.05 

 

Additionally, it should be pointed out that Policy 1 is far easier to implement than Policy 2. Policy 2 

would require more logistics and be more costly for school administration to accommodate students who 
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purchase or receive lunch through the school. Food would have to be delivered to the classroom or picked 

up and brought back by students in order for lunchtime to be contained to the classroom. Also classrooms 

would likely need support for teachers during the lunch period since it is often contractual that unionized 

teachers in public schools receive a lunch break (most often in the same timeframe as when students eat).  

This likely does not include all logistic challenges that implementation of Policy 2 would encounter, it 

demonstrates that policy implementation does not come without challenges. 

4.3 Assumptions, Limitations and Future Work  

This model provided very positive results for the implementation of school policies to help reduce the 

duration of a norovirus outbreak, however, like much of the work done in the field of policy modeling 

there are assumptions and limitations that were required to build an experimental model. First and 

foremost, it is assumed that information is readily available for decision making, i.e. the teacher knows 

the number of children who are out and why they are out at the beginning of the day in order to 

implement one of the policies. Second, the model assumes that parents keep the student home for the full 

3 days while the child is symptomatic. Additionally, the model is limited by the modes of transmission 

included.  As stated previously, this model does not look at cross grade transmission or environment-to-

student transmission from rotating classrooms throughout the day or week or the use of restrooms in the 

school environment.   

Future iterations of this model, or models of this type, would benefit from including the environment-

to-student modes of transmission. This would allow for experimentation of sanitation/disinfecting policies 

that could be put into place during an outbreak.   

5 CONCLUSIONS 

The Norovirus model detailed in this paper provides a reasonable representation of how the virus spreads 

between students in for a single grade of an elementary school.  The policies selected were simple 

requiring minimal change to the constructed school day and not requiring entire school commitment since 

they can be implemented per classroom.  Both policies were evaluated with an AR which varied from 5 – 

40% and showed the improved duration and total number of students infected, when implemented with 

lower ARs.  This is a very logical conclusion because the sooner the policy is implemented the fewer 

contacts each student has reducing the spread of the illness.  

Diseases that are spread through schools are not restricted to staff and students. When the school day 

is over, children go home and can expose their parents, siblings, neighbors, and community to the virus as 

well. Outbreaks of viruses, such as Norovirus, can cause social and economic stress on a community. A 

study was conducted to look at the economic costs of Norovirus outbreaks in Spain. The study shows how 

the virus accumulates cost when incorporated the cost of medical visits (hospital/doctor’s office), 

medications, lab diagnostics, etc., as well as costs for lost work days (either from sickness or caring for 

others who are sick) (Navas et al. 2015).  These costs are mostly unexpected costs (not routine), since 

they are based on the contraction of a virus.  This can create strain on individual families and potentially 

the community. While the policies put forward in this paper are idealized; they help put forward ideas on 

how to minimize the number of children exposed to the virus through schools which could reduce the 

socio-economic impact of an outbreak on the community.   
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