
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

A MODELING LANGUAGE GENERATOR FOR A
DISCRETE EVENT SIMULATION LANGUAGE IN MATLAB

Guy L. Curry Hiram Moya
Amarnath Banerjee

Department of Industrial and Systems

Engineering
Department of Manufacturing and Industrial

Engineering
Texas A&M University

3131 TAMU
The University of Texas Rio Grande Valley

1201 West University Drive
College Station, TX 77843-3131, USA Edinburg, TX 78539-2999, USA

Harry L. Jones

Department of Civil Engineering
Texas A&M University

3136 TAMU
College Station, TX 77843-3136, USA

ABSTRACT

A discrete-event simulation language was implemented in MATLAB. The approach is similar to the
process/command modeling paradigm utilized in GPSS and other languages that followed. The language
is a MATLAB Script File (m-file) and can be part of a larger analysis package as a sub-function of an
optimization/simulation system. The modeler builds the simulation through support functions provided in
this system but must insert them in the proper locations of the MATLAB master function. To develop a
proper model, it is necessary to understand the internal simulation structure using the switch/cases statement
and where various aspects of the simulation structure are located. To simplify this process, a model
generator has been developed which parses a model text file and produces the required MATLAB master
simulation function. The model generator also reduces the magnitude of understanding of the
implementation specifics of the MATLAB simulation language and makes proper model development
easier.

1 INTRODUCTION

There are many discrete-event simulation languages which have full support packages such as GPSS
(Gordon 1961, Schriber 1974), SIMAN (Pegden 1983, Pegden 1986), ARENA (Kelton, Sadowski, and
Sadowski 1998), and Simio (Kelton, Smith, and Strurrock 2013), to list a few. These languages are full
scale compiled languages with large scale modeling capabilities and functionality. They are in general
stand-alone fixed systems and not part of a general modeling/programming system. A simulation language
was implemented in MATLAB which has the ease of model building structures found in these discrete-
event simulation languages but with the advantage of being part of a more general problem solving
environment (Curry and Banerjee 2016). MATLAB is one of the most widely taught and used tools in

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 1013

Curry, Banerjee, Moya, and Jones

engineering and the applied mathematical sciences (Kuncicky 2004). For example, MATLAB is introduced
to all college of engineering students at Texas A&M University in their common first year two-course
sequence fundamentals of engineering as well as the first two engineering calculus courses. MATLAB itself
has a support package Simulink (MathWorks 2005) for dynamic systems modeling but it is also categorized
as “interactive tools with limited control over the model” (Sklenar 2013). MATLAB’s Simulink is a block
diagram environment for multi-domain simulation and model-based design. Simulink is at a similar level
as most higher level discrete event simulation languages, and supports continuous and discrete dynamic
blocks, algorithmic blocks, and structural blocks as well as embedding of MATLAB, C, Fortran and Ada
code.

The approach taken for the discrete-event simulation language is to use the modeling paradigm of GPSS
with structural commands available to the modeler to help build reasonable models in a quick and easy
fashion but to still have the full capability of the MATLAB language available at all times for the modeler.
Apparently, the only other open MATLAB discrete simulation tool set is that of Sklenar (2013) where he
developed a set of simulation support functions for use with MATLAB. His approach was specifically not
to use the standard modeling paradigm. Here the approach is exactly the opposite; the ease of model
development with this approach makes it an effective modeling tool and with this implementation it is also
a function that can be part of a larger analysis system.

Students in a discrete event simulation course are exposed to higher level building blocks to construct
their models while using the simulation languages mentioned earlier. It is frequently observed that students
routinely develop models without fully comprehending the inner workings of a discrete event simulation
system. Even when students implement pre-developed models (Moya, Curry, and Phillips 2015), they
typically blame the software for their inability to accurately model a given problem statement. The available
choice of parameters in the software is sometimes overwhelming, which leads to students making incorrect
choices. This MATLAB-based discrete-event simulation language aims at providing some insight to
students about the inner workings of discrete event systems. This, coupled with one of the simulation
languages, is expected to provide the fundamental understanding of discrete event simulation, which can
assist in the process of proper usage of the full support packages and ability to develop accurate models.
Moreover, this simulation language will serve as additional exposure to the use, practice and capabilities of
MATLAB for students.

The modeling terminology and syntax chosen is based on the language MOR/DS (Curry, Deuermeyer,
and Feldman 1989). The language structure is based on the command set: Arrive, Schedule, Seize, Wait,
Release, Depart, GoTo, SetGate, TestGate, Copy, Combine, Link, Unlink, Observation, TimeObs; a set of
data structures: Resource, Gate, Chain, Histogram, TimeHistogram; and a set of attribute commands: Mark,
Attr, AttrValue, AttrInc. The modeler can define and update their own variables and collect data about
these variables via the Histogram (for value data such as cycle times) or TimeHistogram (for time persistent
data such as work-in-process) structures. These can be plotted as appropriate using the MATLAB graphics
functions. Since all functions are available to the modeler, enhancements, corrections and additional
functions can be developed by the user.

2 SIMULATION CONCEPT

The MATLAB discrete-simulation system resides in an MATLAB Script File (m-file) where the model is
developed and executed in the main function (here in called ‘Simulate’). This function defines all of the
internal data structures used in the simulation as well as those separately defined by the modeler. A group
of support functions such as all of the simulation commands reside in this Script File. The Script File (the
base model m-file is Simulate.m) is loaded and used as a basic structure for developing additional models.
There are several functions in the simulation m-file but only the first function (Simulate) needs to be
changed by the modeler. All other functions in the m-file are support functions for the main simulation
model function – Simulate. A simulation model has a specific structure and order that simulation
commands (function calls) must be executed to accomplish the tasks desired. The model logic execution

1014

Curry, Banerjee, Moya, and Jones

structure is a MATLAB Switch/Cases statement. The model is developed by placing the executable
commands in the order needed. This is the typical process for developing discrete-event simulation models
in almost any language. However, here these statements/commands/functions are placed in order and
labeled via the Case statements within the Switch/Cases structure. The functions which are generally
considered as simulation commands are setup to move the entity flow through the case statements as
appropriate. In general, these commands return the system entity Switch/Case locator variable (SVloc) to
point to the next case in the model sequence. If flow is to be in any order other than sequential, then the
GoTo function is used to branch the entity to the appropriate case. When the active entity loses control,
such as being blocked by a resource limitation in a Seize function or it is required to wait a specified time
such as in a Wait function or even deleted from the system via the Depart function, the system variable
SVloc is set to zero and, when all of the statements in the particular Switch/Case have been executed,
processing for that entity is closed and another entity is selected to begin/continue its progression through

the model statements. The simulation control logic is displayed in Figure 1.
 Most discrete-event simulation systems (such as GPSS, SIMAN, ARENA, Simio, MOR/DS) take an
entity and move it through the simulation model structure as far as it can be moved until a block or time
delay occurs. Then another entity is selected and the process is repeated. To control the timing of events,
in this language a Future Event List is used and entities are placed on this list in the time sequence of their
next time event. So when an entity reaches a Wait command, for example, and must be delayed until the
clock reaches a specified future time, the entity is placed on the Future Event List with that time as its
activation time and control is passed to another entity. The next entity selected is the first entity on the time
sequenced Future Event List and the current clock time is advanced to the activation time of the newly
activated entity. Note this operation is always a non-decreasing time sequence. The current clock time is
the system variable ClockTime and this value is available to the modeler. When the system time exceeds
the modeler provided simulation StopTime, then the simulation is terminated and the statistics functions
(ResourceUtil and Statistics) are executed for model output results. The modeler can also place any desired
results output including graphics in the same functional area of the model. Note that if replications are
used, the modeler may not want to see each replication result and only view the summary statistics result.
So the variable PrintRepls is available to suppress the individual replication output.

3 LANGUAGE CONSTRUCTS AVAILABLE

Every simulation language must have entity create and destroy capabilities; these are the functions Arrive
(or Schedule) and Depart, respectively. For this language implementation, we have also added a SeedArrive
function that is needed to establish the initial entity for each Arrive command in the model. Each Arrive
statement is an entry point into the simulation model domain from the un-modeled aspects of the remainder
of the universe or real world. Of course the Depart function terminates the specific entity’s residence in
the model and can be thought of as returning to the un-modeled domain. There are three modeling
constructs available: Resources, Gates and Chains. Resources represent limited capacity situations such as

while (ClockTime < StopTime) & etc.
 [ClockTime, SVactEnt, SVloc] = get next entity from Future Event List
 while SVloc > 0
 switch SVloc
 case 1
 ⁞
 case n
 end % switch
 end % while SVloc > 0

end % while (ClockTime < StopTime)

Figure 1: Simulation Control Logic.

1015

Curry, Banerjee, Moya, and Jones

machines, tools, people, etc. that need to be obtained before performing some operation. Entities are queued
if a unit of the specified Resource is not available. Gates are non-capacitated structures where entities are
allowed to pass if the Gate is open and queued (blocked) if it is closed. Once the Gate is re-opened, all
blocked entities are allowed to pass through. Finally Chains are queueing structures where the modeler
handles the placing and releasing of entities. Each of these structures has associated with them two
functions used to interact with the base structure. For Resources, the request for a unit of resource is the
Seize command and the unit is returned via the Release command. For Gates, TestGate checks if it is open
to pass through and if it closed then the entity is queued. The SetGate command can open or close the Gate
depending of the command argument. The Link and Unlink functions control placing and removing entities
from user defined queues/lists (Chains).

Statistical support is provided in two ways. First, multiple runs of the simulation and computing the
95% confidence limits for composite statistics is provided by specifying the number of replications desired
(NumRepl). Two types of user determined statistics can be obtained via the Histogram structure (value
observations such as system cycle time and machine processing time) and the TimeHistogram structure
(time persistent data such as time average work-in-process). Observation or tally type of data is recorded
using the Observation function and time average data using the TimeObs function.

Time delays generally occur in two situations. The first is the delay time between arrivals to the system
and the second type is a processing type delay when in control of a resource. The Arrive command has an
inter-arrival delay as one of the arguments of the function call. Delays such as processing delays are
instituted by the Wait function which has as its argument the type and parameters for the associated delay
distribution. Four distribution classes are installed at this time for user convenience: type 1 is for constant
values, type 2 is for the exponential family including generalized Erlang distributions, type 3 is for a
continuous uniform and type 4 is for the truncated normal. The modeler can also utilize any MATLAB
implemented distribution or even create their own. By generating a random variate value and assigning it
to a variable say “xtime”, the constant type 1 can be called using “xtime” as the associated value.

Groups of entities can be combined together using the Combine function and groups created with the
Copy function. For branching entities to other model cases the GoTo function is provided and was
discussed in Section 2.

Standard simulation modeling controls are provided such as ending the simulation after a specified
simulated time StopTime, or stopping based on departure counts using StopCount. Most simulation models
have a startup period when results statistics are biased due to the system starting empty and thus a
ResetTime control is also provided.

4 THE NEED FOR A MODEL GENERATOR

Developing a model in any simulation language requires that the modeler obviously know the syntax of the
modeling language. However, when the modeler is actually coding in the language within which the system
was developed they must know that language as well as understand how the simulation language particulars
were developed and implemented. In addition to knowing the MATLAB language, the modeler in this case
needs to understand the structure of the simulation language. It is necessary to understand how the language
was implemented in MATLAB and some of the more specific details of the language design itself. For
example, the MATLAB discrete-event simulation language uses the switch/cases structure for
implementing the steps of the simulation model such as the Seize-Wait-Release modeling sequence. If an
entity requests a unit of a resource (via the Seize function), this unit may be immediately available and
hence the entity proceeds to the next function call or it may be that the entity must be blocked until its turn
for a resource unit comes up. This simulation language implementation uses an internal location indicator
to establish, when an entity is activated, where it resides in the model switch/cases sequence. Certain
simulation commands were designed to impact this location indicator and other commands to not impact
the switch/case location. Understanding and properly using the simulation function calls within the model
logic case statements adds an additional burden to the modeler. Another example is that for time persistent

1016

Curry, Banerjee, Moya, and Jones

data collection, via the TimeHistogram structure, the modeler must place the TimeObs commands to collect
this data within the simulation controller loop but outside of the model switch/cases structure. The modeler
thus needs to understand somewhat how the simulation language is structured to understand the need and
proper location of these data collection commands. In addition, if the modeler wants to graph a time-
persistent variable, data collection occurs at this same location within the controller loop. Note that this data
probably needs to be sampled because of the high frequency of this loop being executed and these
commands also need to occur at this same location.

For the above reasons and others to properly model with this MATLAB based discrete-event simulation
system, the modeler needs to understand how the system was designed and implemented. This knowledge
is beyond that necessary to merely develop models in the language. To allow the modeler to concentrate on
developing the simulation model and not be too concerned about the structure of its implementation, we
devised a model generator which will take a text version of the simulation model and insert these statements
into the MATLAB master simulation function in their proper locations and when possible insert extra
statements to make the model more usable and less directly connected to the implementation approach. For
example in the previously mentioned collection of time-persistent data, the modeler needs to define a
system collection device (TimeHistogram) for each variable to be observed (such as WIP in each
workstation). The model generator will then create a statistical collection structure for that variable and
also create a TimeObs statement for the same variable to be inserted (automatically) in its proper location
when the generator writes the statements for the simulation controller loop. If graphics data for plotting this
variable is also to be collected, then by placing this coding in a special segment definition area for time
persistent data, the model generator will place these MATLAB statements in the controller loop with the
TimeObs statements.

5 MODEL GENERATOR

The model definition text file is segmented into eight natural groupings of data types. These are listed here
in order that they should appear in the model text file (some categories are optional and are indicated as
such): Program, Control, System Definitions, Variable Definitions, Replicate Outputs (optional), Final
Outputs (optional), Time Persistent Logic (optional), Reset Logic (optional), and Model Logic. The first
word of each category is the keyword for that category. The remainder of the line is ignored and only used
to help connote to the modeler what the category entails. The Replicate, Final, Reset and Time categories
are optional and can be listed in any order but must lie between the Variable and Model categories. A
discussion of each of these categories follows:

a) Program: this category is merely to start the model text file (it must be the first line of the file) and

consists of comments statements that the modeler may choose to use to document what problem is
being modeled. Note that MATLAB comment statements start with %.

b) Control: the control category consists of all of the variables used to specify how long the model
simulation is to last in simulated time units, the time to reset statistics if desired, the number of
replicates to be run, if replicate results are to be printed, and the number of attributes that each
entity possesses.

c) System Definitions: this category is where the modeler defines simulation structures needed in the
model; how many, their names if appropriate, and capacities, etc. These include: Resource,
Histogram, TimeHistogram, Gate and Chain. An additional feature of this category is that these
commands are placed in the MATLAB master simulation function above the replicates loop. So
user variables defined here will be available as with all user defined variables, but will not be reset
to their initial values at the start of a replication. Thus, if the modeler wants to run some total across
all replications, this total variable would be defined in this category and used normally, but it will
not be reset to zero by the system at the beginning of each replication.

1017

Curry, Banerjee, Moya, and Jones

d) Variable Definitions: these are user variables such as counters, arrays, model data such as
processing times, etc. These variables are reset to their initial values at the beginning of each
replication.

e) Replicate Outputs (optional): these statements are placed at the end of each replication and the
purpose is to allow the modeler to specify their own output results along with the normal replicate
results such as resource utilizations, histograms, etc. This is where one would place plotting
commands for data collected during the replicate simulation run.

f) Final Outputs (optional): these statements are placed at the end of the complete simulation at the
point where system resources data is averaged over all replicates and displayed. The modeler can
also specify herein output results for data that they developed. This is also where the modeler would
place plotting commands for data collected during the entire simulation run or if there are no
replications (just a single run of the model).

g) Reset Logic (optional): these statements are placed at the location where the system resets all of
the data collection devices to help mitigate the initialization aspects of the data collection. This
allows the modeler to reset any variables that they are using to collect their own
statistics/information. This is executed once per replication run if the ResetTime option is selected.

h) Time Persistent Logic: this category allows the modeler to incorporate MATLAB statements within
the controller loop logic at the points in time when the simulation clock is advanced (more
specifically, when a new active entity is selected). This allows for collecting time persistent data
for graphing and even random sampling of these observations due to the high frequency of data
observations within the controller loop.

i) Model Logic: this is the main aspect of the simulation program with the simulation commands
linked in a manner so as to model the situation being analyzed.

The list of model generator categories (in their required sequence) are displayed in Table 1.

Table 1: Model generator categories and required sequence.

Sequence Model Categories
1 Program
2 Control
3 System Definitions
4 Variable Definitions
5 Replicate Outputs (optional and variable placement)
6 Final Outputs (optional and variable placement)
7 Time Persistent Logic (optional and variable placement)
8 Reset Logic (optional and variable placement)
9 Model Logic

The model generator parses this text file and writes the simulation master function which is then

executed by the modeler. The model generator parses the input lines and separates these commands and
MATLAB statements into the categories within which they are defined and places them into the proper
locations within the master simulation program. The model generator has additional functionality such as
creating code for observing time persistent variables by automatically inserting these commands into the
controller loop and establishing variables for structure names and assigning their proper structure numbers.
This allows the modeler to refer to these structures by name for better readability and ease of model
development. However, the model generator’s main purpose is to partition the Model Logic section into
groups of commands which perform the desired simulation model while fitting into the MATLAB
switch/cases implementation and controlling flow between cases appropriately. Thus, the model generator

1018

Curry, Banerjee, Moya, and Jones

translates the modeler’s intended model into the structure imposed by the basic language capabilities and
simulation system implementation within this language. Different implementations can easily be envisioned
based on the modeling paradigm used and the system developer’s approach. So the model generator
separates these details from the user and allows them to develop proper models without as much concern
about the implementation.

6 EXAMPLE MODEL TEXT-FILE

Consider a simple system that has one machine and jobs arrive individually with an exponentially
distributed time between arrivals of 2 hours. Jobs are processed in the order that they are received and the
mean processing time is also exponentially distributed with a mean time of 1.5 hours. We want to collect
machine utilization, number of processed jobs in 1000 hours and the total across all 5 replication runs, and
the average time in the system for each job. In addition, we would like to see how the system WIP varies
over time (we will capture this data from the last replication). We need to define: Resource 1 with a capacity
of 1 via Resource(1,1,0, 'mach'), one statistical collector Histogram(1, 'CT'), one time persistent data
collector TimeHistogram(1, 'WIP') and one entity attribute via nEntAttrs = 1 to keep the job (entity) entry
time into the system so that cycle-time CT can be computed. Once the model text-file has been developed
(here labeled Model1.txt, illustrated in Figure 2), then from the MATLAB command line the user types:

 SimModelParser(‘Model1.txt’, ‘SimModel1.m’)

The result is the simulation master m-file (SimModel1.m) that can be executed from either the
command line or within the MATLAB editor by selecting the RUN arrow. The output results appear in the
command window and can be captured and stored using Windows Notepad. Notepad is recommended
because of the line spacing that MATLAB includes in the command window output and Notepad condenses
this and omits the inserted blank lines. Graphics results appear in the MATLAB graphics windows which
can be easily viewed and if desired captured and/or printed separately. The full listing of this MATLAB
function to setup and run the simulation which would results from the model generator for the example
model is too extensive to list here. However, the section for the MATLAB switch/cases generated code is
illustrated in Figure 3. The results include calculated average and 95% confidence limits. Using the features
in MATLAB, the model can output results for WIP and cycle time as a function of time. Figure 4 shows
the plots generated for cycle time and WIP for the example. Table 2 shows the example model summary
statistics from the simulation run with 5 replications.

Table 2: Summary statistics from simulation run.

Reached End of Simulate: System Measures

Histogram Average and 95% Confidence Limits
Hist Var. repls. avg. LB95% UB95%
1 CT 5 5.2700 3.5614 6.9785

Average Resource Utilization and 95% Confidence Limits
Res. Name repls. Util. LB95% UB95%
1 mach 5 0.7462 0.68513 0.8073

Average Time Persistent Variables and 95% Confidence Limits
Var. Name repls. Avg. LB95% UB95%
1 WIP 5 2.6442 1.7178 3.5706

Total Th: 2478

1019

Curry, Banerjee, Moya, and Jones

Figure 2: Model Text File.

Program Start
% Single Workstation Model with One Machine
Control
NumRepl = 5;
StopTime = 1000;
nEntAttrs = 1;
PrintRepls = 1;

System Definitions
Resource(1,1,0,'mach');
Histogram(1,'CT');
TimeHistogram(1,'WIP');
% user variables not reset each replication
totTh = 0;

Variable Definitions
WIP = 0;
Th = 0;
PltWIP = [];
PltCT = [];

Replicate Outputs
fprintf(' Repl Th: %3i \n',Th);
totTh = totTh + Th;

Final Outputs
figure(1)
plot(PltCT(:,1),PltCT(:,2));
title('CT by Completed Job');
xlabel('Completed Job');
ylabel('CT');
fprintf(' Total Th: %3i \n',totTh);
figure(2)
plot(PltWIP(:,1),PltWIP(:,2));
title('System WIP over Time');
xlabel('Time');
ylabel('WIP');

Time Persistent Logic
 if rand < 1/3
 PltWIP = [PltWIP; [ClockTime,WIP]];
 end

Model Logic
C1: Arrive(2,3/6,SVmany,C1);
 Mark(1);
 WIP = WIP + 1;
 Seize(mach,1);
 Wait(2,4/6);
 Release(mach,1);
 Th = Th + 1;
 CT = ClockTime - AttrValue(1);
 Observation(1,CT);
 PltCT = [PltCT; [Th,CT]];
 WIP = WIP - 1;
 Depart(0);

% END

1020

Curry, Banerjee, Moya, and Jones

Figure 3: Section of the MATLAB switch/cases generated code.

Figure 4: Cycle time and WIP plots from simulation run.

while SVloc > 0
 switch SVloc
 % user simulation commands follow in sequence as cases
 case 1
 SVloc = Arrive(2,3/6,SVmany,1);
 Mark(1);
 WIP = WIP + 1;

 case 2
 SVloc = Seize(mach,1);

 case 3
 SVloc = Wait(2,4/6);

 case 4
 SVloc = Release(mach,1);
 Th = Th + 1;
 CT = ClockTime - AttrValue(1);
 Observation(1,CT);
 PltCT = [PltCT;[Th,CT]];
 WIP = WIP - 1;

 case 5
 SVloc = Depart(0);

 otherwise
 disp('Error: no case match for SVloc value')
 disp(SVloc)
 disp('Simulation Aborted')
 return

 end % end of switch/cases
end % end of while SVloc > 0

1021

Curry, Banerjee, Moya, and Jones

7 CONCLUSIONS

The MATLAB system is an excellent support system for the development of a discrete-event simulation
modeling language. Most mathematical science orientated students have a basic knowledge of MATLAB
or a similar matrix orientated language such as Mathematica or Maple. MATLAB affords the modeler a
variety of language structures (for, if, while, etc.), standard data structures (matrices and cell arrays),
graphics support, and printing and storage capabilities among other support functions.

As this language is an initial implementation, no attempt has been made at optimizing the code. This
language is not fully developed in the sense of the commercial languages such as GPSS, ARENA, and
Simio. This is a base structure that can be enhanced by the user but has the standard fundamental features.
Advanced features that would be nice to add include bundle/unbundle (temporary combine) and material
handling structures. The language is merely a MATLAB function and as such can be subjugated to a high
level function such as an optimization schema or as discussed here a parser function to read a model file
and populate the simulation main function program. The simulation system script file (m-file) is open so
that modelers interested in specializing or even generalizing the system have full access to all of its
functions and features. The system script file can be used in “closed mode” by students starting to learn
about discrete event simulation, and are in the process of building, testing and running their first set of
simple models. In the “open mode”, advanced students and other modelers can add custom features that are
required for developing specialized models. They can also use the system as part of another simulation
language by writing custom scripts.

The simulation model generator is a very useful tool in that it allows the modeler to concentrate on the
model building aspects of the simulation and not to be too concerned with the implementation aspects of
the modeling system. There are model segments within the model generator system to allow the user to
accomplish most modeling aspects without resorting to directly coding in the master simulation function.
However, this also direct coding is available to the modeler if the need arises. The example problem
illustrates a couple of these special features such as capturing data across replications (totTh) and graphing
time-persistent data and using only about 1/3 of the many observations (PltWIP). This whole system is
developed within MATLAB including the model generator. However the user can create model files using
Notepad or a similar text editing software and then open them within the MATLAB editor to incorporate
changes and corrections in an interactive environment.

REFERENCES

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 2000. Discrete-Event System Simulation. 3rd ed.
Upper Saddle River, New Jersey: Prentice-Hall, Inc.

Curry, G. L., B. L. Deuermeyer, and R. M. Feldman. 1989. Discrete Simulation: Fundamentals and
Microcomputer Support, Holden-Day Inc.

Curry, G. L., and A. Banerjee. 2016. “A Discrete Event Simulation Language in MATLAB.” In
Proceedings of the 2016 Industrial and Systems Engineering Research Conference, edited by H. Yang,
Z. Kong, and MD Sarder, Anaheim, CA, May 21-24, 2016. Available on line at
http://dx.doi.org/10.13140/RG.2.1.2380.7601.

Gordon, G. 1961. A General Purpose Systems Simulation Program. Proc. EJCC, Washington, D. C., New,
York: Macmillan Publishing Co., Inc.

Kelton, W. D., R. P. Sadowski, and D. A. Sadowski. 1998. Simulation with Arena. WCB-McGraw-Hill.
Kelton, W. D., J. S. Smith, and D. T. Strurrock. 2013. Simio and Simulation: Modeling, Analysis,

Applications. 3rd ed., Simio LLC. (www.simio.com)
Kuncicky, D. C. 2004. MATLAB Programming. Prentice Hall Engineering Source (E-Source).

(www.mathworks.com)

1022

Curry, Banerjee, Moya, and Jones

Moya, H., G. L. Curry, and D. T. Phillips. 2015. “U-line Assessment Heuristic & Evaluation Model.” In
Proceedings of the 2014 Industrial and Systems Engineering Research Conference, edited by S.
Cetinkaya, and J. K. Ryan, Nashville, TN, May 30 – June 2, 2015.

Pegden, C. D. 1983. Introduction to SIMAN, Proceedings of the 1983 Winter Simulation Conference,
Arlington, VA.

Pegden, C. D. 1986. Introduction to SIMAN with Version 3.0 Enhancements, Systems Modeling
Corporation.

Sklenar, J. 2013. Tool for Discrete Event Simulation in MATLAB. Proceedings of the 27th European
Conference on Modeling and Simulation, Editors: Webjorm Rekdalsbakken, Robin Bye, and Houxiang
Zhang, Alesund, Norway.

Schriber, T. J. 1974. Simulation Using GPSS, John Wiley & Sons, Inc., New York.
The MathWorks Inc. 2005. Simulink: A Program for Simulating Dynamic Systems, Users Guide.

(www.mathworks.com)

AUTHOR BIOGRAPHIES

GUY L. CURRY is a Senior Professor of Industrial and Systems Engineering at Texas A&M University.
He holds a Ph.D. in Industrial Engineering from University of Arkansas. His current research interests
include applying operations research methods to production systems, and the development of modeling
systems for optimization and simulation. His email address is g-curry@tamu.edu.

AMARNATH BANERJEE is an Associate Professor and Corrie and Jim Furber ’64 Faculty Fellow of
Industrial and Systems Engineering at Texas A&M University. He received his Ph.D. in Industrial
Engineering and Operations Research from the University of Illinois at Chicago. His research interests are
in modeling, simulation and visualization, with applications in manufacturing, health care, and information
systems. His email address is banerjee@tamu.edu.

HIRAM MOYA received his Ph.D. from Texas A&M University, and currently is an Assistant Professor
in the Manufacturing and Industrial Engineering Department at the University of Texas Rio Grande Valley.
His research interests include queueing theory, optimization, simulation, operations research, supply chain
management and applied probability in the areas of homeland security, healthcare, green energy and
engineering education. His email address is hiram.moya@utrgv.edu.

HARRY JONES is Senior Professor in the Zachry Department of Civil Engineering at Texas A&M
University. He holds a Ph.D. from the University of Illinois. His research interests include the simulation
of complex structural systems subjected to rare environmental forces. His email address is h-
jones@tamu.edu.

1023

