

AGENT-BASED MODEL CONTINUITY OF STOCHASTIC TIME PETRI

NETS

Franco Cicirelli
1
, Libero Nigro

2
, Paolo F. Sciammarella

2

1
CNR - National Research Council of Italy

Institute for High Performance Computing and Networking (ICAR) - 87036 Rende(CS) - Italy
2
Software Engineering Laboratory

University of Calabria, DIMES - 87036 Rende (CS) – Italy

Email: f.cicirelli@dimes.unical.it, l.nigro@unical.it, p.sciammarella@dimes.unical.it

KEYWORDS

Multi-agent systems, model continuity, simulation, real-

time, stochastic time Petri nets, Java, JADE.

ABSTRACT

Stochastic Time Petri Nets (sTPN) are a useful formalism

for modelling and quantitative analysis of concurrent

systems with timing constraints. This paper describes an

implemented tool supporting sTPN, which was achieved

on top of a control-centric agent-based framework which

fosters model continuity. Model continuity means the

same model can be used for property checking through

simulation and for real-time execution. The paper

demonstrates the effectiveness of the approach through a

modelling example.

INTRODUCTION

Stochastic systems can be studied by either numerical or

statistical solution techniques (Younes et al., 2006).

Numerical methods enumerate the stochastic states of a

model and can evaluate a probability measure over a path

of state transitions by solving equations based on the state

associated probability distribution functions. Numerical

methods tend to be more accurate than statistical methods

which are based on sampling and simulation. However,

numerical methods can suffer of state explosion problems

and can impose restrictions on the classes of modelled

systems, e.g., based on timers which satisfy the Markov

property or which admit regeneration points in more

general systems. Stochastic Time Petri Nets (sTPN)

(Paolieri et al, 2016) have been proposed for modelling

and analysis of concurrent systems with timing

constraints. They are supported by numerical techniques

in the context of the ORIS tool (Bucci et al., 2010). An

approach to statistical model checking of sTPN based on

UPPAAL is described in (Cicirelli et al., 2015). This paper

proposes an original agent-based tool supporting sTPN.

Novel in the tool is a support to model continuity

(Cicirelli&Nigro, 2016a-b) that is the possibility of using

a same model for temporal analysis by simulation and for

real-time execution. The paper first describes the

definitions of sTPN. Then a summary of the underlying

control-centric agent-based architecture is furnished.

After that an overview of the tool implementation is

provided. The developed approach is then demonstrated

by a case study concerning a probabilistic formulation of

the Fisher’s mutual exclusion algorithm (Lynch&Shavit,

1992)(Paolieri et al., 2016). Finally, conclusions are

presented with an indication of on-going and future work.

STOCHASTIC TIME PETRI NETS

Syntax

An sTPN is a tuple
(𝑃, 𝑇, 𝐵, 𝐹, 𝑀0, 𝐼𝑛ℎ , 𝐸, 𝑈𝑤, 𝑈𝑑, 𝐸𝐹𝑇𝑠, 𝐿𝐹𝑇𝑠, 𝑃𝐷𝐹, 𝑊)

where:

 𝑃 and 𝑇 are disjoint finite nonempty set of places and

transitions; 𝑇 = 𝑇𝑖 ∪ 𝑇𝑡 where 𝑇𝑖are immediate

transitions, and 𝑇𝑡 are timed transitions;

 B is the backward incidence function, 𝐵: 𝑃 × 𝑇 → ℕ,

where ℕ denotes the set of natural numbers;

 𝐹 is the forward incidence function, 𝐹: 𝑃 × 𝑇 → ℕ;

 𝑀0 is the initial marking function, 𝑀0: 𝑃 → ℕ, which

associates with each place a number of tokens;

 𝐼𝑛ℎ is the set of inhibitor arcs, 𝐼𝑛ℎ ⊂ 𝑃 × 𝑇 where
(𝑝, 𝑡) ∈ 𝐼𝑛ℎ ⇒ 𝐵(𝑝, 𝑡) = 0;

 𝐸: 𝑇 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} is a boolean function which

extends the enabling condition of a transition. If

omitted, it defaults to 𝑡𝑟𝑢𝑒;

 𝑈𝑤 and 𝑈𝑑 are two update functions which extend

respectively the withdraw/deposit phase of a

transition. If omitted, they default to 𝑣𝑜𝑖𝑑;

 𝐸𝐹𝑇𝑠: 𝑇𝑡 → 𝑅+ is a function which associates each

timed transition with a (finite) earliest static firing

time. 𝑅+ denotes the set of non-negative real

numbers;

 𝐿𝐹𝑇𝑠: 𝑇𝑡 → 𝑅+ ∪ {∞} is a function which associates

each timed transition with a (possibly infinite) latest

static firing time. It must be 𝐿𝐹𝑇𝑠 ≥ 𝐸𝐹𝑇𝑠. An

immediate transition logically has 𝐸𝐹𝑇𝑠 = 𝐿𝐹𝑇𝑠 = 0;

 𝑃𝐷𝐹 is a function which associates each timed

transition with a probability distribution function

constrained in the interval [𝐸𝐹𝑇𝑠, 𝐿𝐹𝑇𝑠];

 𝑊 is a function, 𝑊: 𝑇𝑖 → 𝑅+, which associates each

immediate transition with a weight.

Semantics

A transition 𝑡 is enabled if each of its input places

contains sufficient tokens and 𝐸(𝑡) evaluates to 𝑡𝑟𝑢𝑒, i.e.,

iff

∀ 𝑝 ∈ 𝑃, (𝑝, 𝑡) ∈ 𝐼𝑛ℎ ⇒ 𝑀(𝑝) = 0 ∧
𝐵(𝑝, 𝑡) > 0 ⇒ 𝑀(𝑝) ≥ 𝐵(𝑝, 𝑡) ∧ 𝐸(𝑡)

Proceedings 30th European Conference on Modelling and
Simulation ©ECMS Thorsten Claus, Frank Herrmann,
Michael Manitz, Oliver Rose (Editors)
ISBN: 978-0-9932440-2-5 / ISBN: 978-0-9932440-3-2 (CD)

An enabled immediate transition 𝑡𝑖 is fireable.

Fireability of immediate transitions always has priority

over that of timed transitions. Among the set of fireable

immediate transitions, each 𝑡𝑖 can fire with probability

𝑃𝑟𝑜𝑏(𝑡𝑖) =
𝑊(𝑡𝑖)

∑ 𝑊(𝑡𝑗)𝑡𝑗∈𝑇𝑖 𝑎𝑛𝑑 𝑡𝑗 𝑖𝑠 𝑒𝑛𝑎𝑏𝑙𝑒𝑑

The time-to-fire 𝜏(𝑡𝑡) of a timed transition 𝑡𝑡 is

stochastically defined, at its enabling instant, by sampling

its associated 𝑃𝐷𝐹(𝑡𝑡) with the constraint:

𝐸𝐹𝑇𝑠(𝑡𝑡) ≤ 𝜏(𝑡𝑡) ≤ 𝐿𝐹𝑇𝑠(𝑡𝑡)

A timed transition is fireable at its absolute time-to-fire,

i.e., 𝑒𝑛𝑎𝑏𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(𝑡𝑡) + 𝜏(𝑡𝑡), provided it is less than or

equal to the absolute time-to-fire of all the other

simultaneously enabled timed transitions. Timed

transitions with the same absolute time-to-fire will fire

non deterministically.
Let 𝑚: 𝑃 → 𝑁 be the net marking, which specifies the

number of tokens of each place of the sTPN model at a

certain instant of time. When the transition 𝑡 fires, the

marking 𝑚 is replaced by a new marking 𝑚′ which is

derived from 𝑚 by the withdrawal of tokens from the

input places and the deposit of tokens in the output

places. More precisely, the firing process consists of the

two (atomic) phases:

𝑚𝑖𝑛𝑡(𝑝) = 𝑚(𝑝) − 𝐵(𝑝, 𝑡) − 𝑈𝑤(𝑡) (𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤 𝑝ℎ𝑎𝑠𝑒)

𝑚′(𝑝) = 𝑚𝑖𝑛𝑡(𝑝) + 𝐹(𝑝, 𝑡) + 𝑈𝑑(𝑡) (𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑝ℎ𝑎𝑠𝑒)

Transitions which are enabled in 𝑚, in the intermediate

marking 𝑚𝑖𝑛𝑡 and in the final marking 𝑚′ are said

persistent to the 𝑡 firing. Transitions which are enabled in

𝑚′ but not in 𝑚𝑖𝑛𝑡 are said newly enabled. Newly enabled

timed transitions have their time-to-fire which is

resampled.

A transition which is multiple enabled at a time instant

is assumed to fire its enablings one at a time (single

server semantics). Therefore, following its own firing,

would 𝑡 be still enabled, it is regarded as newly enabled.

As a final remark, it should be noted that the functions

𝐸, 𝑈𝑤 and 𝑈𝑑 are model-specific and can be exploited,

e.g., for managing a high-level concept like a variable

(see Fig. 7) or to avoid cluttering in complex topologies.

CONTROL SENSITIVE AGENT FRAMEWORK

The following highlights the control-based framework

(Cicirelli&Nigro, 2016a-b) for building multi-agent

systems which is at the basis of the sTPN tool described

later in this paper.

 The framework is founded on the notions of actors

(agents) and actions (see Fig. 1)

Actors

Actors are modelled as finite state machines which

communicate to one another by asynchronous message

passing. Actors are thread-less. They are at rest until a

message arrives to be processed. The behavior of an actor

(i.e., its state machine) is modelled in its associated

handler() method. An incoming message causes local

variables of the actor to be updated, possibly changes the

current state of the state machine, can send new messages

to known actors and can submit one or more actions.

A subsystem of actors (Logical Process or LP) is

allocated for the execution on a computing node. All the

actors of a same subsystem are regulated by a local

control machine which transparently buffers exchanged

messages into one or more message queues and

ultimately delivery messages, one at a time, to recipient

actors, according to a proper control strategy, e.g., based

on a time notion (simulated or real-time). Message

processing in a actor subsystem represents the unit of

scheduling.

Figure 1 - Actor organization and orthogonal control aspects

In general, multiple actor subsystems can be federated

to constitute a distributed system (see Fig. 2), using the

services of a suitable transport layer and communication

protocol. A Time Server can be in charge of maintaining a

global time notion across the federated system.

Figure 2 - Federated actor system based on JADE

 Fig. 2 portrays a snapshot of a distributed actor

system achieved on top of the open source JADE project

(Bellifemine et al., 2007)(Cicirelli&Nigro, 2016a-b)

which provides basic services for agent lifecycle, naming

and message exchanges based on FIPA (Foundation for

Intelligent Physical Agents). In addition it favours

interoperability with legacy software FIPA compliant.

Both actors and messages can be dynamically transferred

from an LP (JADE container) to another.

 A fundamental design issue of the actor-framework is

related to the control machines which act as plug-ins

tailored to the application needs.

Actions

 Messages promote sociality among actors and capture

the occurrence of events. They are handled sequentially

in an interleaved way by the local control structure.

Besides messages, the actor framework relies also on

actions, that are activities which consume time and

require processing units (PUs) for them to be executed.

Actions express computational needs associated to

messages and can require the use of resources belonging

to the external environment. Actions are executed in

parallel, depending on the availability of PUs. In general

an action, after its submission by an actor, can run to

completion or it can be suspended/resumed or aborted.

An action is a black box with a list of input parameters

and a list of output parameters. Actions have no visibility

to the internal data variables of the submitter actor. As a

consequence, no mutual exclusion mechanism is required

and no interference can occur from the action parallel

execution schema. When an action terminates, it can

inform the submitter by an action completion message.

The submitter can then access the output parameter list to

get any result computed by the action.

 Actions can be reified in different ways. Simulated

actions consist of pure time consuming activities whose

aim is to advance the simulated time. Real or effective

actions have a concrete instruction body (algorithm)

whose execution advances the real time. Pseudo real

actions increases the real time but have no concrete

algorithm to execute. They can be useful for preliminary

real-time execution of a given model (see later in this

paper) which is a key to check how the overhead

introduced by message exchanges and message

processing affect the system timing constraints.

As a further refinement, action execution can be atomic

or it can be preempted. In addition, an action can express

an imprecise computation which after a time threshold

delivers a first result whose accuracy can be improved

would more time be available, or it can be returned and

the action execution interrupted.

 The various notions of actions are handled by the

corresponding action schedulers provided by the control

machine. An action scheduler manages local processing

units and stores actions which find no available PU in

pending action queues, waiting for some specific or

unspecific PU to be ready to accept a new action

execution. A PU can be a physical core or it can be

realized by a Java thread, or it can be a fake object in the

case of simulated actions. The use of preemptive

actions/PUs were used in (Cicirelli&Nigro,2016a) to

enable schedulability analysis of real-time systems.

 A key factor of the actor control framework is model

continuity, that is transitioning a same model from

property analysis to real time execution. Model continuity

mainly depends on actions. Moving from simulation to

real execution requires changing the control machine, the

time notion and the nature of actions which are switched

from simulated actions to real actions and associated

action schedulers. All the remaining part of the model,

and particularly actor behaviors and message passing,

remains exactly the same during the transition.

Control framework in Java/JADE

Fig. 3 recapitulates some of the fundamental classes of

the control framework. Actors and control machines are

mapped on JADE agents. Each control machine owns an

action scheduler which administers a set of processing

units. A control machine receives the submitted actions

and forwards them to the action scheduler. Actions and

messages are embodied as serialized objects within

𝐴𝐶𝐿𝑀𝑒𝑠𝑠𝑎𝑔𝑒s when exchanged between actors and

control machines.

Figure 3 - Framework basic classes

The prototyped control machines are partitioned into

three groups (see Fig. 4): (i) the untimed control

machines, (ii) the time-aware control machines which

operate in a sequential setting and (iii) the time-aware

control machines which operate in a distributed context.

A time server is required by the latter group in order to

ensure a coherent time evolution among all the

participating control machines (more details in

(Cicirelli&Nigro, 2016a-b)).

Figure 4 - Class hierarchy of control machines

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛, along with its parallel/distributed

counterpart 𝐷𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛, implements a classical

discrete-event simulation schema. Messages are tagged

with an absolute timestamp and are buffered into a time

ranked queue where the head message holds the (or is one

message with) minimum timestamp. The control machine

can work with simulated actions. A simulated action

carries the time duration of the associated activity. At its

submission, a simulated action is assigned to an

exploitable PU which in this case simply means that an

action completion message is scheduled with timestamp

𝑛𝑜𝑤 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛.

𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒 is a time-sensitive control machine using a

real time notion built on top of the

𝑆𝑦𝑠𝑡𝑒𝑚. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝑀𝑖𝑙𝑙𝑖𝑠()System Java service. Only

effective actions can be used. Messages have a timestamp

and must be dispatched as soon as the current time

exceeds their firing time. 𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒 uses a configurable

time tolerance 𝐸𝑃𝑆, so that a time-constrained message

which should occur at absolute time 𝑡, is considered to be

still in time if the current time is less than or equal to

𝑡 + 𝐸𝑃𝑆. 𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒 is useful for non-hard real-time

applications. The 𝐷𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒 control machine replaces

𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒 in the parallel/distributed context.

Figure 5 - Class hierarchies of action schedulers and PUs

As shown in Fig. 5, corresponding classes exist for

action schedulers and PUs, which work together.

Schedulers immediately put into execution a submitted

action on an idle exploitable PU (if there are any),

otherwise, different scheduling strategies can be adopted.

In the case no such idle PUs exist, the scheduler

𝐹𝑖𝑟𝑠𝑡𝐶𝑜𝑚𝑒𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑟𝑣𝑒𝑑𝐴𝑆 organizes actions in a

pending list. Actions will be executed according to their

arrival time. The 𝐹𝑖𝑥𝑒𝑑𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐴𝑆 uses instead an

action priority to keep ordered the pending list. In this

case, action execution is priority driven and preemptive.

For simulation purposes, the use of classes which are

heirs of 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑃𝑈 is requires. They are passive

objects without inner threads. During real-time execution,

heirs of 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑈 should instead be used. They are

thread-based objects able to execute effective actions

(Cicirelli&Nigro, 2016a-b).

AN AGENT-BASED STPN TOOL

A class diagram of an 𝑠𝑇𝑃𝑁 tool built on top of the

actor-based control framework is summarized in Fig. 6.

Figure 6 - Main classes in the sTPN tool

 A model is feed through an XML file which is parsed

into an internal representation consisting of a multi-agent

system (MAS). Agents, i.e., actors, are associated with

transitions which interact with the 𝐸𝑛𝑔𝑖𝑛𝑒 (another

agent) through messages and method calls. Each

transition refers its input/output arcs which are linked to

their input/output places. Arcs and places are realized as

POJOs and provide their services by method invocations.

 For analysis purposes, an sTPN model is simulated by

associating to the generated MAS (single LP) the

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 control machine (see Fig. 4) along with

basic simulated actions paired with a first come first

served scheduler (Fig. 5). Evolution of the MAS is

triggered by transition firings and is controlled by the

𝐸𝑛𝑔𝑖𝑛𝑒 which repeats a basic loop of simulation steps.

At each step, the candidate set of enabled transitions is

recomputed. The 𝐸𝑛𝑔𝑖𝑛𝑒 owns the collection of

transitions and the collection of places (marking) of the

model. Transition enabling is checked by a method call

on the transition agents.

 A critical issue concerns the atomic firing process of a

transition. Towards this the 𝐸𝑛𝑔𝑖𝑛𝑒 separately executes

the withdraw and the deposit phases of a transition firing.

Each phase is immediately followed by a 𝑟𝑒𝑡𝑟𝑎𝑐𝑡 of

disabled transitions which are removed from the

candidate set and their firing messages invalidated in the

simulation calendar. The two phases are required for

correctly handling effective conflicts among transitions.

An enabled transition can loss its enabling status in the

intermediate marking following the withdraw phase or in

the final marking reached after the deposit phase.

Purposely, withdraw and deposit operations are realized

by method calls (defined in the interface 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝐹 in

Fig. 6) on the transition actor (recall that the

computational status of an actor system is frozen between

two consecutive message dispatches; therefore, method

invocations, also with side-effects, are compliant with the

actor lifecycle).

 Immediate transitions, ranked according to their

weights, are fired one at a time directly by the 𝐸𝑛𝑔𝑖𝑛𝑒.

Timed transitions are instead fired by messages and

actions. In particular, all the enabled timed transitions at a

simulation step receive a 𝑆𝑡𝑎𝑟𝑡𝐹𝑖𝑟𝑖𝑛𝑔 message from the

𝐸𝑛𝑔𝑖𝑛𝑒 whose processing implies the next sample of the

associated probability distribution function is obtained.

The sample is passed to a submitted action which

simulates the transition firing by scheduling the message

completion message at the absolute time of now+sample.

When the transition receives the

𝐴𝑐𝑡𝑖𝑜𝑛𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒, it informs the 𝐸𝑛𝑔𝑖𝑛𝑒 about

commitment of the transition firing through an

𝐸𝑛𝑑𝐹𝑖𝑟𝑖𝑛𝑔 message. The 𝐸𝑛𝑔𝑖𝑛𝑒 then executes the two

phases 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤 + 𝑟𝑒𝑡𝑟𝑎𝑐𝑡, 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 + 𝑟𝑒𝑡𝑟𝑎𝑐𝑡 on the

transition. After that, the next step (iteration) of the

𝐸𝑛𝑔𝑖𝑛𝑒 is started.

 For property checking, a model evolution (see Fig. 6)

is watched by suitable observers which collect statistical

information about transitions or the entire model.

 Since the 𝐸, 𝑈𝑤 and 𝑈𝑑 functions are model specific,

the adopted solution consists in specifying, in the model

XML, the name of a Java class which provides an

implementation of the above functions as methods. Such

a class, subtype of the 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 abstract class (see Fig.

6), is then dynamically loaded, instantiated and exploited

by transitions.

 For preliminary execution of an 𝑠𝑇𝑃𝑁 model, the

corresponding MAS is plugged with the 𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒

control machine, and works with pure time consuming

effective actions and the 𝐹𝑖𝑟𝑠𝑡𝐶𝑜𝑚𝑒𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑟𝑣𝑒𝑑𝐴𝑆

scheduler. All of this ensures the “effective actions”

behave as in simulation but now advance the real-time.

A CASE STUDY USING MODEL CONTINUITY

The Fisher’s mutual exclusion protocol for 𝑁 processes,

having identifiers 1, 2, … , 𝑁, competing for the access to

some shared resource, was used as a case study for

validating the obtained 𝑠𝑇𝑃𝑁 tool. The protocol is an

example of a time-dependent mutual exclusion algorithm

(Lynch&Shavit, 1992). Although the algorithm has been

analyzed qualitatively by model checking, e.g., in the

context of the UPPAAL toolbox (Behrmann et al., 2004),

here it is used for quantitative evaluation using simulation

and the results compared with those described in (Paolieri

et al., 2016) which are based on probabilistic model

checking and numerical approach.

The protocol assumes that basic read/write memory

operations are atomic. A single global communication

variable 𝑖𝑑 is used, which stores the identifier of the

process trying to enter its critical section, or it defaults to

0. Every process can try the protocol when 𝑖𝑑 = 0. In this

case the process executes the time-consuming operation

𝑖𝑑 ← 𝑖. Since more processes can attempt the same

operation simultaneously, it is required for a trying

process to wait for a time (say it 𝑊+) greater than the

writing time 𝑊. After 𝑊+ time units are elapsed, the

process reads again 𝑖𝑑. In the case 𝑖𝑑 ≠ 𝑖 the process has

to retract and to wait for the 𝑖𝑑 to become again 0. If

instead 𝑖𝑑 = 𝑖 then the process can enter its critical

section. At the exit from the critical section, the process

sets 𝑖𝑑 to 0.

Figure 7 – A model of Fisher’s protocol (Paolieri et al., 2016)

 The model in Fig. 7 with 𝑁 = 3 processes, derived

from (Paolieri et al., 2016), was used for the experiments.

Immediate transitions are shown as black bars, whereas

timed transition are depicted as white bars. The non

critical section of each process is modelled by an 𝑎𝑟𝑟𝑖𝑣𝑎𝑙

timed transition with interval [0, ∞] and with an

exponential pdf (𝐸𝑋𝑃) with rate 0.1. 𝑊 is supposed to be

uniformly distributed (𝑈𝑁𝐼𝐹) within the interval [0,1],
and 𝑊+ is set to 1.1 time units. Other details of the

model should be self-explanatory.

Property analysis

The Fisher’s sTPN model was studied in (Paolieri et al.,

2016) using a probabilistic temporal logic built around an

interval until operator:

𝜑 𝑈[𝛼,𝛽]𝜓

which captures the event that a marking of the sTPN

model is reached which satisfies a predicate 𝜓 at some

time in the interval [𝛼, 𝛽] without violating a safety

predicate 𝜑. Of such event can be of interest finding the

occurrence probability 𝑃, or bounding such probability

against a given threshold value: 𝑃~𝑝 where ~ ∈ {<, >}.

Predicate states are based on net markings. As usual,

predicates and atomic propositions can be combined with

boolean operators to form more complex formulas, but

nesting of interval until operators is not allowed.

 The interval until operator naturally can be used to

assess transient behavior of a net model.

 The following properties were studied using the

Fisher’s protocol model upon the developed sTPN tool:

(a) mutual exclusion (safety), i.e., no more than one

process can enter its critical section at a time; (b) absence

of starvation (bounded liveness), that is a trying process

eventually enters its critical section. The latter property

relates to estimating the overtaking factor, i.e., the

maximum number of by-passes of other processes with

respect to a waiting process, or equivalently to estimating

the maximum waiting time of a trying process before

entering its critical section; (c) some other examples of

specific bounded liveness properties. In each case a

proper decoration of the model observer was used. In the

following, for simplicity, the notation, e.g., 𝑐𝑠1 is used

instead of 𝑚[𝑐𝑠1].

Mutual exclusion

Mutual exclusion was checked by performing some

simulation runs with 𝑡𝐸𝑛𝑑 = 3.5 × 105 time units, and by

observing that the event

𝑡𝑟𝑢𝑒 𝑈[0,𝑡𝐸𝑛𝑑](𝑐𝑠1 = 1 + 𝑐𝑠2 = 1 + 𝑐𝑠3 = 1 > 1)

has a 0 probability of occurrence. The model observer

object was decorated to watch marking of 𝑐𝑠1,
𝑐𝑠2 and 𝑐𝑠3 places. In no case it was found more than

one process is in its critical section. As part of this

assessment it was also checked that effectively it can

happen that 𝑐𝑠i for any 𝑖 assumes the value 1.

Absence of starvation

It was estimated the probability that a process can be

affected by a certain number of by-passes (overtaking)

from other competing processes. As one can see from

Fig. 8, each process seems to suffer for no more than 6

by-passes. 5 simulations with 𝑡𝐸𝑛𝑑 = 3.5 × 105 time

units were used to collect data behind Fig. 8 and Fig. 9.

Figure 8 - Occurrence probability vs. number of by-passes

Another way to check the starvation-free behavior

was estimating the worst case waiting time of a trying

process. Results are shown in Fig. 9.

Figure 9 - Trying process waiting time

Examples of bounded liveness properties

As an example of a particular bounded liveness property

it was measured the occurrence probability of the

following event:

𝑡𝑟𝑢𝑒 𝑈[0,𝛽](𝑐𝑠1 = 1) (*)

for various values of 𝛽, starting separately from each of

the following markings which describe possible

execution states of the three processes:

𝑚𝐴 ≡ 𝑟𝑒𝑎𝑑𝑦1𝑖𝑑𝑙𝑒2𝑖𝑑𝑙𝑒3

𝑚𝐵 ≡ 𝑖𝑑 = 3 𝑟𝑒𝑎𝑑𝑦1𝑖𝑑𝑙𝑒2𝑤𝑎𝑖𝑡𝑖𝑛𝑔3

𝑚𝐶 ≡ 𝑖𝑑 = 3 𝑟𝑒𝑎𝑑𝑦1𝑤𝑎𝑖𝑡𝑖𝑛𝑔2𝑤𝑎𝑖𝑡𝑖𝑛𝑔3

The property addresses specifically a deadline

requirement upon the delay 𝑝𝑟𝑜𝑐𝑒𝑠𝑠1 experiments before

entering its critical section.

A batch of simulation runs were carried out,

terminating each of them as soon as the watched event

occurs (that is the given number of by-passes happens).

The proportion of the runs which satisfy the event divided

by the total number of runs was then evaluated.

The number of required runs was empirically

determined by watching the probability value which

almost stabilizes. 100 runs were used for building each

curve in Fig. 10.

Figure 10 - Occurrence probability of the event (*) vs. time

For example, in the 𝑚𝐴 scenario, as expected, the

delay of 𝑝𝑟𝑜𝑐𝑒𝑠𝑠1 can be short (best cases) with a

probability of about 90% but in the worst case

(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1) it amounts to known maximum waiting

time (Fig. 10).

Another particular property concerned an evaluation

of the occurrence probability of the following event:

! 𝑐𝑠1 𝑈[0,𝛽](𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑2 ∨ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑3) ∧

 (𝑟𝑒𝑎𝑑𝑦2 ∨ 𝑟𝑒𝑎𝑑𝑦3) (**)

for various values of 𝛽, starting from the marking

𝑟𝑒𝑎𝑑𝑦1 𝑖𝑑𝑙𝑒2 𝑖𝑑𝑙𝑒3

and separately for three different service time

distributions: 𝑈𝑁𝐼𝐹[0,2], 𝑈𝑁𝐼𝐹[0,4], 𝑈𝑁𝐼𝐹[2,4]. The

event amounts to asking the following check: in the

hypothesis that 𝑝𝑟𝑜𝑐𝑒𝑠𝑠1 is not in its critical section,

what is the worst case time (𝛽) for each of the remaining

processes so as to be ready to try or be capable of having

completed an access to shared data? Respectively 235,

195 and 220 runs were used for generating the three

curves in Fig. 11.

Figure 11 - Occurrence probability of event (**) vs. time

It is worth noting that the results portrayed in Fig. 10

and Fig. 11 are very close to the results reported in

(Paolieri et al., 2016) for the same checked events.

Preliminary real-time execution

After property analysis, the sTPN Fisher’s protocol was

re-checked by executing it in real-time but with pure time

consuming actions instead of effective instructions of a

concrete programmed version of the process bodies.

Such preliminary execution is very important in the

practical case for observing the overhead introduced by

scheduling and message exchanges on the fulfillment of

model timing constrains. Configuring the model for

preliminary execution only required: (a) interpreting the

time unit as 1 𝑠𝑒𝑐; (b) changing the control machine from

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 to 𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒 and (c) using pure time

consuming effective actions with the

𝐹𝑖𝑟𝑠𝑡𝐶𝑜𝑚𝑒𝐹𝑖𝑟𝑠𝑡𝑆𝑒𝑟𝑣𝑒𝑑𝐴𝑆 scheduler. No changes were

introduced in the model. The Fisher’s protocol was then

executed with a time tolerance of 𝐸𝑃𝑆 = 200 𝑚𝑠.

Basic properties of the mutual exclusion algorithm

were watched during the execution and the time

deviations, i.e., the latency with which messages and

actions are actually executed with respect to their due

time, measured.

Worst case results of 4 runs each of 7 ℎ𝑜𝑢𝑟𝑠 of wall

clock time are collected in the histogram of Fig. 11. As

one can see, in almost all the cases, the time deviation is

virtually 0 𝑚𝑠. The most frequent non zero deviation is

16 𝑚𝑠. The worst case deviation was found to be

155 𝑚𝑠 which occurred just once at the execution start,

i.e., at model bootstrapping.

Figure 11 - Observed time deviations

 During the whole real-time experiment, no more than

one process was found in its critical section. In addition,

in Fig. 12 si portrayed an histogram of registered

overtaking factor and its occurrency probability of trying

processes.

Figure 12 - Observed overtaking

All the experiments were carried out on a Win 7

workstation, 12GB, Intel Core i7, 3.50GHz, 4 cores,

without an active Internet connection.

CONCLUSIONS

Athough potentially less accurate of the probabilistic

model checking approach based on numerical solutions

proposed in (Paolieri et al., 2016), the agent-based

simulation tool for Stochastic Time Petri Nets (sTPN)

described in this paper proves effective in the practical

case, as demonstrated by the reported case study.

A key factor of the approach is model continuity, i.e.

the same model can be used for property checking by

simulation and for real-time execution. The tool features

derive from the adopted underlying agent-based control-

centric framework (Cicirelli&Nigro, 2016a-b).

The proposed approach provides the abstraction

mechanisms and the execution concerns suited, e.g., for

modelling, analysis and execution of time-constrained

workflow systems. The real-time preliminary execution,

in particular, directly corresponds to workflow

enactment.

 Prosecution of the research work is geared at:

 optimizing the implementation of the sTPN tool;

 applying the approach to modelling, analysis and

enactment of time-constrained workflow systems

(Gonzales del Foyo&Silva, 2008);

 supporting a probabilistic temporal logic (Younes et

al., 2006)(Paolieri et al., 2016)(David et al., 2015)

for the expression of quantitative properties to check

on an sTPN model, and automating the determination

of the required simulation runs;

 extending the tool toward parallel/distributed

simulation of large models.

REFERENCES

Behrmann, G., A. David, K.G. Larsen (2004). A tutorial on
UPPAAL. In: Formal Methods for the Design of Real-Time
Systems, M. Bernardo and F. Corradini Eds., Lecture Notes
in Computer Science, Vol. 3185, Springer-Verlag, pp. 200-
236.

Bellifemine, F., G. Caire, D. Greenwood (2007). Developing
multi-agent systems with JADE. John Wiley & Sons.

Bucci, G., L. Carnevali, L. Ridi, E. Vicario (2010). ORIS: a tool
for modeling, verification and evaluation of real-time
systems. Int. J. on Software Tools for Technology Transfer,
Springer, vol. 12, pp. 391–403.

Cicirelli, F., C. Nigro, L. Nigro (2015). Qualitative and
quantitative evaluation of stochastic time Petri nets. Proc. of
2nd Int. Workshop on Cyber-Physical Systems (IWCPS'15),
Lodz, Poland, pp. 775-784.

Cicirelli, F., L. Nigro (2016a). Control aspects in multi-agent
systems. In Intelligent Agents in Data Intensive Computing,
Springer, Studies in Big Data, Kolodziej J., Correia L.,
Manuel Molina J. (Eds.), pp. 27-50.

Cicirelli, F., L. Nigro (2016b). Control centric framework for
model continuity in time-dependent multi-agent systems.
Concurrency and Computation: Practice and Experience,
Wiley, to appear.

David, A., K.G. Larsen, A. Legay, M. Mikucionis, D.B. Poulsen
(2015). UPPAAL SMS Tutorial, Int. J. on Software Tools for
Technology Transfer, Springer, 17:1-19, 06.01.2015, DOI
10.1007/s10009-014-0361-y, 2015

Gonzalez del Foyo, P.M., J.R. Silva (2008). Using Time Petri
Nets for modelling and verification of timed constrained
workflow systems. In ABCM Symposium Series in
Mechatronics, vol. 3, pp.471-478.

Lynch, N., N. Shavit (1992). Timing-based mutual exclusion. In
IEEE Real-time Systems Symp., pp. 2-11.

Paolieri, M., A. Horváth, E. Vicario (2016). Probabilistic model
checking of regenerative concurrent systems. IEEE Trans.
Soft. Eng., to appear (available on-line).

Younes, H.L.S., M. Kwiatkowska, G. Normaln, D. Parker
(2006). Numerical vs. statistical probabilistic model
checking. Int. J. on Software Tools for Technology Transfer,
vol. 8, no. 3, pp. 216-228.

