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ABSTRACT 

We present an Agent Based Model (ABM) named 

MIMICS (Modeling Inferential Minds in Conceptual 

Space), which shows how a social group develops 

abstract concepts for achieving agreement in 

communication. Agents describe concepts by assigning 

properties to them based on learning and communication 

interactions, trying to develop a conceptual space that 

discriminates as much as possible between two concepts 

(i.e., they try to assign properties to concepts decreasing 

the overlap among the properties that describe them). 

Contrarily to concrete concepts, those properties come 

from the social group and not from objects’ physical 

properties. The results show that agents in MIMICS 

develop abstract concepts that exhibit the same 

characteristics that are found in studies of real concepts: 

non-uniform frequency distributions of properties, inter-

subjective variability and stable concepts that are useful 

for the simulated social group by providing agreement in 

communication. 

 

INTRODUCTION  

Concrete concepts are typically associated to physical 

properties. For example, a type of face could be 

characterized by properties such as a given nose length, 

eye separation, mouth width, etc. (Tversky 1977). The 

standard theory of concrete concepts holds that concepts 

are learned by observing category exemplars, extracting 

the relevant properties (Schyns et al. 1998), and 

estimating the frequency distribution of those relevant 

properties (Ashby and Alfonso-Reese 1995; Griffiths et 

al. 2011). This then allows organizing a semantic 

structure and making category judgments (e.g., How 

typical is a given exemplar of category X? Does the 

exemplar belong to category X or category Y? How 

central is property j for category X?). 

Perhaps one of the most important findings about 

concrete concepts, is that concepts relate only 

probabilistically to conceptual properties (Rosch 1973). 

This means that, among other things, two concepts that 

may be applied to a situation or object are not 

discriminable through a logical rule (i.e., by necessary 

and sufficient properties), but show a typicality structure 

instead (Rosch et al. 1976). Those exemplars that exhibit 

frequent properties are more typical than those exhibiting 

less frequent properties (Rosch and Mervis 1975) (e.g., 

an ostrich would be a low typicality exemplar of the 

BIRD category, whereas a dove would be a typical 

exemplar). The typicality structure also means that an 

object can be a member of different categories, although 

to different degrees (e.g., a Chihuahua may be a low 

typicality exemplar of the DOG category, while 

simultaneously being a relatively more typical case of the 

PET category). Note here that the fact that an exemplar 

may belong to more than one category, implies that 

concepts must share properties to a certain extent (e.g., 

being friendly to people may be a property of the concept 

DOG, but also of the concept PET). Henceforth, we will 

refer to this as “conceptual overlap”. 

In contrast to concrete concepts, relatively little is known 

about abstract concepts (e.g., freedom, democracy, 

personality). This is a problem, given that a large 

proportion of the concepts that we use are abstract 

concepts (estimated to be more frequent than concrete 

words, Rechia and Jones 2012). Though the standard 

concrete concept theory assumes that it is a valid 

description of all kinds of concepts, there is evidence that 

abstract concepts do not respond to the same 

characteristics.  

When researchers study concrete or abstract concepts 

they frequently ask a sample of individuals to produce 

lists of conceptual properties (e.g., Wu and Barsalou 

2009). However, for abstract concepts subjects do not 

produce physical properties. Rather, they produce verbal 

associations (e.g., for the concept EMERGENCY, we 

might obtain danger as one of its properties; Della Rosa 

et al. 2010). When these lists are coded and aggregated, 

non-uniform or non-homogeneous frequency 

distributions of conceptual properties are obtained (these 

are called norming studies). 

Another difference between concrete and abstract 

concepts is the following. Though concrete concepts may 

be learned without supervision (e.g., Love 2002), it does 

not seem possible to learn an abstract concept without 

some kind of supervision. A concrete concept may be 

learned by perceiving a sequence of exemplars, while 

extracting common properties. It is dubious that the same 

could be achieved for an abstract concept. Though there 

is no empirical support for this claim, it is difficult to 

imagine a list of exemplars that would allow learning, 

e.g., the concept of SECURITY without some kind of 

feedback. Furthermore, many abstract concepts refer to 

internal states that are not directly perceptible (e.g., 
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INTENTION, Wu and Barsalou 2009) and are therefore 

clearly different from concrete concepts. 

A working hypothesis of the work we report here is that 

the two issues discussed above (i.e., supervision 

requirement and verbal associations) are related. If 

abstract concepts cannot be learned by observing 

exemplars, it is possible that learning them requires 

attending to the behavior of other members of the social 

group when they use the concept. For example, it is 

possible that some kind of explicit teaching of the 

concept is necessary for someone to learn which other 

concepts are associated with the focal concept. If so, the 

need for supervision may cause that the conceptual 

content of abstract concepts is basically verbal. 

Another important feature of property frequency 

distributions (for abstract as well as concrete concepts) is 

that they show inter-subjective variability in conceptual 

content (Barsalou 1993). In fact, given that subjects 

produce different lists of conceptual properties, non-

uniform distributions follow.  

Given our discussion above, our general research 

question in the current work is why abstract concepts 

(just as concrete concepts) should produce a probabilistic 

structure of properties (i.e., verbal associates), given that 

abstract concepts seem not to be learned as concrete 

concepts are. In the next section, we develop a meta-

theory that offers an explanation, which we later 

implement as an Agent Based Model (ABM). Note that 

although we don’t strictly follow the ODD protocol 

(Grimm et al. 2006) to present the ABM, we comply with 

including most of the material suggested in it. 

 

A META-THEORY ABOUT CONCEPTS 

Our meta-theory implies several factors that operate 

simultaneously. First, we assume that people can interact 

with a concept in two different manners: either learning 

or using it. At any given moment, individuals should 

make a decision regarding how to interact with a concept 

(not necessarily a conscious one). We assume that this 

decision depends on how much an individual knows how 

to differentiate the concepts in question. Though there are 

several potential ways in which individuals could 

determine if they know a concept well enough to use it 

confidently (e.g., they could pay attention to feedback 

from others regarding whether they are using the concept 

correctly), in the current work we assume that individuals 

attempt to discriminate as much as possible the focal 

concept from other potentially applicable concepts. Thus, 

the lesser they are able to discriminate, the more they are 

prone to learn something new about the concept in 

question. 

Given that it does not seem possible to learn an abstract 

concept merely by perceiving exemplars, it is likely that 

these concepts are learned through explicit information 

acquired from others. There are several ways in which 

this could happen (e.g., individuals could directly ask 

others about the associated properties and construct their 

own frequency distribution in a piecemeal fashion). In 

the current work, we assume that individuals can learn 

the content of an abstract concept by asking explicitly if 

a property corresponds to a concept. 

As a consequence of learning more about the focal 

concept, we assume that individuals increasingly tend to 

decide to use a concept rather than continue learning. 

Classically, it would be assumed that a concept coded in 

language would be used to make reference (e.g., the word 

“dog” could be used to refer to a specific dog or to the 

category DOG). In contrast, here we assume that when 

using abstract concepts, individuals are trying to 

understand the point of view of a conversational partner 

(i.e., if she conceptualizes a situation as a case of the focal 

concept or as a case of an alternative concept). Here, 

again, there are several ways in which this could happen 

(e.g., an individual could observe the conceptual content 

produced by someone and by an associative process 

could gain information about which concept is being 

used). In the current work, we assume that individuals 

first adopt a given point of view (i.e., they conceptualize 

the situation as a case of a given concept) and look for 

confirmation that their conversational partner has the 

same point of view (Chaigneau et al. 2012). 

Though searching for confirmation is a strategy that will 

lead to errors (Nickerson 1998), in our work we assume 

that a social group could use it to keep useful concepts 

(i.e., those that allow inferring the likely mental state of 

others). Looking for confirmation is a very simple 

strategy, which is likely to be used more than 

sophisticated processes (e.g., disconfirmation), and that 

does not require assuming elaborate cognitive 

processing. 

 

DESCRIPTION OF MIMICS ABM 

We designed an ABM that implements a specific version 

of the meta-theory described above (MIMICS; Modeling 

Inferential Minds in Conceptual Space). This theory 

assumes specific solutions to the topics discussed above, 

though — as also discussed above — other solutions are 

possible. Just to refresh them, the topics are the 

distinction between learning and using a concept, how an 

abstract concept may be learned, and what does it mean 

to use an abstract concept. Thus, our specific goal is to 

test if the ABM formalization is able to produce the 

pattern of results exhibited by abstract concepts: 

probability distributions of properties, absence of an 

objective criterion to define concepts and inter-subjective 

variability, and, despite all that, stability and usefulness 

of concepts.  

In MIMICS, agents play two types of roles: observers (O) 

and actors (A), and act as Os and As depending on the 

type of interaction executed (see Table 1 and associated 

explanations). Regardless of the role, agents know there 

are two concepts that can apply to a situation (C1, C2), 

and that there are properties (j) that can describe them. 

They also have a finite universe of P potential properties 

� ∈ {0,1,2, . . . , � − 1} that can describe any of the two 

concepts � ∈ {1,2}. These are not properties in a 

traditional sense (i.e., they are not independently 



 

 

discriminable perceptual features), but rather verbal tags 

associated to concepts. 

Agents develop their concepts either communicating 

with other agents or learning from them. For each 

concept (C1, C2), agents keep track of the number of 

occasions (�
�) in which they have found property pj when 

interacting with the given concept c, and of the number 

of times in which they have interacted successfully (�
�) 

with that property pj relative to that given concept c (see 

below for an explanation of what constitutes a successful 

interaction). In general, the greater �
�is in relative terms, 

the greater the evidence is for that property pj to belong 

to that concept c. Note that the potential property j 

becomes a known property pj (we will explain this 

process later on). 

MIMICS has 2 mechanisms for concept development 

based on social interactions: 

One is an implicit mechanism in which O is not 

attempting to learn, but to decide if A is in the same 

mental state as he is (we call this process, 

communication). In this process, O believes it knows the 

concept sufficiently and that there is no need to continue 

learning it. Then, in the communication mode, O assumes 

that the situation can be described by C1 (or C2), and 

waits for evidence that A conceptualizes it similarly. 

Then, A selects a concept c and a property pj that belongs 

to c (�
�), and offers that property to O. If that property is 

in O’s concept C1 (or C2), then O assumes that both 

agree about the situation’s definition. Consequently, O 

increases �
�and �

�for that property in concept C1 (or 

C2), otherwise, O increases only �
� (not �

�) for that 

property in concept C1 (or C2). Note that agreement can 

be true (A is really also thinking of concept C1 (or C2)) 

or it can be illusory (A is not really thinking in C1 but in 

C2 (or not in C2 but in C1)). In other words, ABM agents 

cannot read other agents’ minds, and can only infer their 

mind states based on the evidence. 

The other mechanism is one of explicit learning. If O 

believes it needs to learn more about concept C1 (or C2), 

then it looks for more information. For that, O queries A 

with a c, j pair (i.e., asks whether j is a property of c in 

A’s mind). If the query receives a negative answer, then 

O increases �
�	but does not increase �

� (i.e., signaling 

that j has been experienced, but that it is not part of the 

focal concept). If the query receives a positive answer, 

then O increases �
�	and �

�. 

For each property �
� (i.e., each j in each concept C1, C2), 

agent O computes a success probability (��
� = �

� �
�⁄ ) 

for interacting with that property �
� in that concept c. 

��
�is the probability, computed from an agent’s own 

experience, that it can achieve agreement when using a 

given property �
�in a given concept c. 

The information obtained in communication and learning 

is used by O for two things: 

First, it uses it to decide to which concept to assign a 

property �
�. The probability of �

�being assigned, e.g., to 

concept C1, increases probabilistically as the normalized 

absolute difference between the SPs for property �
� also 

increases (i.e., how much an individual knows how to 

differentiate the concepts). In general, as the number of 

successful interactions when using a property �
� 

increases (i.e., those interactions that produce 

agreement), the evidence for that property belonging to 

that concept, and not to an alternative concept, also 

increases. In other words, to assess the possibility of 

discriminating a property between both concepts, the 

agents use	∣ ��
� − ��

� ∣. A small absolute difference 

shows that property �
� is not very discriminable (i.e., it 

produces about the same success probability for both 

concepts). This value is normalized to obtain what we 

define as the discrimination probability:  

 

DP = 
∣���

�����
�∣

∀��� !∣���
�����

�∣
   (1) 

 

In eq. (1), the absolute difference in SP for property �
�for 

both concepts (∣ ��
� − ��

� ∣) is divided by the 

maximum difference across all known properties in O’s 

mind (see below for an explanation of how an agent 

knows properties), so that DP will always fall in the [0,1] 

interval.  Thus, using DP, an O agent will 

probabilistically decide if it has enough information to 

discriminate. If that is the case, the discrimination 

process is accomplished by comparing ��"
� with ��"

�, so 

that if ��"
� < ��"

�, �
� is assigned to C2 and it is 

withdrawn from C1 (and vice-versa). This built-in 

preference for clearly separable concepts has been posed 

as a basic tendency in human categorization. If possible, 

people prefer to form linearly separable categories (Blair 

and Homa 2001). 

Second, O uses the information obtained in 

communication and learning to decide if its next 

interaction with an A should be in the learning or in the 

communication mode (as described earlier). To this end, 

O computes a measure of the “separation” that the 

properties �
� have achieved.  In MIMICS, this measure 

is the average absolute difference of all the properties’ 

SP. Based on this average, O probabilistically decides in 

which mode to interact. An increase in this average value, 

signals an increase in separation, and results in a 

decreased learning probability (LP) for O (i.e., the 

probability that O decides to continue learning). 

However, because an agent knows Λ properties for a 

given concept, LP is really computed as a representative 

average: 

 

$� =
�

Λ
⋅ ∑ 1−∣ ��

� − ��
� ∣∀��

   (2) 

 

Note that because agents discriminate and also decide to 

stop learning depending on their own experience with 

conceptual properties, inter-subjective variability follows 

naturally in MIMICS. Table 1 presents the pseudo-code 

of the learning and communication interactions. 

MIMICS randomly selects without replacement an agent 

from the list of all agents and that agent acts as O and O 

randomly selects another agent as an A, following the 



 

 

actions defined in Table 1. This process is executed until 

all agents have been Os, which constitutes a simulation 

step.  

 

Table 1: Pseudo-code of Learning and Communication 

Interactions  

OBSERVER O ACTOR A 

Preparation of the interaction  

 1. Randomly selects an A actor 

from the rest of the agents 

 2. Randomly selects a concept c 

and property j from the P 

potential ones 

 3. Decides	interaction	mode:	
¿ 6�7(1) ⩽ $�? 

 

¿ 6�7(1) ⩽ $�?  =  FALSE (Learning mode) 

  4. Selects same c as O 

 5. If	� = ∅ (auto-learning) 

randomly selects a property j 

from the P potential ones 

(�
� = �) and increments 

�
�and �

�. 

 6. Assigns �
� = �	=�	> 

 7. ∃�
� ⇒ ABCDEF = 1 

			¬∃�
� ⇒ ABCDEF = 0 

 8. Increments �
� 

 9. ABCDEF = 1 ⇒ �
� = �

� + 1 

 10. ��
� = �

� �
�⁄  

 11. �
� ≥ 0 ⇒ � ∈ � 

 12. Discrimination Inference: 

6�7(1) ≤ K� ⇒ 

 a) ��
� < ��

� ⇒ � ∉ 1, � ∈ 2 

 b) ��
� > ��

� ⇒ � ∈ 1, � ∉ 2 

 

¿ 6�7(1) ⩽ $�?   =   TRUE (Communication mode) 

  4. Randomly selects concept c 

and property	�
� (� = 	�

�). 

 5. If	� = ∅ (auto-learning) 

randomly selects a property j 

from the P potential ones 

(�
� = �) and increments 

�
�and �

�. 

 6. Assigns �
� = �	=�	N 

 7. ∃�
� ⇒ ABCDEF = 1	

¬∃�
� ⇒ ABCDEF = 0 

 8. Increments	�
� 

 9. ABCDEF = 1 ⇒ �
� = �

� + 1 

 10. ��
� = �

� �
�⁄  

 11. �
� ≥ 0 ⇒ � ∈ � 

 12. Discrimination Inference: 

6�7(1) ≤ K� ⇒ 

 a) ��
� < ��

� ⇒ � ∉ 1, � ∈ 2 

 b) ��
� > ��

� ⇒ � ∈ 1, � ∉ 2 

 

Note: LP see eq. (2), DP see eq. (1) 

 

The initial conditions of a run consist in instantiating �
� 	, 

�
� and ��

�   and the lists of properties that belong to 

concept C1 or C2 in each agent to null. Notably, 

interactions among agents depend on the interaction rules 

described above, and the only exogenous parameters are 

the number of agents (N) in a simulation and the number 

of potential properties for describing concepts C1and C2 

(P). This means that all results presented here can be 

attributed to the interaction and decision rules (i.e., the 

meta-theory and MIMICS’ solutions to the topics 

discussed earlier), and not to the way specific parameters 

were set in the experiments, except for N and P. 

To simplify Table 1, we did not include the process by 

which agents know the properties. Agents know the 

existence of potential properties when properties are used 

in any of the interaction modes shown in Table 1. An 

agent knows property j by initializing �
�= j and	�

� =

�
� = ��

� = 0, ∀�. There are two exceptional cases: 1) 

in communication mode, given that A presents to O a 

known property and does not receive anything from O, 

new properties are not incorporated by A as known and 

2) when � = ∅	 (i.e., when there is no conceptual content 

in c at initial conditions) for A in learning mode, A does 

an auto-learning process; that is, A not only initializes the 

property j, but also assigns it to c (�
� = �

� = 1) (i.e., 

property j becomes a known and assigned property �
�), 

which always happens at the beginning of a simulation 

run, when agents don’t have any information or structure 

in their particular conceptual space. Finally, each run is 

ended when, at the social group system’s level, the 

conceptual space structure is stable. That is determined 

when no further change is observed for the properties 

incorporated into concepts at the group’s level. This 

occurs when the standard deviation of the average SP of 

both concepts (across all agents), calculated in a sliding 

window of 3,000 simulation steps, does not show 

significant variations; i.e., the standard deviation of the 

standard deviation of the average SP of both concepts is 

equal to or less than 0.004. 

 

EXPERIMENTS AND RESULTS 

Our general hypothesis is that a process based on social 

interactions (communication and learning), where 

conceptual properties come from the social group and not 

from objects’ physical properties, is able to produce 

concepts characterized by non-uniform probability 

distributions and inter-subjective variability in 

conceptual content, while making minimal assumptions 

about agents’ cognitive machinery. Specifically, we 

expect that, for a wide range of experimental conditions 

(N and P values), MIMICS will produce stable concepts 

that are useful for the simulated social group, but not at 

the expense of homogeneity in conceptual content (i.e., 

MIMICS should exhibit inter-subjective variability in 

conceptual content). Also, as a direct consequence of 

this, MIMICS should produce non-uniform frequency 

distributions of properties similar to those found in 

norming studies. For the experiments we set up N = {14, 

40, 60} and P = {10, 50, 100}. We selected those values 

for representing small, medium and large groups of 

agents and number of potential properties. Each of the 

nine experimental conditions was run 20 times and in all 

the graphs that show averages, these were computed 

using the output values of the 20 replications. We don’t 

present std. deviations, given that they are very small and 

only would have cluttered the graphs. We performed an 

ANOVA for all the presented results (where suitable), 



 

 

which indicates that all of them are highly statistically 

significant (all p-values ≤ 0.005). In the following 

paragraphs we present the results for concept C1, given 

that the ones for concept C2 are similar. For those 

interested in replicating our experiments, the program is 

available at http://ccl.northwestern.edu/netlogo/models/ 

community/.You will have to search for the file MIMICS 

v-CSI.netlogo, found under the March 2016 heading, and 

download it to your computer. Then you need to 

download and install the Netlogo platform, version 4.0.4 

at http://ccl.northwestern.edu/netlogo/oldversions.shtml. 

To assess the usefulness of concepts, we use the 

probability of true (p(a1)) and illusory agreement (p(a2)) 

per Conceptual Agreement Theory (CAT, Chaigneau et 

al. 2012). According to CAT, when human beings talk 

about abstract concepts (e.g., democracy, political views, 

masculinity, personality traits), they try to infer 

agreement, i.e., to infer whether other people’s mind-

content is similar to their own content or not. To 

illustrate, imagine two individuals, O and A, that are 

having a conversation about a given topic, and that O has 

a hypothesis C1 about how entity x is being jointly 

conceptualized (i.e., that they are talking about x as an 

instance of C1).  However, because concepts are events 

in individual minds, O can only infer whether C1 is the 

case for A or not. To make this inference, O observes A, 

and when A describes x as having a property pj, O 

evaluates if pj is consistent with C1 in her mind or not. If 

it is consistent, then O infers that A is also talking about 

x conceptualized as C1. If A is in fact talking about x 

conceptualized as C1, then this is true agreement (event 

a1 and its probability is p(a1)). If A is talking about x 

conceptualized as C2, then illusory agreement happens 

(event a2 and its probability is p(a2)). Note that this 

situation corresponds to the idealized communication 

interaction shown in Table 1. In MIMICS, to compute 

p(a1), each time agents engage in a communication 

interaction and both are using concept C1, a counter f_a1 

is incremented. On the other hand, if O is using concept 

C1 and A is using C2, a counter f_a2 is incremented. If 

agents infer agreement and that is actually true agreement 

(both agents are actually thinking of C1), then a counter 

a1 is incremented. Contrarily, if agent O is thinking of 

C1 and agent A is thinking of C2, then a counter a2 is 

incremented. Calculating p(a1) and p(a2) amounts to 

dividing a1 by f_a1 and a2 by f_a2. Given that concepts 

should afford a p(a1) larger than p(a2) to be useful in 

communication among members of a group (i.e., more 

true than illusory agreement; Chaigneau et al. 2012), we 

should observe the same in MIMICS’ outputs. As Figure 

1 shows, that is the case. For all the nine experimental 

conditions, always p(a1) is larger than p(a2), which 

means that agents develop a conceptual space that 

promotes true agreement in communication. 

 

 

 
Figure 1: Avg. p(a1) and p(a2) for the 9 Experimental 

Conditions 

 

On the other hand, although a high true agreement is 

reached, agents exhibit inter-subjective variability in 

conceptual content. To illustrate this, we can inspect the 

properties assigned to concept C1 by two agents in a 

given experimental condition (N = 40, P = 100). For 

example, agent 0’s content for C1 is [2 4 5 8 10 16 17 43 

63 67 68 71 74 77 78 90 97], whereas agent 10’s content 

is [8 10 27 33 34 38 62 64 68 75 77 85 97]. To generalize 

this claim, Figure 2 shows the frequency distribution of 

the properties across agents for C1, for the same 

experimental condition. It can be seen that the 

distribution is non-uniform (which also supports our 

assertion that MIMICS would produce non-uniform 

frequency distributions of properties). Given that the 

distribution is non-uniform, the only way that may 

happen is if agents have diverse conceptual contents. To 

more generally back up our claim, Figure 3 shows 

MIMICS’ outputs k1 and s1. Variable k1 corresponds to 

the total number of properties for concept C1 in a 

population of individuals, and s1 to the average number 

of properties coherent with concept C1 in an individual’s 

mind (Chaigneau et al. 2012).  

 

 
Figure 2: Frequency Distribution of Properties across 

Agents for Concept C1 (N = 40, P = 100) 

 

 



 

 

 
Figure 3: Avg. k1 and s1 for the 9 Experimental 

Conditions 

 

From Figure 3, we can see that for all the experimental 

conditions, k1 is always larger than s1. That may happen 

only if the number of properties assigned to C1 in agents’ 

minds is smaller than the total number of properties 

assigned to C1 across all agents, which proves that inter-

subjective variability in conceptual content must exist. 

As already discussed, Figure 2 supports our claim that 

MIMICS would produce non-uniform frequency 

distributions of properties similar to those found in 

norming studies. To generalize this finding to all the nine 

experimental conditions, Figure 4 presents the standard 

deviation for the properties for C1 (i.e., for the numbers 

that represent those properties).  

 

   
Figure 4: Avg. Std. Deviation of Properties of C1 for the 

9 Experimental Conditions 

 

The standard deviations different from zero confirm that 

for all experimental conditions, the frequency 

distributions of properties are non-uniform.  

Finally, as pointed out earlier, another characteristic of 

these frequency distributions obtained in norming 

studies, is that the properties, which describe concepts, 

exhibit some conceptual overlap (i.e., some properties 

describe more than one concept, as one can see from 

Figure 2). To generalize that finding, Figure 5 shows a 

normalized RMSE of the frequencies of the properties 

that describe C1 and C2 in MIMICS. The normalized 

RMSE was calculated by first dividing the frequency of 

each property that describes C1 and C2 by the respective 

maximum frequency. Then, the sum of the squared 

difference between the normalized frequencies of C1 and 

C2 was divided by the number of frequencies that are 

larger than zero in both concepts, and the square root of 

that mean is the RMSE. 

 

 
Figure 5: Avg. Normalized RMSE of Properties of C1 

and C2 for the 9 Experimental Conditions 

 

This form of calculating the RMSE assures obtaining a 

superposition index between the C1’s and C2’s property 

frequency distributions that is comparable across 

different N and P. That will be an important issue when 

further analyzing MIMICS’ results in future work. Note 

from Figure 5 (and also from Figure 2), that under all nine 

experimental conditions, a RMSE above zero, implies 

that indeed there exists conceptual overlap between 

concepts, just as has been found in empirical studies. 

 

DISCUSSION/CONCLUSIONS 

As we discuss in the introduction, when subjects are 

asked to produce conceptual content for abstract or 

concrete concepts, non-uniform frequency distributions 

of properties are obtained. Also, there is inter-subjective 

variability in conceptual content. For concrete concepts, 

these properties are descriptors of the concrete objects 

that belong to the category, and non-uniform 

distributions occur because some properties are more 

frequent than others in the exemplars that belong to the 

category (e.g., most dogs bark). In contrast, for abstract 

concepts properties are verbal or conceptual associations, 

and it is unclear why non-uniform property distributions 

and inter-subjective variability should be obtained. 

In the current work, we present MIMICS, which is a 

theory of how a social group develops a system of 

abstract concepts. MIMICS makes three important 

assumptions about abstract concepts (widely supported 

by the literature that we have cited throughout this paper). 

First, it assumes that abstract concepts are states of mind 

or points of view about a situation. As such, they cannot 

be directly observed and need to be inferred. Second, it 

assumes that individuals are motivated to know if other 

individuals share their own particular point of view. 

Third, it assumes that—as is true of concrete concepts—

people attempt to learn linearly separable concepts. 

Noteworthy about MIMICS, is that conceptual content 

develops from social interaction and not from the 

environment’s structure. There are two kinds of 

interactions: learning from other group members, and 



 

 

communicating (i.e., using conceptual properties to infer 

a conversational partner’s state of mind). 

In our computational experiments with MIMICS, we 

found that for a wide range of experimental conditions 

(i.e., combinations of N and P values), MIMICS 

reproduces the type of results that are obtained in 

conceptual norming studies. MIMICS’ rules of 

interaction are successful in producing non-uniform 

property frequency distributions, concepts that are not 

neatly discriminated, and agents with non-homogeneous 

conceptual content, though agents do not extract this 

structure from an environment. Just as importantly, 

MIMICS produces concepts that, despite inter-subjective 

variability, allow communication. Concepts developed 

by MIMICS allow agents more often than not to correctly 

infer conceptual agreement with other agents. 

There are several situations in which a researcher may 

need to explore the use of abstract concepts in a social 

group. An anthropologist may want to know whether a 

social group holds a shared view on a socially relevant 

topic (e.g., how political parties are characterized); a 

marketing expert may want to know whether a social 

group holds a shared view on a brand’s image). We 

envision using MIMICS and the theoretical insights 

derived from our simulations as providing tools to analize 

problems such as these. 

There are many other conclusions that can be drawn from 

our results. However, they are beyond the scope of this 

paper and will be part of our future work with MIMICS. 

What we want to stress here is that MIMICS shows that 

abstract concepts may be advantageously viewed as 

devices developed by a social group to allow agreement 

and mind-reading. 
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