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ABSTRACT 

The notion of a conceptual model is present in any discussion about the modelling and simulation process 
within the discrete event dynamic system domain (Robinson 2011). This paper presents an overview on 
an activity-based conceptual modelling framework: Activity Based Conceptual modelling = ABCmod 
(Birta and Arbez 2013). It transforms the general notion of a conceptual model to into a specific 
conceptual modelling artefact. The ABCmod framework encompasses the naturalness of the activity 
perspective which has considerable intuitive appeal (Pidd 2004a and 2004b). ABCmod accommodates 
both the structural and the behavioral aspects that are fundamental components of any conceptual model 
and provides a collection of constructs both for handling input/output and for dealing with special 
circumstances such as pre-emption, interruption and balking. We provide an overview of the framework 
and illustrate many of its features in examples. 

1 INTRODUCTION 

The development of a meaningful conceptual model is an essential phase for the successful completion of 
any modelling and simulation project undertaken to solve an identified problem within a system under 
investigation (SUI). In the realm of continuous time dynamic systems, the conceptual model is a set of 
differential equations and consequently the language of discourse is the language of this particular domain 
of mathematics and of the domain from which the underlying dynamic system has emerged (e.g., control, 
thermodynamics, aerodynamics, etc.). However when the system under investigation falls in the realm of 
discrete event dynamic systems (DEDS) there is, regrettably, no established language for formulating the 
conceptual model. The consequence is often a leap directly into the intricacies of some computer 
programming environment with the unfortunate result that the program displaces the model as the object 
of discourse. Furthermore, the resulting artefact (i.e., the simulation program) has minimal value if a 
change in the programming environment becomes necessary.  

In this paper we outline a conceptual modelling framework for DEDS which we call ABCmod -- 
Activity Based Conceptual modelling. The framework provides an informal but disciplined context in 
which both the structure and the dynamics of the model to be studied can be formulated and discussed in 
a concise and unambiguous manner. The framework has considerable intuitive appeal because it builds on 
the familiar notion of entities, events and activities that are fundamental to any dialog about DEDS. 
Particular care has been taken to ensure that the important notions of input and output are treated in a 
consistent and coherent way. 
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The perspective we adopt is that a conceptual model is a carefully constructed artefact that 
consolidates, in a consistent and coherent manner, those behavioural features of the SUI that are deemed 
to have relevance to the achievement of project goals. Such a model serves as a descriptive bridge 
between the generalities of the project description and the precision required for the development of the 
simulation program that generates the behaviour data acquired over a prescribed observation interval that 
is required for resolving the project goals. This perspective is reasonably consistent with the notion of 
conceptual modelling used in Information Systems and Software Engineering as presented in 
(Mylopoulos 1992). 

Apart from the fundamental requirement to capture the essential behavioural features of the SUI, 
there are two important qualities that any conceptual model within the DEDS domain should have; 
namely, 

 
a) It must be sufficiently transparent so that all stakeholders in the project can use it as a means for 

discussing those mechanisms within the SUI that have relevance to the characterization of its 
behaviour (as interpreted from the perspective of project goals).  

b) It must be sufficiently comprehensive so that it can serve as a specification for the computer 
program that will provide the means for carrying out the simulation study. 

 
The ABCmod framework is informal in nature and is driven by a desire for conceptual clarity. But at 

the same time, it has a high level of precision, generality and adaptability. To a significant extent, these 
features flow from the incorporation of software development concepts (looping, decision-making, data 
structures, etc.). The framework, as presented in the discussions which follow, can accommodate a wide 
range of project descriptions. However it is not intended to be rigidly defined; it can be easily extended on 
an ad hoc basis when specialized needs arise.  

One particular aspect of ABCmod needs to be emphasized; namely, that it must not be interpreted as 
a programming environment. This is, in fact, reflected in the absence of any discussion about time 
management. Its purpose instead is to provide an environment for model specification; i.e., a vehicle for 
making the transition from a project description to a simulation program. The intent is to facilitate the 
abstraction of the SUI’s structure and behaviour without concerns about programming issues and details.  

The basic concepts underlying our approach are not new. They can be traced back to the activity 
scanning paradigm and the three-phase paradigm that are usually identified as one of the modelling and 
simulation “world views”. A comprehensive presentation of activity scanning from a programming 
perspective can be found in (Kreutzer 1986). Examples of the utilization of this paradigm can be found in 
(Martinez 2001), (Shi 2000) and (Gershwin 1991). The specific perspective that underlies our approach 
shares some commonalities with the work of (Overstreet and Nance 2004). The three-phase paradigm is 
described in (Pidd 2004a). 

Note finally that the presentation of the ABCmod framework that is provided in this paper is 
significantly abbreviated and is intended only to convey its fundamentals. A more complete discussion 
can be found in Chapters 3 and 4 of (Birta and Arbez 2013). 

2 THE LANDSCAPE OF PERTINENT VARIABLES 

We begin by noting that sequences of random values, ordered in time, are a fundamental and recurring 
feature within the DEDS domain. Our particular interest here encompasses a broad spectrum of 
possibilities; these range from the creation of such sequences to capturing such sequences as flowing from 
the model. Coupled with the notion of event (changes in the model that occur at discrete points in time), 
variables in a DEDS model have specific characteristics. This section describes the characteristics 
adopted in ABCmod and additional variable-related notions that are pertinent to our presentation of the 
modelling and simulation activity within the DEDS domain. These play an important role throughout the 
presentation. 
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2.1 Random Variates, RVV’s and RVP’s 

The execution of a DEDS simulation model can be viewed, in somewhat idealized terms, as a mapping of 
prescribed random input behavior into random output behavior. The “idealization” at play here arises 
from the observation that “randomness” within the computing milieu is not, in fact, genuinely random. 
More specifically, the “random” values that are required in the characterization of random input behavior 
are, of necessity, samples taken from prescribed probability distributions using algorithmic methods. 
However, by their fundamental nature, these methods do not guarantee genuine randomness. The values 
thus generated are called random variates, and they are generally regarded as “pseudorandom”. In the 
sequel, we refer to a variable whose values are random variates as a random variate variable (RVV). 

Within the ABCmod framework, the values for a designated RVV are always provided by a 
procedure called a random variate procedure that is distinguished with the prefix RVP. The statistical 
characteristics of the RVV are provided in this procedure. For example, RVP.GetDelta() could be the 
random variate procedure used to generate values for the random variate variable, delta. 

2.2 Discrete Time Variables 

A discrete-time variable is a time dependent variable whose value changes only at discrete points in time. 
Such variables are of fundamental importance in the development of models for discrete event dynamic 
systems because of their key role in the characterization of both the input and the output of such models.  

We recognize two types of discrete-time variable which are called sample discrete-time variables and 
piecewise constant discrete-time variables (see Figure 1). The same scheme is used for representing the 
time-evolution of these two types of variables, namely the characterizing sequence CS[x] which is a 
sequence of ordered pairs: CS[x] = <(tk ,xk): k = 0, 1, 2, … >. It is convenient to separate the characterizing 
sequence into two underlying sequences, the domain sequence for x, CSD[x] = <tk: k = 0, 1, 2 …>, and the 
range sequence for x, CSR[x] = <xk: k = 0, 1, 2 …>. 

 
Figure 1: The sample discrete-time variable (a) and the piecewise constant discrete-time variable (b). 

The key feature of the sample discrete-time variable x(t) is that its value is meaningful only for those 
values of t in CSD[x]. On the other hand, a piecewise-constant discrete-time variable, x(t) has a defined 
value for all values of t within the observation interval. To be specific, our convention will be that 
x(t) = xk for tk ≤ t < tk+1 for k = 0, 1, 2, ….  

There are, however, differences in manner in which sample discrete–time variables and piecewise 
constant discrete-time variables are handled in ABCmod. Consequently we shall often refer to the 
characterizing sequence for a sample discrete-time variable, x, as a sample sequence (denoted by PHI[x]) 
and we shall refer to the characterizing sequence for a piecewise constant discrete-time variable, x, as a 
trajectory sequence (denoted by TRJ[x]). 
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2.3 Input and Output 

Our perspective is that “input” is a facet of the SUI’s behavior that has an impact upon it but is not itself 
affected by that behavior. Not surprisingly, these influences are represented by variables; i.e., input 
variables. Furthermore the values of input variables are generally associated with a prescribed data model. 
These data models can have a random basis in which case the input variable is a random variate variable 
(RVV). The data model can also be deterministic, in which case values are assigned via a deterministic 
value procedure (DVP) rather than a RVP. We identify two broad categories of input that provide a 
natural dichotomy of the range of possibilities. 

Exogenous input: Generally it can be assumed that there exists a boundary that surrounds the SUI and 
separates it from its environment. Nevertheless there are almost always aspects of the environment that 
extend across this boundary and influence the SUI’s behaviour. This influence is captured by the 
exogenous input to the SUI. Two types of input variables are associated with exogenous inputs. The 
Environmental Input Variables which are generally piecewise constant discrete-time variables and Entity 
Stream Input Variables are sample discrete-time variables typically used to represent the arrival aspect of 
a stream of entities that enter the model. 

Endogenous input: Often there are facets of the SUI itself that have an impact upon its behaviour but 
are not themselves influenced by it. This “embedded influence” represents the endogenous input to the 
SUI. Endogenous inputs fall into two categories that we call independent input variables and semi-
independent input variables. In the case of an independent (endogenous) input variable, x, both the 
domain sequence, CSD[x], and the range sequence, CSR[x], are independent of model behaviour. If, on the 
other hand, x is a semi-independent (endogenous) input variable then only its range sequence, CSR[x], is 
independent of model behaviour. Two examples of endogenous input are (i) the varying number of part-
time servers working at the counter of a fast food outlet over the course of a day (an independent input 
variable) and (ii) the service times for the stream of customers that arrive at the counter of that outlet (a 
semi-independent input variable). 

Output is that collection of data generated by a simulation experiment that has relevance to the 
achievement of the project goals. Consequently it is the fundamental outcome of any simulation 
experiment. From a modelling perspective output, like input, is identified using suitably defined variables. 
Because of the stochastic behaviour inherent in the study of DEDS, these output variables are random 
variables and this has significant implications on how meaningful values are acquired and subsequently 
interpreted. 

A trajectory sequence, TRJ[y], is the means for capturing the values of an output variable, y, that is a 
piecewise constant discrete-time variable. A sample sequence, PHI[y], is the means for capturing the 
values of an output variable, y, that is a sample discrete-time variable. Normally the entire collection of 
data accumulated in a trajectory sequence or a sample set is not of interest. Rather it is some scalar-valued 
property of the data that has relevance; e.g., average, maximum, minimum etc. The scalar value obtained 
by carrying out the designated operation at the end of the simulation experiment is assigned to an output 
variable called a derived scalar output variable (DSOV). The role of a simple scalar output variable 
(SSOV) parallels that of a DSOV inasmuch as both provide some specific measurable property of either a 
trajectory sequence or a sample sequence. In the case of the SSOV that property is monitored during the 
course of a particular experiment and a final value is available at the end of the experiment. This is in 
contrast to a DSOV whose value flows from a post processing step at the end of an experiment.  

3 ABCMOD: THE BASICS 

3.1 Fundamental Constituents of the ABCmod Framework 

Our perspective is that behavior is the consequence of interaction amongst some collection of objects that 
populate the space of the SUI. A prerequisite for dealing with this interaction is a means for 
characterizing these objects. There are, therefore, two collections of modelling artefacts required for the 
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conceptual modelling process. The first deals with the abstraction of the objects that are interacting within 
the SUI (in effect, the structure of the SUI) and the second focuses on the nature of these interactions (the 
behavior). These dual requirements are handled in ABCmod with two basic model building artefacts 
called entity categories and behavioral artifacts.  

The various entity categories that emerge within an ABCmod conceptual model are tailored to the 
specific nature of the SUI and the goals of the project. Entities are surrogates for the objects of interest 
within the SUI and each belongs to an identified category. The behavioural artefacts that provide the basis 
for modelling the SUI’s behaviour fall into two categories called activities and actions. These behavioral 
artifacts effectively encapsulate the SUI specific rules which govern the manipulation of entities  

3.2 Model Structure: Entity Categories 

An entity is a named m-tuple of attributes where we regard an attribute as a discrete-time variable. The 
values of the attributes of an entity generally vary with time in accordance with the underlying rules of 
behavior. In reality every entity belongs to a named “category” (of entities); that may have many 
members; each entity belonging to that category has the same set of attributes.  

Every entity category has one or more roles. The role(s) of a category is(are) inherited by all entities 
belonging to that category. The concept of a role is intended to reflect upon major features that the entities 
belonging to that category assume in the model. For example, entities with a role of Resource provide a 
service. Entities with a role of Consumer seek one or more services, usually provided by a resource entity. 
Entities with a role of Queue serve as the means for maintaining an ordered collection of other entities. 
Entities with a role of Group serve as a means for maintaining an unordered collection of other entities. 
Note that roles may be combined. For example a Resource Group role is assigned to a category when its 
members can service a group of entities at the same time. 

Every entity category also has a scope which indicates the number of entities that can exist in that 
category. The scope Unary indicates that there is exactly one entity in the category and furthermore it is 
present throughout the observation interval; i.e., it is a permanent member of the SUI. Similarly the scope 
Set[n] indicates that the entities in the category are permanent, and that the number of entities in the 
category is fixed at n. Finally the scope Class indicates that the number of entities within the category 
varies. In other words, the entities belonging to that category have a transitory existence within the SUI  

The identification of appropriate attributes for an entity category is governed to a large extent by the 
requirements that emerge in the process of characterizing dynamic behaviour. The collection of 
behavioural artefacts used in this characterization within the ABCmod framework, react to and 
manipulate the attributes of entities. It follows then that the proper selection of the attributes for an entity 
category is a fundamental step. An attribute may play the role of a system state variable (to reflect the 
state of the model), an input variable (their value is set from an RVP or DVP) or an output variable (their 
value is set according to the model behaviour and recorded). An attribute may also be used as a 
parameter. 

Each entity category in an ABCmod conceptual model has a unique name. That name is an integral 
part of the identifier for individual entities that are members or instances of that category. The identifier 
for an entity has a format that reflects the properties of the entity category to which it belongs.  

3.3 Model Behavior: Activities and Actions 

The characterization of behavior in the ABCmod framework is carried out using a collection of 
behavioral artefacts. These fall into two categories called activities and actions. The notion of an “event” 
is central to these behavioral artefacts and consequently we begin with an examination of this notion.  

Events are, in fact, fundamental to any discussion of model building in the DEDS domain. Within the 
ABCmod framework we regard an event as an instantaneous change in the status of the model at a point 
in time (event time). The details of that change are provided by an associated status change specification 
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(SCS). Note that the changes referred to above do not occur in the conceptual model but rather in the 
simulation model for which it provides a specification. 

Events fall into two broad categories; namely scheduled events and conditional events. A scheduled 
event is one whose event-time is scheduled (often relative to some other event-time; e.g., use of an RVV 
to determine the time between the arrivals of two Customers). A conditional event is one whose event-
time coincides with the moment when a precondition (a Boolean condition formulated on one or more 
state and/or input variables) of the model becomes TRUE. There are, in addition, two variations; namely, 
a tentatively scheduled event (the first variation) which is a scheduled event whose occurrence may be 
stopped by an intercepting event (the second variation which is a conditional event) should it occur before 
the event-time of the tentatively scheduled event. The latter two events are relevant when developing 
activities that may be “interrupted”. 

The ABCmod activity is the main modelling artefact for characterizing behaviour. An ABCmod 
conceptual model typically incorporates a number of activities. Each activity has a name and serves to 
represent a unit of behaviour that has been identified as having relevance from the perspective of the 
project goals. The notion of “unit” here is intended to suggest “minimality”; in other words, an activity 
should be viewed as being “atomic” in the sense that it captures an aspect of the model’s specified 
behavior that is not amenable to subdivision (at least from the perspective taken by the model builder). An 
activity can also be regarded as an abstraction of some purposeful task that takes place within the SUI. 
The key consequence of both the initiation and the completion of this task generally take the form of 
changes in the value of some of the state variables within the model; i.e., attributes of entities. In 
summary, there are three noteworthy features of an ABCmod activity construct: it represents an 
indivisible unit of behaviour that occurs within the SUI, it is associated with some purposeful task, and it 
evolves over a nonzero interval of time (its duration). 

The ABCmod activity incorporates, at least two event specifications; namely, one for a starting event 
and one for a terminating event. Note that the specification of a starting event may include multiple event-
times each of which creates an instance of the activity. An instance of an activity exists between the 
event-time of its starting event and the event-time of its terminating event. In the case where there are 
exactly two events, the terminating event is always a scheduled event whose event time is dependent on 
the duration specified for the activity. 

The starting event of an activity may be either a scheduled event or a conditional event. The first case 
gives rise to a scheduled activity which contains the following components: a time sequence (often 
provided by an RVP) which specifies a sequence of event-times of the starting event, the status change 
specification (SCS) of the starting event, the duration which when added to the event-time of the starting 
event gives the event-time of the terminating event, and the SCS of the terminating event which specifies 
the changes that occur in the model at the event-time of the terminating event. The conditional activity 
has the same components as the scheduled activity except that the initiation of the activity is governed by 
a precondition rather than a time sequence.  

It is common to have an activity instance immediately follow the ending of another activity instance, 
that is, the event-time of the starting event of the second activity instance coincides with the event- time 
of the terminating event of the first activity instance. The second activity in this sequence is called a 
sequel activity. A sequel activity has the same components as a scheduled activity except that the time 
sequence is replaced by a parameter list that serves to transfer information into the sequel activity 
instance. 

When an activity (any of three types of activities outlined above) can be interrupted, it is augmented 
with additional events; furthermore, the terminating event becomes a tentatively scheduled event. The 
events added to the activity are intercepting events each of which has a precondition and an SCS. Such 
activities are referred to as extended activities.  

The action is the second category of behavior modelling artefact within the ABCmod framework. 
While activities serve to capture the various relevant tasks that are carried out within the SUI, an action 
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simply provides the means for characterizing events that are not embedded within activities. Because an 
action is simply an event it unfolds at a single point in time and consequently the concept of “instances” is 
not meaningful. However multiple occurrences of the action are typical. There are two types of actions 
and they are called the scheduled action and the conditional action. Their difference parallels the 
difference between the scheduled activity and the conditional activity as outlined earlier.  

4 THE ABCmod FRAMEWORK 

Dealing with complexity in any context is considerably facilitated when it can be addressed at more than 
one level of detail. This view has, in fact, been adopted in the ABCmod framework inasmuch as 
conceptual model development evolves as a two stage process. We refer to the initial stage as “high level” 
inasmuch as its purpose is restricted to providing a preliminary perspective that is unencumbered by 
excessive detail. This version of the model is primarily intended for discussion amongst all project 
stakeholders. The detail is introduced at a second stage of development which is called the “detailed 
level”. This version of the model is a detailed specification intended for the simulation modelling team 
which will translate the conceptual model into a simulation program.  

The framework is introduced here by presenting a simple example called Kojo’s Kitchen. Kojo’s 
Kitchen is one of the fast food outlets in the food court of a shopping mall. Kojo’s manager has been 
receiving complaints from customers about long waiting times. He is interested in exploring staffing 
options to reduce these complaints. The mall (and hence Kojo’s) is open between 10:00 am and 9:00 pm 
every day. Kojo’s serves only two types of product; namely, sandwiches and sushi. Two rush hour 
periods occur during the business day, one between 11:30 am and 1:30 pm, and the other between 
5:00 pm and 7:00 pm. Currently two employees work at the counter throughout the day serving customers 
with freshly prepared sandwiches and sushi products.  

4.1 Project Goals: Parameters, Experimentation and Output 

Often experimentation is concerned with exploring changes in behavior that result from various values 
assigned to defined parameters. Parameters can emerge in either of two contexts. The first context relates 
to the model itself and the second to the model input. In the first case, a parameter can alter either a 
structural aspect of the model or its rules of behavior. In addition it is necessary to identify the output 
needed to solve the problem. Figure 2 summarizes this view for Kojo’s Kitchen. 

Note that the parameter, addEmp, is an attribute of the entity category called Counter. The attribute 
name is “RG.Counter.addEmp” according to the ABCmod standard convention for naming attributes. It 
consists of a prefix RG (for Resource Group) that identifies the roles associated to the entity category 
whose name is Counter. 

Overview: The specific interest is with comparing the current situation (base case) to an alternative where a third 
employee is added during the busy periods (between 11:30 am and 1:30 pm and between 5:00 pm and 7:00 pm). The 
performance measure of interest is the percentage of customers that wait longer than 5 minutes for service over the 
course of a business day. 
Parameters: RG.Counter.addEmp: Set to 0 for base case and 1 for alternate case; the alternate case adds a third 
employee during the two busy periods.  
Experimentation: Time units are expressed in minutes and the observation interval starts at t = 0 and ends after t = 
660 when all customers have left the deli. Experimentation consists of comparing two cases. The base case is the 
current operation of the deli, while in the alternative case an additional employee is added to the counter during the 
busy periods between 11:30 am and 1:30 pm and between 5:00 pm and 7:00 pm. 
Output: propLongWait: The proportion of customers that wait more than 5 minutes in line to reach the counter. 

Figure 2: Kojo’s Kitchen project goals. 
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4.2 High Level ABCmod Conceptual Model 

The High Level ABCmod conceptual model provides the means for discussing the model among all 
stakeholders. It consists of four parts: simplifications and assumptions, a structural view, a behavioral 
view and input. 

In Kojo’s Kitchen, we adopt the following simplification: there are only two types of customer; one 
type purchases only sandwiches and the other type purchases only sushi products. Discussion of 
simplification and assumptions can be found in (Robinson 2008) and (Birta and Arbez 2013). 

The purpose of the structural view is to identify the entity categories. The structural view consists of a 
structural diagram followed by a description of each entity category. Such descriptions generally do not 
include the description of attributes. The structural view for Kojo’s Kitchen is shown in Figure 3. The 
shape of the icons used in the structural diagram for the different entities and/or entity categories reflects 
their respective roles. 

 
Figure 3: Kojo’s Kitchen structural view. 

The behavioral view identifies the set of Activities (and Actions) for the model. The behavioural view 
consists of a behavioural diagram followed by a description of each action and activity. The behavioural 
diagram is a collection of life-cycle diagrams which show how an entity can transition from one activity 
instance to another. It therefore provides a means for identifying all possible activity sequences that an 
entity can follow. The behavioral view for Kojo’s Kitchen is shown in Figure 4 (it consists of a single 
life-cycle for the Customer entity).  

In general, a life-cycle diagram has many segments where each segment shows the transition from 
one activity instance to another. Activity instances in the life cycle diagram are represented by labelled 
rectangles. Actions on the other hand have a rounded corner. In the most typical case an entity’s transition 
from one activity instance to another encounters a delay. This delay can occur for a variety of reasons 
(usually because of inhibiting preconditions) and we indicate this possible delay with a circle which we 
call a wait point. The wait point simply shows that the entity’s transition to a subsequent activity instance 
is not necessarily immediate and that the subsequent activity is a conditional activity. Furthermore, it is 
possible for several arrows to emanate from the wait point which shows that the entity may transition to 
any one of several activity instances. The transition will ultimately be to the one whose precondition first 
becomes TRUE.  

Table 1 shows the specification of input for Kojo’s Kitchen. The domain sequence of the input entity 
stream variable uC provides the arrival times of customers and it is associated with the action Arrivals 
(see section 4.3.2.2) to completely specify an input entity stream.  

 
Structural Diagram 

• CustLine: An entity category with role = Queue (denoted by the prefix Q) and scope=Unary that represents the 
line of customers in front of the counter. 

• Counter: An entity category with role = Resource Group and scope = Unary that represents the counter where 
customers are being served. 

• Customer: An entity category with role=Consumer and scope = Class (the “i" in the prefix denotes that the entity 
category has scope = Class) that represents the collection of customers requiring service at the counter. There are 
two types of customers, the sandwich customer and the sushi customer (distinguished using the attribute uType). 

Q.CustLine
RG.Counter

Legend

iC.Customer
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Figure 4: Kojo’s Kitchen behavioral view. 

The attribute RG.Counter.uNumEmp attribute is an input variable; the domain and range sequence for 
this input variable is explicitly specified in Table 1 (note the use of the parameter RG.Counter.addEmp). 
The two semi-independent input variables serve to initialize the attribute iC.Customer.uType when a 
customer arrives (see the action Arrivals in Section 4.3.2.2) and to define the service time for the Serving 
activity (see Section 4.3.2.3). 

Table 1: Kojo’s Kitchen input variables. 
Exogenous Input (Entity Stream) 

Variable Name Description Domain Sequence Range Sequence 
uC This input entity stream represents 

the arriving customers  
RVP.DuC() 1 customer arrives at each arrival. 

Endogenous Input (Independent) 
Variable Name Description Domain Sequence Range Sequence 

RG.Counter.uNumEmp Represents the number of 
employees at the counter. 

< 0, 90, 210, 420, 540>  < 2, 2 +RG.Counter.addEmp, 2,  
  2 +RG.Counter.addEmp, 2 > 

Endogenous Input (Semi-independent) 
Variable Name Description Value(s) 

iC.Customer.uType Provides the type of an arriving customer. RVP.uType() 
uSrvTm Service time of a customer.  RVP.uSrvTm() 

4.3 Detailed ABCmod Conceptual Model 

The distinction between the structural and the behavioural components of an ABCmod conceptual model 
is retained in the detailed level presentation. The discussion which follows is accordingly separated. 
Section 4.3.1 outlines the two structural components of an ABCmod conceptual model; it is a table that 
provides the constants and parameters (Table 2) and a set of tables that specify each entity category. 
Section 4.3.2 presents the collection of behavioural components. It begins with details relating to 
initialization which is followed by a set of tables that specify output, input constructs and the behavioural 
constructs (actions and activities). 

4.3.1 Structural Components 

Because there are no constants defined for the Kojo’s Kitchen model Table 2 lists only parameters. Tables 
3 to 5 provide the specifications for the three entity categories of the model. 

 
Behavioural Diagram 

Actions: 
• Arrivals: This scheduled action generates the input entity stream of customers. 
• StaffChange: Generates the change in the number of employees behind the counter. This Action is not shown in the 

behavioural diagram since it is not part of the customer life cycle. 

Activities: 
• Serving: This activity represents the serving of a customer. 

Arrivals

Serving
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Table 2: Kojo’s Kitchen parameters. 
Parameters 

Name Description Value 
RG.Counter.addEmp Number of additional employees serving at the counter 

during the busy periods. 
0 (for the base case) or 1 (for the 
alternate scenario). 

Table 3: An entity category with role Consumer and scope Class. 
Consumer Class: Customer 

This entity structure represents the customers who arrive at Kojo's Kitchen to make a purchase. 
Attributes Description 

startWaitTime Time stamp that holds the value of time when the customer enters the customer line. 
uType The assigned value indicates the type of customer. Two values are possible: 'W' for a sandwich customer 

or 'U' for a sushi customer. 

Table 4: An entity category with a single member and dual roles of Resource and Group. 
Resource Group Unary: Counter 

This resource group represents the counter where customers receive service. 
Attributes Description 
list The group of the Customer entities that are being served. 
n Number of entries in list (necessarily n ≤ uNumEmp). 
uNumEmp Input variable that provides the number of employees. 
addEmp A parameter whose value is the number of additional employees serving at the counter during the busy periods. 

Table 5: An entity category with role Queue and a single member. 
Queue Unary: CustLine 

The queue of customers waiting for service at the counter. 
Attributes Description 

list List of the customers entities waiting in line for service. Discipline: FIFO. 
n The number of iC.Customer entities in list. 

4.3.2 Behavioral components 

This section begins with the specification of the observation interval (time units and range) as shown in 
Figure 5 followed by an initialization action (with a single starting event time) as shown in Table 6. In the 
case of Kojo’s Kitchen, the right hand side of the observation interval consists of an implicit stop 
condition which means that the interval ends on a condition rather than a specific time. 

 
Figure 5: Specification of the observation interval. 

Table 6: An action that occurs at the start of the observation interval to provide initialization (the “SSOV” 
prefix indicates that the named variable is a simple scalar output variable). 

Action: Initialise 
TimeSequence < 0 > 
Event SCS RG.Counter.n ← 0;    Q.CustLine.n ← 0;    SSOV.numServed ← 0;    SSOV.numLongWait ← 0 

Time units: minutes 
Observation interval: t0 = 0 (10:00am) , Implicit Stop Condition: (tf > 660 minutes (9:00 pm) AND RG.Counter.n = 0). 

97



Arbez and Birta 
 

4.3.2.1 Output 

Table 7 provides the specification of three SSOV’s. The numServed and numLongWait variables are used 
to derive the value of the propLongWait output variable identified in the project goals. 

Table 7: The three SSOV’s for Kojo’s Kitchen.  
OUTPUTS  

Simple Scalar Output Variables (SSOV's) 
Name Description 

numServed Number of customers served. 
numLongWait Number of customers that waited longer than 5 minutes. 
propLongWait numLongWait/numServed. 

4.3.2.2 Input Constructs 

This section may contain random variate procedures (RVP), deterministic value procedures (DVP) and 
user defined procedures (UDP) as well as actions and activities all related to specifying input. The RVPs 
shown in Table 8 illustrate typical uses for RVPs, that is, to define arrival times, to define values for 
attributes, and durations for activities. 

Table 8: Random variate procedures.  
Random Variate Procedures 

Name Description Data Model 
RVP.DuC() Provides the values of the 

arrival times of customers. No 
arrivals are allowed after 
closing (i.e. for t ≥ 660). 

Exponential(X) where X is:               MEAN1=10, for 0 ≤ t < 90 
MEAN2=1.75, for 90 ≤ t < 210        MEAN3=9, for 210 ≤ t < 420 
MEAN4=2.25, for 420 ≤ t < 540      MEAN5=6, for 540 ≤ t < 660  
(All values are in minutes.) 

RVP.uType() Provides the type of the arriving 
customer. Returns either ‘W’ 
(sandwich customer) or ‘U’ 
(sushi customer). 

Proportion of sandwich customers: PROPW=65% 
Proportion of sushi customers: PROPU=35% 

RVP.uSrvTm(type) Provides a value for the service 
time of customer according to 
the value of type.  

For type ‘W’ (sandwich customer): UNIFORM(STWMIN, 
STWMAX) where STWMIN=3 min. and STWMAX=5 min. 
For type ‘U’ (sushi customer): UNIFORM(STUMIN, STUMAX) 
where STUMIN=5 min. and STUMAX=8 min. 

 
Table 9 shows the action associated with the input entity stream specification. The domain sequence 

of the input variable uC determines the arrival times of customers and the action’s event SCS derives the 
instance of the arriving entity, initializes its attributes and inserts it into a queue. The SP prefix denotes a 
standard procedures pre-defined in the ABCmod framework. For example SP.Derive(Customer) is the 
standard procedure that generates an instance of the Customer entity category. The variable t is the 
current time, i.e., the event-time of the action. Table 10 specifies an action used to update an input 
variable. 

Table 9: This action construct is part of the input entity stream specification for Customer arrivals.  
Action: Arrivals 

The input entity stream of arriving customers. 
TimeSequence RVP.DuC() 
Event SCS iC.Customer ← SP.Derive(Customer) 

iC.Customer.uType ← RVP.uType() 
iC.Customer.startWaitTime ← t 
SP.InsertQue(Q.CustLine, iC.Customer) 
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Table 10: An action that serves to update the value of an input variable. 
Action: StaffChange 

Manages the value of the input variable RG.Counter.uNumEmp, that is, schedules an additional employee during busy times 
for the alternate case. 
TimeSequence <0, 90, 210, 420, 540 > 
Event SCS IF(t=0 OR t= 210 OR t=540) THEN RG.Counter.uNumEmp ← 2 

ELSE IF(t=90 OR t = 420) THEN RG.Counter.uNumEmp ← 2 + RG.Counter.addEmp 
ENDIF 

4.3.2.3 Behavioral Constructs 

The conditional activity shown in Table 11 captures the behavior associated with serving customers. Up 
to three instances of this activity can coexist, that is, up to RG.Counter.uNumEmp customers may be 
serviced at the same time. Note the portion of the SCS that updates the SSOV’s. The standard procedure 
SP.InsertGroup() by definition adds the customer to the Counter resource group and updates 
RG.Counter.n. 

Table 11: A conditional activity. 
Activity: Serving 

Service for a customer. 
Precondition (RG.Counter.n < RG.Counter.uNumEmp) AND (Q.CustLine.n ≠ 0)  
Event SCS iC.Customer ← SP.RemoveQue(Q.CustLine) 

IF(t – iC.Customer.StartWaitTime > 5) THEN 
     SSOV.numLongWait +← 1 
ENDIF 
SSOV.numServed +← 1 
SSOV.propLongWait ← SSOV.numLongWait/SSOV.numServed 
SP.InsertGroup(RG.Counter, iC.Customer) 

Duration RVP.uSrvTm(iC.Customer.uType) 
Event SCS SP.RemoveGroup(RG.Counter, iC.Customer) 

SP.Leave(iC.Customer) 

5 DEALING WITH INTERRUPTIONS 

An important feature incorporated into the ABCmod framework is a means for dealing with interruptions. 
As described in Section 3.3, the mechanism used is an extended activity that contains at least 3 events, the 
starting event, the terminating event (which is a tentatively scheduled event) and an intercepting event. 

We use a port example to illustrate this feature. In this example, a single tug moves empty tankers 
from the harbor to one of 3 berths (berthing) for loading with oil. The tug will also move the filled tankers 
back to the harbor once tankers are filled (deberthing). The tug may also move between the harbor and 
berths in both directions with no tanker in tow. The objective of the simulation study is to evaluate the 
impact of a fourth berth on tanker waiting times. 

Two types of interruptions can occur. The first is when a storm arrives in the port. If the tug is 
moving between the harbor and the berth, it must stop, drop anchor and resume its activity once the storm 
has passed. The second is when the tug is moving back from an empty harbor to the berths with no tanker 
in tow (to be ready for deberthing a tanker being loaded); if a tanker arrives in the empty harbor, and the 
tug has not completed 70% of its journey back to the berths or there are no tankers waiting to be 
deberthed, the tug will return to the harbor entrance to service the newly arrived tanker. 

Figure 6 illustrates how interruptions are shown in life-cycle diagrams using dashed lines that 
represent the occurrence of an interruption (the precondition of an intercepting event becomes TRUE). 
When the input variable uStorm (see Table 12) assumes the value of TRUE, any activity involving the tug 
(Berthing, Deberthing, MoveToHarbour, MoveToBerths) is suspended (i.e., interrupted, see 
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SP.Terminate() in Table 12). When the storm is over (uStorm set to FALSE) the interrupted activity is re-
instantiated to complete its task. 

 
Figure 6: Port behavior diagram. 

In the case of the MoveToBerths activity, the activity may also be interrupted by the arrival of a 
tanker into the empty harbor as previously described. This is shown by the second dashed arrow leaving 
the MoveToBerths activity to the null wait point (wait point with the line across it) which indicates that 
the precondition to the MoveToHarbour activity is known to be TRUE.  

Table 12: An example of an extended conditional activity. 
Activity: MoveToHarbour 

This activity represents the Tug entity moving to the harbour area with no Tanker entity in tow. This activity can be 
initiated after an interruption: either an interruption of the MoveToBerths activity (because a tanker has arrived while 
moving to the berth area without a tanker in tow) or an interruption of the MoveToHarbour activity caused by a storm. 
Precondition (uStorm = FALSE) AND ( 

   (  (R.Tug.status = PAUSE_B) AND (Q.DeberthingList.n = 0) AND 
      (Q.BerthingList.n > 0) AND (RG.Berths.n < RG.Berths.numBerths) ) 
   OR 
   ((R.Tug.anchored = TRUE) AND (R.Tug.Status = TO_HARBOUR)) 
   OR 
   (R.Tug.returnToHarbour = TRUE) ) 

Event SCS IF(R.Tug.status = PAUSE_B)          (Normal conditions) 
R.Tug.status ← TO_HARBOUR 
R.Tug.travelTime ← EMPTY_TIME 

ELSE IF(R.Tug.anchored = TRUE) R.Tug.anchored = FALSE (After storm) 
ELSE R.Tug.returnToHarbour = FALSE   (Tanker has arrived in harbor) 
ENDIF 
R.Tug.startTime ← t 

Duration R.Tug.travelTime 
Interruption 

Precondition 
 
uStorm = TRUE 

Event SCS R.Tug.travelTime - ← t - R.Tug.startTime 
R.Tug.anchored ← TRUE 
SP.Terminate() 

Event SCS R.Tug.status ← PAUSE_H 

The starting event precondition of the extended activity MoveToHarbour as given in Table 12 
contains three parts which can only be applied if there no storm is present (uStorm = FALSE). The first 
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part of the precondition is TRUE when (1) the tug is at the berths (R.Tug.status = PAUSE_B), (2) there 
are no tankers to be deberthed (Q.DeberthingList.n = 0), (3) there are tankers in the harbor waiting to be 
berthed (Q.BerthingList.n > 0) and (4) there is room at the berths to receive the tanker (RG.Berths.n < 
RG.numBerths). This part initiates the activity under normal conditions. The other two parts of the 
starting event precondition accommodate the two interruptions. The part ((R.Tug.anchored = TRUE) 
AND (R.Tug.Status = TO_HARBOUR)) indicates that the tug was interrupted by the storm while moving 
to the harbor while the part (R.Tug.returnToHarbour = TRUE) indicates that the MoveToBerths activity 
was interrupted by a tanker arriving at the harbor. The starting event SCS also evaluates these conditions 
and takes appropriate actions.  

Intercepting events are specified below the Duration specification of the activity as shown in 
Table 12. The dash lines separating the Duration field from the precondition and event SCS fields of the 
intercepting event emphasizes that the event can occur during the duration interval of the activity. The 
event SCS of the intercepting event will indicate that anchor is dropped by setting the R.Tug.anchored to 
TRUE and computes and saves in the attribute R.Tug.travelTime the time left to travel. 

6 CONCLUSION 

The overview of the ABCmod conceptual modelling framework for discrete event dynamic systems 
presented in this paper will hopefully provide some motivation for the adoption of this activity-based 
approach to conceptual modelling within the DEDS domain. The authors would like to emphasize that 
page limitations have constrained the presentation. Consequently there are numerous facets of the 
approach which have been presented in only a rudimentary/superficial manner. Included here are: the use 
of entity categories with scope=Set[n] for dealing with a fixed but a multiple number of members 
(namely, n) of an entity category, the use of user-defined procedures for handling complexity, the 
collection of standard procedures that are available to carry out frequently required operations (e.g., 
insertion (removal) of entities into (out of) queues or groups), iconic conventions for representing the 
various types of entity categories, the application of scheduled activities and sequel activities, etc. These 
features all considerably enhance the ease with which the approach can be applied in accommodating the 
substantial complexities that can arise in conceptual model development within the DEDS landscape. 
Elaboration and illustration of these features can be found in (Birta and Arbez 2013).  

It should also be pointed out that although ABCmod was developed as a conceptual modelling 
environment, it has been recognized that the ultimate requirement is for “executable code” namely a 
simulation model. Recent work has, in fact, produced a new world view, the Activity Object World View 
(Arbez and Birta 2010), which provided the basis for the development of a program library called 
ABSmod/J for transforming an ABCmod conceptual model into a Java program. The main feature of this 
new world view is that it preserves the modelling artefacts of ABCmod (both entity categories and 
activities/actions) as objects in the simulation program. In effect, then, a comprehensive environment for 
both conceptual model development and simulation experiments has been developed. The ABSmod/J tool 
is available on request from the first author. 
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