
©Copyright	JASSS

J.	Gary	Polhill	(2015)

Extracting	OWL	Ontologies	from	Agent-Based	Models:	A	Netlogo	Extension

Journal	of	Artificial	Societies	and	Social	Simulation 	18	(2)	15
<http://jasss.soc.surrey.ac.uk/18/2/15.html>

Received:	09-Oct-2014				Accepted:	24-Feb-2015				Published:	31-Mar-2015

Abstract

Using	OWL	ontologies	to	represent	the	state	and	structure	of	a	simulation	at	any	one	time	has	been	argued	to	improve	the
transparency	of	a	social	simulation,	on	the	basis	that	this	information	is	then	not	embedded	in	the	source	code	of	the	model,	or
in	the	computer's	memory	at	run-time.	Should	transparency	of	such	a	form	be	desirable,	it	would	be	preferable	to	enable	it	by
extracting	the	information	automatically	from	a	running	model.	However,	semantic	differences	between	traditional	object-
oriented	programming	languages	and	description	logics	pose	an	obstacle	to	this.	This	paper	presents	arguments	that	Netlogo
does	not	have	the	same	semantic	challenges	to	automated	ontology	extraction,	and	describes	an	extension	to	Netlogo	(5.0)
using	the	OWL-API	(3.1.0)	that	extracts	state	and	structure	ontologies	from	an	existing	Netlogo	model.	The	extension	is	freely
available	from	https://github.com/garypolhill/netlogo-owl.

Keywords:
Netlogo,	OWL,	OWL-API,	Ontology,	Transparency

Introduction

1.1 	Social	simulation	is	often	argued	to	be	more	transparent	than	other	approaches	to	modelling	social	systems	(e.g.	Galán	et	al.
2009).	The	transparency	of	a	social	simulation	can	refer	to	the	ability	to	relate	the	state	and	structure	of	a	simulation	to	those	of
the	target	system	it	is	intended	to	represent	(e.g.	Leydesdorff	2001),	but	also	to	the	relationship	between	expressions	in	the
source	code	and	properties	of	the	target	system	(e.g.	Taylor	2003).	In	general,	transparency	in	this	context	may	be	conceived	as
the	ability	of	someone	other	than	those	immediately	involved	in	a	model's	construction	to	understand	what	it	is	doing	(e.g.	Polhill
&	Gotts	2009).	However,	as	Janssen	et	al.	(2008)	point	out,	whilst	full	transparency	is	ideal,	'translucency'	–	in	which	there	is	a
partial	exposure	of	the	implementation	–	may	often	be	all	that	is	practical.	Indeed,	sometimes	the	latter	may	be	preferred;	for
example,	when	discussing	certain	aspects	of	the	model	in	inter-	or	trans-disciplinary	teams.

1.2 	Whilst	computer	programming	languages	can	be	reasonably	argued	to	efficiently	and	formally	describe	algorithms,	extracting
the	structure	of	a	simulation	(the	classes	of	entity	in	the	model,	the	properties	they	have,	and	the	relationships	they	have	with
other	entities)	from	its	source	code	can	be	challenging.	In	an	object-oriented	model,	the	structure	may	be	distributed	across
several	class	files,	with	no	immediately	obvious	way	to	determine	which	classes	are	ontologically	significant,	and	which	are	there
to	provide	functionality	not	already	provided	by	the	language	API	or	any	programming	libraries	used.	Although	extracting	UML
diagrams	from	object-oriented	code	can	be	automated,	there	is	the	further	problem	that	inheritance	in	object-oriented	models
reflects	compiler	and	programmer	convenience,	rather	than	common-sense	understandings	(LaLonde	&	Pugh	1991).	If	there	is
an	acceptance	that	logics	are	formalisations	of	common-sense	understandings,	then	for	the	purposes	of	transparency	(or
translucency)	rather	than	programming,	the	ideal	would	be	that	the	model	structure	is	represented	using	axioms	of	description
logics.

1.3 	Semantic	differences	between	classical	object-oriented	programming	languages	and	description	logics	have	been	highlighted	by
Polhill	and	Gotts	(2009),	with	reference	to	Lalonde	and	Pugh's	(1991)	distinctions	among	the	three	inheritance	relations	subtype,
subclass	and	is-a.	Of	these	three,	the	first	is	for	compiler	convenience	in	checking	types	involved	in	operations	(interfaces	in
Java),	the	second	for	programmer	convenience	in	facilitating	code	re-use	(classes	in	Java),	whilst	the	third	reflects	descriptive,
logical	meanings	that	are	of	primary	interest	from	an	ontological	point	of	view.	These	differences	mean	that	direct	ontology
learning	from	model	source	code	is	not	guaranteed	in	object-oriented	programming	languages.

http://jasss.soc.surrey.ac.uk/18/2/15.html 1 20/10/2015

/admin/copyright.html
../../JASSS.html
http://jasss.soc.surrey.ac.uk/18/2/15/polhill.html
https://github.com/garypolhill/netlogo-owl


1.4 	Netlogo	(Wilensky	1999)	models	do	not	have	these	issues	because	Netlogo	is	not	an	object-oriented	programming	language,
and	there	is	no	inheritance	among	the	language's	main	entity	('agent'	in	Netlogo	terminology)	types,	which	are	known	as	'breeds'.
The	facility	for	explicit	representation	of	relationships	(or	'links')	among	agents,	rather	than	encapsulating	associations	in	classes
as	in	object-oriented	languages,	further	contributes	to	enabling	automatic	ontology	learning	from	Netlogo	model	code,	though,	as
discussed	later,	doing	so	imposes	a	particular	programming	style	on	the	implementation.

1.5 	Netlogo's	extension	facility	enables	software	to	be	written	that	provides	functionality	from	within	Netlogo	to	automatically	extract
an	OWL	(Horrocks	et	al.	2003)	or	OWL	2	(Cuenca	Grau	et	al.	2008)	ontology	from	the	model.	OWL	is	a	popularly	used	language
for	expressing	ontologies,	which	has	correspondences	with	description	logics	that	depend	on	the	sublanguage	used.	The
mapping	is	shown	in	Table	1.

Table	1:	Mapping	from	Netlogo	syntax	to	OWL	ontology	types.

Netlogo	syntax OWL	type(s) Comments
breed Class Breeds	in	Netlogo,	like	classes	in	OWL,	are	not	necessarily	disjoint	–

agents	can	change	breed	using	the	set	breed	command.
directed-
link-breed
(no	'own')

ObjectProperty For	all	link	breeds,	there	is	no	syntax	to	constrain	the	breeds	of	agent
that	are	at	either	end	of	the	link,	meaning	that	domains	and	ranges	for
links	cannot	be	inferred	from	the	code.	If	the	link	breed	does	not	have
any	of	its	'own'	variables,	it	can	be	declared	directly	as	an	object
property…

directed-
link-breed
(with	'own')

Class	and
ObjectProperty

…otherwise	the	link	must	be	reified,	and	two	object	properties	used	to
link	the	breeds	that	can	be	connected	in	this	way.	The	object	property
going	in	to	the	class	representing	the	property	can	be	declared	inverse
functional;	the	object	property	going	out	can	be	declared	functional.	A
property	chain	can	be	used	to	represent	the	link	as	a	whole	if	the
ontology	is	in	OWL	2.

undirected-
link-breed

ObjectProperty
or	Class	and
ObjectProperty

In	addition	to	the	points	applying	to	directed	link	breeds,	object
properties	corresponding	to	undirected	link	breeds	(in	the	case	of
reified	links,	this	will	apply	to	the	chain)	can	be	declared	symmetric	in
OWL.	If	the	ontology	is	in	OWL	2,	all	links	can	be	declared	as
irreflexive	as	Netlogo	does	not	permit	an	agent	to	link	to	itself.

breeds-own DataProperty The	domain	of	the	data	property	can	be	declared	to	be	the	class
corresponding	to	the	breed.	However,	since	Netlogo	does	not	have
typed	variables,	the	data	range	cannot	be	automatically	inferred.	Note
that	different	breeds	can	have	the	same	variable.

link-
breeds-own

DataProperty The	domain	of	the	data	property	can	be	declared	to	be	the	class
corresponding	to	the	link	breed.	Note	that	different	link	breeds	can
have	the	same	variable,	but	a	variable	cannot	be	shared	between	link
breeds	and	breeds.

agent Individual Agents	in	Netlogo	can	be	asserted	as	individuals,	and	members	of	the
class	corresponding	to	the	breed	of	which	they	are	currently	a
member.

1.6 	In	the	rest	of	this	paper,	an	extension	to	Netlogo	implementing	these	mappings	is	presented,	together	with	an	illustration	based
on	the	CEDSS	(Community	Energy	Demand	Social	Simulator)	model,	built	as	part	of	the	GILDED	(Governance,	Infrastructure,
Lifestyle	Dynamics	and	Energy	Demand)	Framework	Programme	7	project	(http://gildedeu.hutton.ac.uk/).

The	Netlogo	Extension

2.1 	The	owl	extension	to	Netlogo	was	written	to	implement	the	mappings	in	Table	1.	The	extension	is	written	for	Netlogo	5.0,	and
consists	of	the	file	owl.jar.	This,	together	with	version	3.1.0	of	the	OWL-API	(Bechhofer	et	al.	2003;	Horridge	et	al.	2007;
http://owlapi.sourceforge.net/),	which	is	available	under	the	GNU	Library	General	Public	Licence,	should	be	placed	in	a
subdirectory	named	'owl'	of	the	directory	in	which	the	.nlogo	file	using	the	owl	extension	is	located.	The	file	'owl.zip'	–	the	release
version	of	the	extension,	contains	owl.jar	and	the	OWL-API	(owlapi-bin.jar),	ready	for	use.	To	permanently	install	the	extension,
put	it	in	the	extensions	folder	of	the	Netlogo	applications	directory.

2.2 	The	extension	makes	available	a	number	of	commands	to	a	Netlogo	model	containing	the	following	command	(typically,	near	the
beginning	of	the	code):

extensions	[owl]

The	commands	are	given	in	approximate	order	in	which	they	must	occur	during	execution	of	the	model.	Specifically,

http://jasss.soc.surrey.ac.uk/18/2/15.html 2 20/10/2015

http://gildedeu.hutton.ac.uk/
http://owlapi.sourceforge.net/


owl:domain,	owl:range	and	owl:imports	cannot	be	used	after	owl:model,	and	owl:structure	and	owl:state	may
only	be	used	after	owl:model.

2.3 	The	commands	assume	a	distinction	between	the	structure	and	the	state	of	the	model	and	corresponding	ontologies.	An
ontology	describing	the	structure	of	a	model	consists	of	terminology	(T-box)	axioms	describing	the	kinds	of	entity	that	the	model
contains	(OWL	classes),	properties	they	have	(OWL	data	properties)	and	relationships	they	may	have	with	other	types	of	entity
(OWL	object	properties).	By	contrast,	an	ontology	describing	the	state	of	a	model	applies	to	a	particular	snapshot	of	an	instance
of	it	running	at	one	time.	The	state	ontology	imports	the	structure	ontology,	and	then	adds	assertion	(A-box)	axioms	about	the
specific	instances	of	the	various	classes	of	entity	that	exist	in	the	model	when	the	snapshot	is	taken.

owl:domain	link-breed	breed

2.4 	The	owl:domain	command	takes	two	arguments.	The	first	is	the	(string)	name	of	a	link-breed,	and	the	second	is	the	(string)
name	of	a	breed.	The	command	causes	an	assertion	to	be	made	in	the	ontology	that	the	OWL	class	corresponding	to	the	breed
is	in	the	domain	of	the	OWL	object	property	corresponding	to	the	link-breed.

2.5 	This	command	will	not	affect	your	model	(that	is	to	say,	while	the	model	runs,	no	check	will	be	made	of	the	link-breed	that	only
agents	of	the	specified	breed	are	in	the	domain	of	the	link-breed).

owl:range	link-breed	breed

2.6 	The	owl:range	command	takes	two	arguments.	The	first	is	the	(string)	name	of	a	link-breed,	and	the	second	is	the	(string)
name	of	a	breed.	The	command	causes	an	assertion	to	be	made	in	the	ontology	that	the	OWL	class	corresponding	to	the	breed
is	in	the	range	of	the	OWL	object	property	corresponding	to	the	link-breed.

2.7 	Just	as	for	owl:domain,	owl:range	does	not	cause	any	checks	to	be	made	while	the	model	runs	that	only	agents	of	the
specified	breed	are	in	the	range	of	the	link-breed.

owl:imports	IRI…

2.8 	The	argument(s)	to	the	owl:imports	command	are	strings	containing	Internationalised	Resource	Identifiers	for	ontologies	that
the	model	structure	ontology	is	to	import.	Again,	this	does	not	affect	the	model	in	any	way,	or	cause	any	checks	to	be	made,	but
allows	the	ontology	to	be	created	with	the	imports	in	place	ready	for	use	with	ontology	visualisation,	reasoning	and	analysis	tools.

owl:model	IRI

2.9 	Define	the	Internationalised	Resource	Identifier	for	the	model	structure	ontology,	which	is	contained	in	the	string	argument.	All
ontologies	have	an	IRI,	which	constitutes	an	identifier	for	the	ontology.	Although	the	IRI	is	usually	a	web	address,	it	is	not
necessarily	the	case	that	the	file	will	exist	at	that	web	address	(though	ideally	it	would)	–	the	IRI	is	just	a	name.

2.10 	As	stated	above,	all	owl:domain,	owl:range	and	owl:imports	commands	must	execute	before	owl:model	is	executed,
and	no	owl:structure	or	owl:state	command	may	execute	until	owl:model	has	executed.

owl:options	option-string…

2.11 	Set	options	for	creating	structure	and	state	ontologies.	Three	option	strings	are	available:

"owl2",	which	will	add	OWL	2	axioms	to	the	ontology	where	relevant;
"relations",	which	will	add	axioms	asserting	relationship	attributes	(e.g.	symmetric,	and	if	"owl2"	is	specified,
irreflexive	and	asymmetric)	to	property	assertions	in	the	ontology	where	relevant;	and
"no-patches",	which	suppresses	spatial	axioms.	Spatial	axioms	include	the	assertion	of	a	location	object	property
with	range	Patch,	and	hence	the	declaration	of	the	latter	as	a	class.

The	option	"none"	(the	default)	can	be	used	to	indicate	that	none	of	the	options	above	applies.	The	owl:options	command	can
be	run	more	than	once,	overriding	any	options	selected	in	earlier	calls;	subsequent	calls	to	owl:structure	and	owl:state	will
respect	the	options	selected.

owl:structure	file-name

2.12 	Save	a	model	structure	ontology	to	the	file	name	given	as	arguments.	The	logical	IRI	of	the	ontology	will	be	that	specified	using
the	owl:model	command.	Note	that	for	visualisation	software	such	as	OntoViz	to	show	a	link	as	an	object	property	in	the
resulting	diagram,	both	owl:domain	and	owl:range	must	have	been	specified.	(The	software	would	otherwise	not	know	which
classes	to	draw	the	link	from	and	to	respectively.)

owl:state	file-name	time-step	(experimental)

http://jasss.soc.surrey.ac.uk/18/2/15.html 3 20/10/2015



2.13 	Save	an	ontology	of	the	current	state	of	the	model	to	the	file	name.	The	logical	IRI	for	the	state	ontology	will	be	constructed	from
the	model	IRI	specified	by	the	earlier	owl:model	command	and	the	time-step	given	as	second	argument	to	this	command.
Specifically,	any	.owl	suffix	will	be	removed	from	the	model	IRI,	and	then	"-state-"	appended,	followed	by	the	time-step,
followed	by	the	extension	string	if	given,	followed	by	the	.owl	suffix	if	the	model	IRI	had	it	originally.

2.14 	For	example,	the	model	IRI	"http://www.gildedeu.org/ontologies/CEDSS-3.3.owl"	given	the	argument	7	for	the	time-step,	would
produce	a	state	ontology	IRI	"http://www.gildedeu.org/ontologies/CEDSS-3.3-state-7.owl".	(Note	that	the	links	have	different
targets	from	those	shown.)

2.15 	The	file-name	argument	gives	a	physical	location	to	save	the	ontology	to.	If	it	does	not	end	with	".owl",	then	the	name	of	the
resource	in	the	generated	state	ontology	IRI	is	appended	to	the	file-name	argument	to	produce	the	final	location.	For	example,
with	the	state	ontology	IRI	above	(if	ticks	=	7):

owl:state	"/var/tmp/"	ticks

will	save	the	ontology	to	/var/tmp/CEDSS-3.3-state-7.owl.

2.16 	An	exception	is	thrown	if	an	attempt	is	made	to	overwrite	an	existing	file.

2.17 	The	owl:state	command	can	be	quite	demanding	on	resources	depending	on	the	size	of	the	model.	As	well	as	the	file	saved
being	potentially	quite	large	in	size,	the	command	can	take	several	minutes	to	search	through	all	the	elements	in	the	model,	and
may	crash	with	heap	errors	if	Netlogo	is	not	run	with	sufficient	memory	given	to	the	Java	virtual	machine.	(The	example	in	Figure
3	below	takes	1	minute	or	so	on	a	machine	with	a	2.8GHz	Intel	Core	i7	processor,	requires	8G	of	RAM	for	the	Java	virtual
machine,	and	the	resulting	OWL	file	(in	RDF/XML	format)	occupies	650M	or	so	of	disk	space	if	not	compressed.)

Illustration

3.1 	The	CEDSS	(Community	Energy	Demand	Social	Simulator)	model	was	built	to	simulate	domestic	energy	use	patterns	in	a	small
community	(e.g.	a	housing	estate	or	a	village),	and	is	based	on	an	earlier	prototype	model	with	the	acronym	ABMED	(Agent
Based	Model	of	Energy	Demand;	Gotts	2009).	It	represents	households	as	agents,	who	live	in	dwellings,	and	have	a	portfolio	of
appliances	they	use	for	space	and	water	heating,	and	entertainment.	Using	a	representation	of	the	psychological	theory	of	'goal
frames'	(Lindenberg	&	Steg	2007),	in	which	consumer	decisions	are	based	around	different	modes	of	behaviour	(in	this	case,
hedonistic,	egoistic,	and	biospheric),	CEDSS	agents	decide	how	to	replace	broken	appliances,	and	whether	to	buy	any	new
appliances.	Interactions	are	based	around	agents	visiting	other	houses	in	their	social	network.	Visitor	agents	observe	and
potentially	desire	appliances	they	don't	own	that	their	hosts	possess,	and	adjust	goal	frame	parameters	to	make	the	probabilities
of	different	modes	of	behaviour	more	similar	to	those	of	their	hosts.

3.2 	The	following	procedure	demonstrates	the	use	of	some	of	the	above	ontology	features	to	save	a	structure	ontology	from
CEDSS:

Figure	1.	Example	procedure	to	extract	a	structure	ontology	from	CEDSS.

3.3 	Using	the	OntoViz	(Sintek	2007)	plug-in	for	Protégé	3,	a	DOT	graph	can	be	created	of	the	resulting	ontology,	which	(with	some
minor	editing	to	simplify	the	text,	enter	datatypes	and	highlight	reified	link-breeds	in	blue)	is	shown	in	Figure	2.

http://jasss.soc.surrey.ac.uk/18/2/15.html 4 20/10/2015

http://gildedeu.hutton.ac.uk/sites/www.gildedeu.org/files/owl-files/CEDSS-3_3.owl
http://gildedeu.hutton.ac.uk/sites/www.gildedeu.org/files/owl-files/CEDSS-3_3-state-7.owl.gz


Figure	2.	Ontology	extracted	from	CEDSS	visualised	with	OntoViz.

Figure	3.	Diagram	of	all	the	individuals	in	a	state	ontology	in	the	CEDSS	model,	rendered	using	the	sfdp	command	supplied
with	GraphViz[1]	and	a	bespoke	program	to	create	an	appropriately	formatted	dot	graph	from	the	ontology.	Nodes	(black	dots)
are	individuals,	coloured	arcs	are	object	properties.	Apart	from	the	dense	graph	in	the	middle,	the	other	arcs	show	upgrade

http://jasss.soc.surrey.ac.uk/18/2/15.html 5 20/10/2015



paths	for	insulations,	and	location	(built-in	relationship	agents	have	with	patches,	which	would	not	have	been	included	if	the
no-patches	option	had	been	specified).

Discussion	and	conclusion

4.1 	Whilst	the	ontology	extracted	from	the	Netlogo	code	makes	semantic	sense,	writing	a	new	model	with	a	view	to	using	the
extension	may	affect	the	way	certain	concepts	are	represented.	The	treatment	of	all	breeds'	'own'	variables	as	data	properties
means	that	any	such	variables	that	contain	lists	or	sets	of	other	agents	will	not	be	represented	as	a	relationship	in	the	resulting
structure	ontology,	with	the	extension	as	presently	written.	The	effect	would	be	to	encourage	the	explicit	representation	of
relationships	using	link-breeds.	Mapping	from	breeds	to	OWL	classes	would	also	encourage	model	developers	to	make	greater
use	of	breeds	for	model	entities	than	otherwise	they	might.	An	'agent'	might	normally	be	thought	of	as	something	that	undertakes
an	action,	a	conceptualisation	that	tends	to	oppose	the	representation	of	inanimate	entities	as	agents.	This	may	be	undesirable
from	some	theoretical	perspectives	if	the	concept	of	an	agent	in	Netlogo	is	to	be	taken	literally	(a	view	that	would	arguably	be
somewhat	'fundamentalist'	in	character),	but	is	not	without	theoretical	precedent	(Dennett	1971;	Latour	2005).

4.2 	The	other	side	of	this	coin	is	that	different	coding	styles	will	influence	the	ontology	extracted.	Suppose	two	people	use	Netlogo	to
reimplement	the	same	model.	Both	reimplementations	behave	in	the	same	way	(or	with	a	degree	of	similarity	corresponding	to
one	of	Wilensky	and	Rand's	(2007)	levels),	but	the	different	approach	each	has	used	to	represent	the	model	using	Netlogo
datastructures	and	features	means	that	the	ontologies	extracted	from	each	implementation	will	be	different.

4.3 	Here	we	use	the	simple	example	of	a	model	in	which	a	group	of	children	are	playing	with	toys.	Each	child	has	a	toy,	and,
depending	on	which	toy	they	have	will	get	bored	with	it	after	a	specified	number	of	time	steps	and	try	to	swap	their	toy	with	that	of
one	of	their	friends	who	is	also	bored.	There	are	constraints	on	which	toys	can	be	swapped	(see	Table	2).	The	number	of	time
steps	for	which	each	child	has	the	toy	they	are	playing	with	is	recorded,	and	is	reset	to	zero	after	each	swap.	The	parameters	of
the	model	are	the	percentages	of	children	having	each	toy	initially,	the	number	of	children,	and	the	number	of	friends	each	child
has	(which	is	the	same	for	all	children).	We	are	interested	in	the	distribution	of	the	number	of	bored	children	over	the	time	of	the
model	run,	which	is	a	histogram	of	the	number	of	time	steps	for	which	there	were	x	bored	children.

Table	2:	Table	of	toy	parameters

Toy Time	until	bored Can	swap	with…
marbles 3 blocks,	bear
blocks 4 marbles,	bear
bear 2 marbles,	blocks,	rag-doll
rag-doll 1 bear

4.4 	There	are	various	ways	the	model	could	be	implemented,	but	to	highlight	the	potential	differences	in	coding	style,	we	choose	one
approach	making	no	use	of	breeds	or	links,	and	contrast	it	with	a	coding	style	more	suitable	for	use	with	the	owl	extension.
The	two	implementations	have	slightly	different	output	after	500	time	steps	–	exact	numerical	similarity,	despite	controlling	for
seed,	has	not	been	achieved,	but	the	distributions	of	numbers	of	bored	children	over	time	are	very	similar	(Figure	4).	In	Figure	5,
however,	the	difference	between	the	ontologies	the	extension	is	able	to	extract	from	the	two	implementations	is	clear.

	
(a)																																																																																				(b)

Figure	4.	Screenshots	from	the	two	implementations	using	the	same	parameters.	(a)	Implementation	not	using	breeds	or
links;	(b)	implementation	suitable	for	owl	extension	(which	is	also	able	to	show	who	is	playing	with	which	toy).	After	500	time

steps,	the	distributions	of	bored	children	shown	in	the	histograms	are	similar,	but	there	are	slight	differences.

http://jasss.soc.surrey.ac.uk/18/2/15.html 6 20/10/2015

http://gildedeu.hutton.ac.uk/sites/www.gildedeu.org/files/Swap2_nlogo.txt
http://gildedeu.hutton.ac.uk/sites/www.gildedeu.org/files/Swap1_nlogo.txt


	
(a)																																																																																				(b)

Figure	5.	Difference	in	ontology	generated	by	the	owl	extension	for	the	two	implementations.	(b)	Shows	the	ontology	from	the
implementation	designed	to	work	with	the	owl	extension.	Note	that	in	contrast	to	Figure	2,	the	reified	relationship	Playings
has	not	been	coloured,	and	datatypes	have	not	been	manually	entered.	This	shows	more	clearly	what	the	owl	extension

provides	by	default.

4.5 	As	Table	3	shows,	there	are	considerable	differences	in	the	way	the	representation	in	the	two	implementations	is	set	up.	The	left
column	representation	just	uses	the	default	turtle	breed	and	assigns	it	some	variables	to	store	the	information	used	by	the
model:	a	list	of	friends,	which	toy	they	are	playing	with,	whether	or	not	they	are	bored,	and	the	length	of	time	they	have	been
playing	with	the	current	toy.	In	the	right	hand	column,	the	code	is	more	explicit	about	the	microworld:	there	are	breeds	for	toys
and	children,	link	breeds	for	who	is	a	friend	of	whom,	who	is	playing	with	what	toy,	and	which	toys	can	be	swapped	with	which
others.	As	a	result,	the	children	breed	has	only	the	Boolean	storing	whether	or	not	they	are	bored.	The	right	hand
representation	also	contains	additional	information	about	the	toys,	with	boredom-time	storing	how	long	it	takes	for	a	child	to	get
bored	with	playing	with	it.	The	code	in	Table	4	shows	that	the	strict	implementation	not	using	a	breed	to	represent	the	toys	has
meant	that	this	information	is	hard-coded	into	the	model,	though	there	could	be	ways	round	this	using,	for	example,	the	table
extension	in	Netlogo	to	associate	the	name	of	the	toy	with	the	time.

Table	3:	Contrasting	representations	in	the	two	implementations	of	the	'toy'	model

No	breeds	or	links Version	suitable	for	owl	extension
turtles-own	[
		friends
		toy
		bored?
		time
]

breed	[toys	toy]
toys-own	[
		name
		boredom-time
]

breed	[children	child]
children-own	[
		bored?
]

directed-link-breed	[friends	friend]

directed-link-breed	[playings	playing]
playings-own	[
		time
]

undirected-link-breed	[swaps	swap]

Table	4:	Contrasting	implementation	of	determining	whether	children	are	bored

http://jasss.soc.surrey.ac.uk/18/2/15.html 7 20/10/2015



4.6 	Table	4	also	shows	that	there	can	be	some	awkward	syntax	in	the	coding	style	used	to	make	the	representation	in	the	model
more	suitable	for	the	owl	extension.	Since	Netlogo	doesn't	have	syntax	for	functional	relationships,	my-out-playings	makes	it
unclear	that	each	child	can	only	play	with	one	toy	at	a	time.	Arguably,	for	those	not	familiar	with	Netlogo,	the	code	on	the	left	is
clearer	about	the	conditions	under	which	children	(even	if	they	are	called	turtles	here)	become	bored.	On	the	other	hand	it	makes
no	reference	to	'playing'	or	'boredom-time',	meaning	that	for	those	with	an	understanding	of	Netlogo	syntax,	the	code	on	the	right
is	(functional	relationship	question	aside)	arguably	more	transparent	in	that	the	hardcoded	numbers	are	replaced	with	a	variable
describing	what	they	are	supposed	to	mean.

4.7 	Although	the	fact	that	these	two	functionally	similar	implementations	have	different	ontologies	could	be	seen	as	a	weakness,	it
could	equally	be	argued	that	this	is	a	reflection	of	variations	in	transparency	of	coding	style.	That	is,	two	functionally	similar
implementations	can	still	be	compared	on	the	basis	of	how	clearly	their	source	code	reflects	the	system	they	are	representing.
Whether	this	extension	to	Netlogo	has	any	role	to	play	in	making	such	a	judgement	is	debatable,	if,	indeed,	such	questions	are
anything	more	than	a	matter	of	subjective	preferences.	Insofar	as	there	are	objective	measures	of	transparency	(an	example	of
which	could	be	the	ease	with	which	inferences	can	be	made	using	information	about	the	model	state	or	structure),	software	such
as	the	Netlogo	extension	presented	here	could	prove	useful.

Availability	and	Requirements

	The	software	is	available	on	GitHub	under	a	GNU	Lesser	General	Public	Licence	at	https://github.com/garypolhill/netlogo-owl.

It	requires	the	OWL-API	version	3.1.0	available	from	SourceForge	at	http://sourceforge.net/projects/owlapi/files/OWL	API	(for
OWL	2.0)/3.1.0/.

Acknowledgements

	This	work	was	funded	by	the	European	Commission	Seventh	Framework	Programme,	grant	agreement	number	225383,	and	the
Scottish	Government	Rural	Affairs	and	the	Environment	Portfolio	Strategic	Research	Theme	4	(Economic	Adaptation).

	Notes

	1http://www.graphviz.org/

References

	BECHHOFER,	S.,	Volz,	R.	&	Lord,	P.	(2003).	Cooking	the	semantic	web	with	the	OWL	API.	In	Fensel,	D.,	Sycara,	K.	&
Mylopoulos,	J.	(eds.)	Second	International	Semantic	Web	Conference,	ISWC	2003,	Sanibel	Island,	Florida,	20–23	October	2003.
Lecture	Notes	in	Computer	Science	2870,	659–675.	[doi:10.1007/978-3-540-39718-2_42]

CUENCA	GRAU,	B.,	Horrocks,	I.,	Motik,	B.,	Parsia,	B.,	Patel-Schneider,	P.	&	Sattler,	U.	(2008).	OWL	2:	The	next	step	for	OWL.
Journal	of	Web	Semantics	6,	309–322.	[doi:10.1016/j.websem.2008.05.001]

DENNETT,	D.	C.	(1971).	Intentional	systems.	The	Journal	of	Philosophy	68	(4),	87–106.	[doi:10.2307/2025382]

http://jasss.soc.surrey.ac.uk/18/2/15.html 8 20/10/2015

https://github.com/garypolhill/netlogo-owl
http://sourceforge.net/projects/owlapi/files/OWL API %28for OWL 2.0%29/3.1.0/
http://www.graphviz.org/
http://dx.doi.org/10.1007/978-3-540-39718-2_42
http://dx.doi.org/10.1016/j.websem.2008.05.001
http://dx.doi.org/10.2307/2025382


GALÁN,	J.	M.,	Izquierdo,	L.	R.,	Izquierdo,	S.	S.,	Santos,	J.	I.,	del	Olmo,	R.,	López-Paredes,	A.	&	Edmonds,	B.	(2009).	Errors	and
artefacts	in	agent-based	modelling.	Journal	of	Artificial	Societies	and	Social	Simulation	12	(1),	1:
http://jasss.soc.surrey.ac.uk/12/1/1.html

GOTTS,	N.	(2009).	ABMED:	A	prototype	model	of	energy	demand.	Sixth	Conference	of	the	European	Social	Simulation
Association,	University	of	Surrey,	Guildford,	Surrey,	14–18	September	2009.

HORRIDGE,	M.,	Bechhofer,	S.	&	Noppens,	O.	(2007).	Igniting	the	OWL	1.1	touch	paper:	The	OWL	API.	Proceedings	of	the	Third
OWL	Experience	and	Directions	Workshop,	OWLED	2007,	Innsbruck,	Austria,	June	2007.

HORROCKS,	I.,	Patel-Schenider,	P.	F.	&	van	Harmelen,	F.	(2003).	From	SHIQ	and	RDF	to	OWL:	The	making	of	a	Web
Ontology	Language.	Journal	of	Web	Semantics	1,	7–26.	[doi:10.1016/j.websem.2003.07.001]

JANSSEN,	M.,	Alessa,	L.	N.,	Barton,	M.,	Bergin,	S.	&	Lee,	A.	(2008).	Towards	a	community	framework	for	agent-based
modelling.	Journal	of	Artificial	Societies	and	Social	Simulation	11	(2),	6:	http://jasss.soc.surrey.ac.uk/11/2/6.html

LALONDE,	W.	&	Pu,	J.	(1991).	Subclassing	≠	subtyping	≠	is-a.	Journal	of	Object-Oriented	Programming	3	(5),	57–62.

LATOUR,	B.	(2005).	Reassembling	the	Social	–	An	Introduction	to	Actor-Network-Theory.	Oxford	University	Press.

LEYDESDORFF,	L.	(2001).	Technology	and	culture:	The	dissemination	and	the	potential	'lock-in'	of	new	technologies.	Journal	of
Artificial	Societies	and	Social	Simulation	4	(3),	5:	http://jasss.soc.surrey.ac.uk/4/3/5.html

LINDENBERG,	S.	&	Steg,	L.	(2007).	Normative,	gain	and	hedonic	goal	frames	guiding	environmental	behavior.	Journal	of	Social
Issues,	63(1),	117-137.	[doi:10.1111/j.1540-4560.2007.00499.x]

POLHILL,	J.	G.	&	Gotts,	N.	M.	(2009).	Ontologies	for	transparent	integrated	human-natural	systems	modelling.	Landscape
Ecology	24	(9),	1255–1267.	[doi:10.1007/s10980-009-9381-5]

SINTEK,	W.	(2007).	OntoViz.	Available	from	http://protegewiki.stanford.edu/index.php/OntoViz.

TAYLOR,	R.	I.	(2003).	Agent-based	modelling	incorporating	qualitative	and	quantitative	methods:	A	case	study	investigating	the
impact	of	e-commerce	upon	the	value	change.	Ph.	D.	Thesis,	Centre	for	Policy	Modelling,	Manchester	Metropolitan	University.
CPM	Report	No.	CPM-03-137.	http://cfpm.org/cpmrep137.html

WILENSKY,	U.	(1999).	Netlogo,	http://ccl.northwestern.edu/netlogo/.	Center	for	Connected	Learning	and	Computer-Based
Modelling,	Northwestern	University,	Evanston,	IL.

WILENSKY,	U.	&	Rand,	W.	(2007).	Making	models	match:	Replicating	an	agent-based	model.	Journal	of	Artificial	Societies	and
Social	Simulation	10	(4),	2:	http://jasss.soc.surrey.ac.uk/10/4/2.html

http://jasss.soc.surrey.ac.uk/18/2/15.html 9 20/10/2015

http://jasss.soc.surrey.ac.uk/12/1/1.html
http://dx.doi.org/10.1016/j.websem.2003.07.001
http://jasss.soc.surrey.ac.uk/11/2/6.html
http://jasss.soc.surrey.ac.uk/4/3/5.html
http://dx.doi.org/10.1111/j.1540-4560.2007.00499.x
http://dx.doi.org/10.1007/s10980-009-9381-5
http://protegewiki.stanford.edu/index.php/OntoViz
http://cfpm.org/cpmrep137.html
http://ccl.northwestern.edu/netlogo/
http://jasss.soc.surrey.ac.uk/10/4/2.html

	Abstract
	Introduction
	The Netlogo Extension
	owl:domain link-breed breed
	owl:range link-breed breed
	owl:imports IRI…
	owl:model IRI
	owl:options option-string…
	owl:structure file-name
	owl:state file-name time-step (experimental)

	Illustration
	Discussion and conclusion
	Availability and Requirements
	Acknowledgements
	Notes
	References

