
Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

A MULTI-AGENT SPATIAL SIMULATION LIBRARY FOR PARALLELIZING
TRANSPORT SIMULATIONS

Zhiyuan Ma

Munehiro Fukuda

Division of Computing and Software Systems

University of Washington Bothell

18115 Campus Way NE

Bothell, WA 98011, USA

ABSTRACT

One of the major trends in traffic simulations is to take into account microscopic aspects of traffic flows at the
street level. Multi-agent models such as MATSim (multi-agent transport simulation) have been highlighted
for recent years as a solution to address these complex and microscopic simulation requirements. They
are viewed as an emergent and collective behavior of agents, (i.e., vehicles). However, as the simulations
scale up, their computational requirements could get increased beyond the capability of a single CPU and
thus should be fulfilled with parallelization. Multithreading can partially contribute to parallelization by
utilizing multi-cores, but cannot give full scalability of both CPU power and memory space. To support
distributed-memory parallelization for multi-agent models, we have developed the MASS (multi-agent
spatial simulation) library. This paper presents how to parallelize MATSim using the MASS library and
demonstrates the library’s portability and execution performance in practical transport simulations.

1 INTRODUCTION

Traffic simulation has always been a difficult task. Each traveller wants to have access to any transportation
with his/her own free will to act and behave. Such microscopic and unpredictable behaviors make simulation
tougher, because they cannot be formulated by mathematical models. From this microscopic and dynamic
viewpoint, any software, designed on the basis of the fact that travellers are intelligent, should be capable
and expected to adapt and to learn (Nagel and Marchal 2003). One solution to such complex problems
is using multi-agent models. Instead of simulating transport systems with traditional mathematical or
traffic flow models that must be statically given before the simulations, multi-agent simulations provide a
dynamic environment in which individual agents, in particular travelers will keep taking actions based on
their internal rules. Therefore, this approach can perform simulations as an emergent and collective group
behavior of agents, thus in the similar fashion of real-world scenarios.

MATSim is a research-based framework to implement large-scale agent-based transport simula-
tions (MATSim Homepage 2012). The framework consists of several modules that can be combined
or used independently. Modules can be replaced with user-developed implementations to test new aspects
of users’ own modules. Currently, MATSim offers a framework to support (1) demand modeling, (2)
agent-based mobility simulation, (i.e., traffic flow simulation), (3) re-planning, and (4) methods to analyze
their outputs. However, as the scale of simulation increases, the computational requirements could become
large beyond the capability of a single computing node. For instance, MATSim takes approximately 15
minutes on average to run each iteration of moving 188,000 agents under its Greater Zurich scenario (Balmer,
Meister, Nagel, and K.W.Axhausen 2008).

Therefore, parallelization should be considered to complete simulation runs within an acceptable time
range. Multithreading can partially contribute to parallelization by utilizing multi-cores, but cannot give

115978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Ma and Fukuda

full scalability of both CPU power and memory space. To support distributed-memory parallelization for
multi-agent models, we have developed the MASS (multi-agent spatial simulation) library (Chuang and
Fukuda 2013). This paper presents how to parallelize MATSim using the MASS library and demonstrates
the library’s portability and execution performance in practical transport simulations. Although the MASS
library has been examined for its programmability and execution performance, our previous work was
based on small test programs such as a two-dimensional wave simulation and agents’ random walk over a
two-dimensional space. MATSim is the very first practical application for the MASS library to parallelize.
Through the parallelization, we explore the potential of and issues in the MASS library’s practicability.

The rest of the paper is organized as follows: Section 2 clarifies the challenges in the related parallelization
work; Section 3 presents the MASS library as a solution and explains MATSim parallelization using MASS;
Section 4 evaluates the programming efforts and the execution performance of the parallelized MATSim;
and Section 5 concludes our discussions.

2 RELATED WORK

The most common approach to parallelization of traffic simulation is to directly incorporate parallel algorithms
into the source code itself so that the computational workload is shared among different processors. In the
following, we review three parallel implementations of the most popular traffic simulations: TRANSIMS,
AIMSUN, and Paramics, with respect to their data structures, data decomposition, time management, and
parallelization strategies.

TRANSIMS is an integrated system of travel forecasting models, which was designed in C++ to provide
transportation planners with information on traffic impacts, congestion, and pollution (Barrett et al. 1999).
It models individual travelers and multi-modal transportations as simulation entities, describes a traffic
network as cellular automata, populates these entities on the automata, synthesizes their activities, and
executes a micro-simulation of a given scenario continuously, (i.e., second by second). Parallelization of
TRANSIMS is based on a domain decomposition principle, where its cellular automata are partitioned into
small domains in terms of their proximity. Each domain is then mapped to a different CPU of a cluster
system and handled in parallel in support of PVM and MPI functions (Rickert and Nagel 2001).

AIMSUN is a microscopic simulation program that was originally developed for sequential execution
but was later ported to shared-memory multi-processors (Barcelo, Ferrer, Garcia, Florian, and Saux 1992).
The system models a traffic network as a set of links connected to each other through nodes, and runs
an event-driven simulation of the traffic flow over a given network. For its parallelization, AIMSUN
decomposes a traffic network into blocks, each with proximate links and nodes, and performs their parallel
execution on a shared memory computing platform such as a SUN Sparc server, using its OS-provided
multithreading library. AIMSUN’s parallelization of a small-scale scenario performed 3.5 times faster with
eight CPUs than the corresponding sequential execution.

Paramics models a traffic network as a system of junctions connected by roads, each known as nodes
and links (Cameron and Duncan 1996). These links are unidirectional and opposing half roadways. Each
link has a queue of vehicle objects that are currently passing through the corresponding road segment.
Paramics uses continuous time management to update the status of simulation objects and move them
from one to another links. For parallel simulation, Paramics uses domain decomposition to distribute links
and their queues over parallel processors while the link connectivity information is replicated on every
processor. Parallel execution was implemented in C*/C and executed by CM-200 (which is based on the
SIMD architecture).

These systems are based on microscopic simulation. Although their internal data structure takes the
form of cellular automata or a network of links and nodes, they all use domain decomposition where
proximate cells or links/nodes are grouped together and mapped to a different computing node for parallel
execution. These simulators are parallelized using the conventional low-level libraries such as MPI and
OS-provided multi-threads. Vehicle objects are passively exchanged as messages among domains, thus
among different computing nodes.

116

Ma and Fukuda

From the viewpoint of traffic planners and simulation modelers, the major challenges of their paralleliza-
tion approaches are three-fold: (1) multithreading and message passing require a plenty of knowledge and
skills in parallel programming; (2) platform-dependent direct parallelization aggravates the portability of
parallelized traffic simulators; and (3) domain decomposition needs a spatial software such as PartitionNet
in TRANSIMS or must be hard-coded.

To address these challenges for parallelizing simulations, we have developed the MASS (multi-agent
spatial simulation) library in Java and C++. MASS particularly focuses on easy parallelization and quick
mock-up for improving the productivity of agent-based models. As summarized in Table 1, the MASS
library gives a high-level abstraction of parallelizable data structures - mobile agents over a distributed
array. It facilitates MIMD parallelization of traffic simulators such as MATSim and runs it over a general
cluster system.

Table 1: A comparison between MASS-parallelized MATSim and related work

Internal implementation TRANSIMS AIMSUN Paramics MASS MATSim

Data structures cellular automata a network a network agents over a distributed array

Data decomposition domain-based domain-based domain-based depending on data input order

Time management continuous event-driven continuous continuous

Parallelization strategies MPI, MIMD multithreading, MIMD CM-200, SIMD distributed array, MIMD

In summary, the MASS library can be differentiated from the above related work from the following
two perspectives:

1. The MASS library provides agent/entity-based simulations with a high-level data abstraction that
eases parallelization and porting of traffic simulations.

2. The MASS library gives an architecture-independent cluster-computing environment to parallelize
transport micro-simulation including MATSim.

3 PARALLELIZATION OF MATSIM

Since transportation simulation is a specific type of spatial simulation and MATSim supports multiple
agents in its Java implementation, we feel that MASS-Java is a suitable choice for parallelizing MATSim.

3.1 MASS Library

Within MASS library, two key concepts are introduced: places and agents. Places are a matrix of elements
that are dynamically allocated over a cluster of computing nodes, and each element is called a Place
object. On the other hand, agents are a set of execution instances that can reside on a place, migrate to any
other places with matrix indices, (thus as duplicating themselves), and interact with other agents through
their local place. As illustrated in Figure 1, places are mapped to threads, whereas agents are mapped to
processes. Unless a programmer indicates his/her places-partitioning algorithm, the MASS library divides
places into smaller stripes in vertical or in the X-coordinate direction, each of which is then allocated to
and executed by a different thread. Contrary to places, agents are grouped into bags, each allocated to a
different process where multiple threads keep checking in and out one after another agent from this bag
when they are ready to execute a new agent.

Parallelization with the MASS library uses a set of multi-threaded communicating processes that are
forked over a cluster of multi-core computing nodes with JSCH in Java or libssh2 in C++ and are connected
to each other through TCP sockets. Multi-threads take charge of method calls and information exchanges
among places and agents in parallel. A user designs a behavior of a place and an agent by extending
the Place and Agent base classes respectively. They are populated through the Places and Agents classes.
Actual computation is performed between MASS.init() and MASS.finish(), using the major methods in
Table 2, each performed in parallel (Fukuda 2010). (Note that the following discussions focus on the Java
specification for simplicity.)

117

Ma and Fukuda

Table 2: The specification of the MASS library

Places Class
public Places(int handle, String className, Object argument, int boundary, int size...)
instantiates a shared array with size and a shadow space with boundary from className as passing an argument
to the className constructor.

public Object[] callAll(int functionId, Object[] arguments)
calls the method specified with functionId of all elements as passing arguments[i] to element[i], and receives a return

value into Object[i].

public void exchangeAll(int handle, int functionId, Vector<int[]> destinations)
calls from each element to a given method of all destination elements, each indexed with a different Vector element. Each

vector element, destination[] is an array of integers where destination[i] includes a relative index on the

coordinate i from the current caller to the callee element. The caller passes its outMessage[] data member to the callee as

a set of arguments, and receives return values in its inMessage[].

public void exchangeBoundary()
exchanges node-boundary’s outMessage[] data with neighboring nodes as a ghost space.

Place Class
private size[]; private index[]
maintains the size of the shared array that each element belongs to and the index of each array element.

public Object callMethod(int functionId, Object argument)
is invoked from Places.callAll() and exchangeAll() so as to call a function specified with functionId.

Agents Class
public Agents(int handle, String className, Object argument, Places places, int population)
instantiates agents from className, passes argument to their constructor, and distributes them over a given Places,

based on Agent.map().
public Object callAll(int functionId, Object[] arguments)
is the same as Places.callAll().
public void manageAll()
updates each agent’s status, based on its latest calls of migrate(), spawn(), and kill(). These methods are invoked within

callAll().

Agent Class
migrate(int[] index...)
allows a calling Agent to migrate or propagate itself to one or more Places specified with index upon Agents.manageAll().
spawn(int nChildren, Object arguments)
spawns children as passing arguments to them.

kill()
terminates a calling Agent.
public Object callMethod(int functionId, Object argument)
is the same as Place.callMethod().

118

Ma and Fukuda

Figure 1: The MASS library’s execution model

Figure 2 shows MASS-based code framework of generalized traffic simulation: the left snippet describes
the main program, (i.e., a simulation scenario), whereas the right defines the Mesh and Vehicles classes,
each modeling two-dimensional meshed streets and vehicles driving over them. The main function on the
left instantiates Mesh over multi-processors (line 9) and populates Vehicles agents over the Mesh (line 12).
The meshed street segments declare their north, east, south, and west neighbors (lines 15-19). After this
set-up, the main program enters a cyclic simulation where all street segments exchange their traffic flows
(line 23) and vehicles drive to a next street segment (lines 25-26).

It is natural for callAll() and exchangeAll() to call each element’s function with a user-given string-class
name. However, Java reflection is intolerably slow for parallel computing, and C/C++ dynamic-linking
library does not resolve a method within a given object. Thus, a selection of methods to call should
preferably be done with switch(), where we need to identify each method with an integer value. For this
reason, a user must implement callMethod() that assists the MASS library in choosing a method to call
(see lines 4-7 in Figure 2’s right snippet). Each instance of Mesh and Vehicles class calls trafficInfo() (lines
8-10) or migrateNext() (lines 13-18) respectively via callMethod upon an invocation of callAll.

3.2 Parallelized MATSim’s System Overview

We parallelized MATSim by extracting and maintaining its traffic network as the MASS library’s Places
array that is automatically distributed over a cluster of computing nodes, as shown in Figure 3. MATSim’s
simulation algorithm does not change at all but accesses this Places distributed array whenever it needs to
manipulate the original traffic network. To be more precise, MATSim iterates the following sequence of
four steps: (1) network parameter reloading, (2) vehicles’ route assignment, (3) traffic simulation (which
moves vehicles from one to another street segment), and (4) parameter exchange among adjacent street
segments. These steps are applied to the traffic network that is actually distributed over multiple nodes.
Therefore, all the cluster nodes perform each of these four steps in parallel onto their own subset of the
Places array.

119

Ma and Fukuda

1 public class MeshedTrafficSimulation {
2 public static void main(String[] args) {
3 // validate the arguments
4 int size=Integer.parseInt(args[0]);
5 int nCars=Integer.parseInt(args[1]);
6 int maxTime=Integer.parseInt(args[2]);
7 MASS.init(args);// start MASS
8 // create meshed streets.
9 Places streets=new Places(1, "Mesh",
10 null, size, size);
11 // populate vehicles.
12 Agents cars=new Agnets(2, "Vehicles",
13 null, streets, nCars);
14 // define the four neighbors (nbrs) of each place
15 Vector<int[]> nbrs = new Vector<int[]>();
16 int[] north = {0, -1}; nbrs.add(north);
17 int[] east = {1, 0}; nbrs.add(east);
18 int[] south = {0, 1}; nbrs.add(south);
19 int[] west = {-1, 0}; nbrs.add(west);
20 // now go into a cyclic simulation
21 for (int t = 0; t < maxTime; t++) {
22 // exchange neighboring traffic flows
23 streets.exchangeAll(Mesh.getFlow_,nbrs);
24 // allow cars to drive to the next street segment
25 cars.callAll(Vehicles.migrateNext_);
26 cars.manageAll();
27 } } }

1 public class Mesh extends Place {
2 static final int getFlow_ = 1;// function ID
3 private Integer myFlow;// a street segment’s flow
4 Object callMethod(int funcId, Object arg){
5 swith(funcId) {
6 case getFlow_: return getFlow();
7 } }
8 private Object trafficInfo() {// pass myFlow
9 return (Object)myFlow; // to neighbors
10 } }
11
12 public class Vehicles extends Agent {
13 private Object migrateNext() {
14 // decide a neighboring street segment to go
15 int[] dest = new int[index.length);
16 dest[0]=index[0] + ...;// from current to new x
17 dest[1]=index[1] + ...;// from current to new y
18 migrate(dest);// migration upon cars.manageAll
19 } }

Figure 2: MASS code snippets of the main program (left) and simulation components (right)

3.3 Parallelization Techniques

In MATSim’s traffic network, a node represents an intersection, and a link models a street segment from
one to another intersection. To read such a traffic network into memory from MATSim’s XML file, we used
a collection of adjacency lists, where a node has a pair of single lists, each with incoming and outgoing
links respectively. For instance, given a traffic network in Figure 4, node NB has an incoming list of L1 and
an outgoing list of L2 and L4. The entire adjacency lists are then maintained as a LinkedHashMap object
that distinguishes each node with a key, (i.e., a node ID) and retrieves this node’s incoming and outgoing
links as the value.

Upon a start of the MASS library, the main program instantiates a two-dimensional array of Places
over a cluster of computing nodes and invokes a callAll function for initializing each Place element as
shown in Figure 5, where size is calculated from the following formula:

size =
√

#nodes+#links (1)

All Places receive the above-mentioned adjacency lists, (i.e., LinkedHashMap), based on which each
Place is set to represent either a different node or link and to store its connectivity to all outgoing links or
the next destination node in one of the private data members, named neighbors.

However, this mapping scheme from a MATSim traffic network to a MASS Places array encounters
a restriction of the MASS library’s exchangeAll() specification. As shown in lines 14-19 of Figure 2
(left), exchangeAll() assumes that all Place elements have the same indices for their adjacent neighbors
to communicate with each other. These indices must be defined in a vector of int array before a cyclic
simulation begins.

In our MATSim parallelization, each Place element must maintain its own adjacent neighbors in the
neighbors variable that may not necessarily point to only north, east, south, and west neighbors but also
some farther neighbors as illustrated in Figure 6. Moreover, each Place has a different number of adjacent
neighbors, depending on the number of street segments emanating from the corresponding intersection.

120

Ma and Fukuda

MASS Library

Node 2 Node N…...

MATSim: Execution

 Node 1

Network Reloading

Route Assignment

Traffic Simulation

Parameter Exchange

Figure 3: MASS-parallelized MATSim’s system overview

Therefore, we cannot provide exchangeAll with a uniform collection of destinations. For this reason,
we added to exchangeAll a new feature that allows each Place element to customize its neighbors for
exchanging data with them.

Once the MASS library maps a MATSim traffic network over a cluster of computing nodes, the
MATSim simulation engine iterates data exchange and traffic simulation as shown in Figure 7 (left).
The data exchange is performed in two steps: (1) sending traffic data to neighboring nodes and links
through exchangeAll (line 5) and (2) receiving the data from neighbors through callAll (line 7). In step 1,
exchangeAll has each Place, namely each node or link invoke the exchangeParameter() function lines
5-14) as shown in Figure 7 (right), which returns the speed of vehicles running on it, its capacity to
receive new vehicles, its traffic flow capacity if it is a link, and the link’s end-to-end distance. These
parameters are then passed to all the neighboring Places’ inMessages buffer. In step 2, callAll has each
Place invoke the collectParameter() function (lines 16-24) in Figure 7 (right), which retrieves parameters
from the inMessages buffer. Of importance is that each node or link can repeat such parameter exchange
without being aware of the location and adjacency of their neighbors and furthermore without controlling
the underlying inter-processor communication and synchronization.

After traffic data exchange, the MATSim simulation engine updates the traffic status of all nodes and
links through two callAll invocations, each calling doSimStepNode and doSimStepLink of all Place elements
in parallel (lines 9 and 10 respectively) in Figure 7 (left). We emphasize that these two functions are
MATSim-original and thus no modification was made to them for our parallelization work.

4 PORTABILITY AND PERFORMANCE EVALUATION

This section demonstrates the MASS library’s efficient portability and usability as well as its moderate
level of performance improvement when applying it to parallelization of transport simulations. We also
discuss future performance improvements to make MASS more competitive.

121

Ma and Fukuda

NA

NB NC

ND

NE

L1 L2

L3

L4

L5

L6

NENDNA NCNB

L1 L2 L3

L5

L6

L1

L4

L2

L5

L4 L6

Figure 4: Network mapping using adjacent list

1 LinkedHashMap adjacencyLists;
2 Places network = new Places("TrafficNetwork", NULL, size, size);
3 network.callAll(setNeighbor, adjacencyLists);

Figure 5: A MASS code snippet to create MATSim’s traffic network

4.1 Portability and Usability

Our MATSim parallelization techniques described in Section 3.3 imply the following four programmability
merits: (1) automatic logical-to-physical network mapping, (2) unawareness of the underlying inter-processor
communication and synchronization, (3) reuse of the original simulation logics, and (4) maximized use of
the underlying computing resources.

All traffic planners and simulation modelers are not computing specialists. In particular, parallel
computing requires them to obtain special programming skills and debugging experiences in multithreading,
inter-processor communication, and synchronization among processes and threads. The MASS library’s
merits 1 and 2 relieve such users from these programming burdens. Therefore, they can put more focus on
their model design.

The percentage of modified or added code portion in the original source also gives a considerable
impact to parallelization of traffic simulations. To parallelize MATSim with the MASS library, we added
583 lines of code in eight new files to the original core source whose total size is 5,144 lines in 46 files,
which corresponds to only 11.3% and 17.4% changes respectively in terms of code lines and the number of
files. In fact, we haven’t touched the actual simulation logic such as doSimStepNode and doSimStepLink at
all. Therefore, we feel that the MASS library contributes to merit 3: reuse of the original MATSim logics.

The MASS library executes a given simulation with communicating multi-threaded processes, each
running on a different cluster node and utilizing all CPU cores by spawning the same number of threads.
So far, MATSim made available its multithreaded version to the public. In case if users hope to parallelize
MATSim over a cluster system for both CPU and memory scale-up purposes, the most conventional
approaches are to use JavaSpaces (JS - JavaSpaces Servie Specification) or mpiJava (mpiJava Home Page
): the former is based on the concept of shared memory, whereas the latter is the paradigm of message
passing. Although JavaSpaces can automate the distribution of a MATSim traffic network over multiple
JavaSpaces servers, an actual simulation must be performed at a client side, which does not contribute to
scaling up CPU power. On the other hand, mpiJava allows both a traffic network and its simulation to be
distributed over multiple computing nodes. However, developers themselves are responsible for calculating
node boundaries and synchronizing all computing nodes when using MPI to exchange traffic data, which
drastically increases programming burdens. As a result, the MASS library supports merit 4: effectively
utilizing the underlying computing resources.

122

Ma and Fukuda

...

... ...

...

Detail

Road or Link

Traveler

Network
Parameters

Figure 6: Data flow for network parameters

We have also conducted a survey on the MASS library’s general programmability and usability in our
graduate course: CSS534 Parallel Programming (CSS534 Final Project: Coding a Parallel Application with
MASS). The survey elucidates the following pros and cons of the MASS library, which can be applied
to parallelization of traffic simulations.

Pros:

1. MASS users are relieved from details of parallelization, which drastically reduces parallelized code
and actual coding efforts (as discussed in the above merits 2 and 3).

2. The MASS library gives graphical visualization and debugging tools, which contributes to mitigation
of users’ debugging efforts.

Cons:

1. Users who get used to popular parallelization techniques such as Java threads, mpiJava, and hybrid
MPI/OpenMP in C++ need a paradigm shift to agent-based modeling, which makes users feel that
the MASS library’s learning curve is very steep.

2. Since the MASS library is still on its pre-release stage, the users feel that they need to contact the
library developers for receiving more information on performance tuning.

4.2 Execution Performance

For performance analysis, we have chosen a sample simulation scenario provided by the MATSim code
repository. This scenario declares 4,700 nodes and 13,000 links in an XML file. We use a Giga Ethernet
cluster of 16 DELL computing nodes, each with 1.6GHz 4-core i7 CPU and 16GB memory, which is
connected to a dual-processor NFS server.

Figure 8 compares the original MATSim’s sequential execution (in orange), the publicly available
multithreaded MATSim’s single execution (in green), and MASS-parallelized MATSim execution (in blue)
using 1, 2, 4, and 8 computing nodes, all single threaded. The results show that MASS performed slightly
better than the original MATSim did when running with 4 or 8 nodes.

Figure 9 compares the multithreaded MATSim (in green), MASS with two computing nodes (in blue),
and MASS with four computing nodes (in orange) in terms of performance improvements using 1, 2, and 4
threads. Note that the multithreaded MATSim runs only on a single computing node. As the results turned
out, MASS with four computing nodes with four threads performed twice better than the original MATSim

123

Ma and Fukuda

1 public class MatSimSimulationEngine {
2 private Places network;a collection of TrafficNetwork
3 public void run() {
4 // send traffic info to neighboring nodes/links
5 network.exchaneAll(1,exchangeParameter);
6 // retrieve traffic info from neighboring nodes/links
7 network.callAll(collectParameter);
8 // simulate new traffic flow of all nodes/links
9 network.callAll(doSimStepNode, time);
10 network.callAll(doSimStepLink, time);
11 } } }

1 public class TrafficNetwork exnteds Place {
2 private String type;// Node or Link
3 private double speed, capacity,..;//my data
4 // called from exchangeAll to send my data to neighbors
5 public Object exchangeParameter() {
6 Object[] parameters=new Object[4];
7 parameters[1]=this.speed;
8 parameters[2]=this.capacity;
9 if (type.equlas("Link")) {
10 parameters[3]=this.flowCapacity;
11 parameters[4]=this.distance;
12 }
13 return parameters;// sent to all neighbors
14 }
15 // called from callAll to retrieve neighbors’ data
16 public void collectParameter() {
17 Object[] parameters=getInMessages();
18 if (parameters.length > 0) {
19 this.speed=(double)parameters[0]
20 this.capacity=(double)parameters[1]
21 if (type.equlas("Link")) {
22 this.flowCapacity=parameters[2]
23 this.distance=(double)paramater[3]
24 } } }
25 }

Figure 7: MASS-parallelized MATSim simulation engine (left) and traffic network (right)

sequential execution. However, MASS with two computing nodes slows down when increasing the number
of threads from two to four. This performance degradation resulted from unbalanced logical-to-physical
network mapping in the MASS-parallelized MATSim. Its network information is read into MASS Places
in the exact order of the input XML file that declares all nodes, (i.e., intersections) first and thereafter
all links, (i.e., road segments). When MASS uses only two computers, the first computer reads all node
elements and some link elements in MASS Places, whereas the second computer reads the rest of link
elements. Since simulation updates the status of vehicles in links, the second computer is overloaded with
many links. To be worse, since vehicle agents migrate from one to another link through their incident node,
they tend to move from the second to the first computer and immediately back to the second computer.
Therefore, the two-computer configuration does not bring a big performance improvement at all, in whose
situation a higher degree of multithreading even increases thread management overheads and cache-line
thrashing among CPU cores.

There are two reasons for obstructing the MASS performance improvements. One is the current
exchangeAll implementation that copies all the neighbors’ traffic data to each Place’s inMessage buffer. To
mitigate these data-copying overheads, if these neighboring Places reside on the same local machine, only
a reference to their traffic data should be exchanged. Another reason is the current scheme to map nodes
and links to MASS Place elements as mentioned above. These nodes and links are assigned to Place[0][0],
[0][1], [0][2], ..., [size-1][size-1] respectively in the order of reading them from a given XML scenario file.
This causes a load imbalance and increases the number of messages exchanged among different computing
nodes whenever invoking exchangeAll. To address these problems, node and link declarations in XML
should be sorted for their logical proximity.

4.3 Further Discussions

To make MASS contribute more to parallelization of traffic simulation not only from its efficient portability
and usability but also its scalable performance, we are considering the following performance improvements:

124

Ma and Fukuda

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Single Node 2 Node 4 Node 8 Node

Sp
ee

du
p

Ra
tio

Sequential MASS MATSim Parallelization

Figure 8: Execution comparison with sequential version

1. Asynchronous agent migration: MASS agents need a synchronous invocation of Agents.manageAll()
for each cycle of their actual migration. This is the constraint that leaves MASS-parallelized sim-
ulation to run in conservative scheduling. Therefore, we are currently revising MASS to support
asynchronous migration without invoking Agents.manageAll().

2. Pool of idle agents: A numerous repetition of memory allocation and de-allocation kills multi-
threaded parallelization. Pooling idle agents will mitigate this repetition to use heap space effectively.

3. Various time management: Once asynchronous agent migration is made available, we will
facilitate optimistic, breathing-bucket, and conservative time management, so that the MASS can
adapt the best scheduling strategy to a given traffic simulation. For instance, we feel that optimistic
scheduling would work better to MATSim parallelization. On the other hand, if MASS C++ is
used to parallelize TRANSIMS, conservative scheduling would work best due to the nature of
TRANSIMS’ implementation with cellular automata.

5 CONCLUSIONS

This paper presented a parallelization of the MATSim transport simulator, using the MASS library. We
discussed the library’s portability, usability, and execution performance when parallelizing transport simu-
lations. The MASS library’s efficient portability and usability were demonstrated for transport simulation
in both quantitative and qualitative analyses. On the other hand, its execution performance still needs
to be improved although our results showed some parallelization benefits as compared to the sequential
execution. By tuning up the current implementation of the MASS exchangeAll() function and improving our
logical-to-physical network mapping scheme, we believe that MASS has potential to serve as an efficient
parallelization library for MATSim and other transport simulation systems. Our next plan is to apply MASS
C++ to TRANSIMS’ micro-simulator whose traffic network is maintained in cellular automata and thus
can be smoothly ported to MASS Places.

REFERENCES

Balmer, M., K. Meister, K. Nagel, and K.W.Axhausen. 2008, July. “Agent-based simulation of travel
demand: Structure and computational performance of MATSim-T”. Work report no.504, Institute for
Transport Planning and Systems, ETH Zurich, Zurich, Switzerland.

Barcelo, J., J. Ferrer, D. Garcia, M. Florian, and E. Saux. 1992, December. “Parallelization of Microscopic
Traffic Simulation for ATT Systems Analysis”. Journal de Physique Vol.2 (No.12): 2221–2229.

125

Ma and Fukuda

0

0.5

1

1.5

2

2.5

Single Thread 2 Thread 4 Thread

Sp
ee

du
p

Ra
tio

MATSim Parallel MASS with 2 Node MASS with 4 Node

Figure 9: Execution comparison with parallelized MATSim

Barrett, C. L. et al. 1999, May 28. “TRANSSIMS(TRansportation ANalysis SIMulation System) Volume
0 - Overview”. La-ur-99-1658, Los Alamos National Laboratory.

Cameron, G., and G. Duncan. 1996, January. “PARAMICSParallel Microscopic simulation of road traffic”.
Journal of Supercomputing Vol.10 (No.1): 25–53.

Chuang, T., and M. Fukuda. 2013, December. “A Parallel Multi-Agent Spatial Simulation Environment
for Cluster Systems”. In Proc. 16th IEEE International Conference on Computational Science and
Engineering - CSE2013, to appear. Sydney, Australia: IEEE CS.

CSS534 Final Project: Coding a Parallel Application with MASS.
“http://courses.washington.edu/css534/prog/prog4.pdf”.

Fukuda, M. 2010, May. “MASS: Parallel-Computing Library for Multi-Agent Spatial Simula-
tion”. http://depts.washington.edu/dslab/SensorGrid/doc/MassSpec.pdf, Distributed Systems Labora-
tory, Computing & Software Systems, University of Washington Bothell, Bothell, WA.

JS - JavaSpaces Servie Specification. “https://river.apache.org/doc/specs/html/js-spec.html”.
MATSim Homepage 2012. “http://www.matsim.org”.
mpiJava Home Page. “http://www.hpjava.org/mpiJava.html”.
Nagel, K., and F. Marchal. 2003, August. “Computational methods for multi-agent simulations of travel

behavior”. In Proc. of International Association for Travel Behavior Research (IATBR). Lucerne,
Switzerland: ETH Zurich.

Rickert, M., and K. Nagel. 2001, March. “Dynamic traffic assignment on parallel computers in TRANSIMS”.
Future Generation Computer Systems Vol.17 (No.5): 637–648.

AUTHOR BIOGRAPHIES

ZHIYUAN MA is a graduate student in Master of Science in Computer Science and Software Engineering at
the University of Washington Bothell. His research interests include mobile agents and parallel computing.
His email address is zachma@uw.edu.

MUNEHIRO FUKUDA is a professor of the Division of Computing and Software Systems, at the Uni-
versity of Washington Bothell. He holds a Ph.D. in Information and Computer Science from University of
California, Irvine. His research interests include multi-agent systems, agent-based simulation, and parallel
computing. His email address is mfukuda@uw.edu.

126

