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ABSTRACT

Emergency departments are currently facing major pressures due to rising demand caused by population

growth, aging and high expectations of service quality. With changes continuing to challenge healthcare

systems, developing solutions and formulating policies require a good understanding of the complex and

dynamic nature of the relevant systems. However, as a typically complex system, it is hard to grasp the non-

linear association between macro-level features and micro-level behavior for a systematic understanding.

Instead of describing all the potential causes of this complex issue, in this paper we present a layer-based

application framework to discover knowledge of an emergency department system through simulating

micro-level behaviors of its components to facilitate a systematic understanding. Finally, case studies are

used to demonstrate the potential use of the proposed approach. Results show that the proposed framework

can significantly reflect the non-linear association between micro-level behavior and macro-level features.

1 INTRODUCTION

The study of complex adaptive systems, from cells to societies, is a study of the interplay among processes

operating at diverse scales of space, time and organizational complexity. The key to such a study is

an understanding of the interrelationships between microscopic processes and macroscopic patterns, and

the evolutionary forces that shape systems (Levin 2002). The “micro-to-macro” thinking was widely

used in social science, the micro- and macro- level division concerns the capacity for theory to explain

the relationship between the constitutive elements of complex systems (individual, micro-level cognitive

agents) and the emergent phenomena that result from their interaction on larger scales. Discovering a

complex system from micro-level behavior concept is based on an understanding of systems theory (Von

Bertalanffy 1968). What accounts for the widespread use of the “micro-to-macro” thinking is that at the

heart of the “micro-to-macro” behavior reflection is the fact that humans have difficulty in understanding

the complexities caused by the dynamic and systemic nature of certain problems (Dorner and Palmarini

2011). Even many well-educated leaders in positions of responsibility with regard to various complex

dynamic feedback systems need a lot of training to think systemically (Sterman 1994, Richmond 1993).

In this study, the term “micro units, also known as “agents or “individual, denotes the smallest

components of the system according to the studied level of detail. These agents get information from
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environment and/or other agents, make decisions and affect the environment and/or other agents. In this

way, the model of a single agent is to represent its real behavior in actual situations. Two or more agents

with the same relationship form an interaction. For instance, when a patient and a doctor are in the same

timeline and spatial location with the goal of healthcare provision, an interaction shows up. The key

performance indicator (KPI) of the system on the macro-level is an aggregate of corresponding interaction.

For example, the throughput of a service-oriented system is the sum of agents passing through the system,

utilization of the system resource is a percentage of scheduled time spent on service-providing related

interactions.

Hospital Emergency Departments (ED) are one of the most complex parts of hospitals to manage, and

yet they are a major entry point to the healthcare system. They deal with patients arriving without an

appointment and with a wide range of illnesses (Prodel, Augusto, and Xie 2014). As a highly complex,

emotionally charged work environment where operational decisions can mean the difference between more

life and more death. It is clearly stressful and frustrating. Nowadays, many researchers are trying to provide

hospital managers with new organization and management strategies to improve performance, efficiency

and quality of service. Full insight into the target system is one of the premises of efficient management.

For example, the ability to accurately forecast demand in emergency departments will have considerable

implications for hospitals to improve resource allocation and strategic planning. Modeling and simulating

the complex healthcare system in detail plays a key role in providing insights for process improvements,

capacity planning, resource allocation and appointment scheduling. In addition, a simulation model allows

the user to understand and test a performance improvement idea in the context of the overall system without

any impact on the real system.

In this paper, we do not intend to describe all the potential causes of complex issues in an emergency

department. Rather, the goal is to provide a framework that will facilitate a systematic understanding of

the emergency department operational problem. Hence, the objective pursued in this work is to discover

knowledge for better understanding the science of complex ED systems and meeting the representational,

educational, and decision support challenges involved in healthcare operations. This is a step forward in

the contribution of modeling and simulating emergency department. We implemented and validated the

agent-based emergency department model in our previous work (Liu et al. 2014) and (Liu et al. 2015). The

flexible framework combines with the individual behavior simulator to observe the emergence behavior

and detailed movement pattern from the simulated micro-level interactive data.

The rest of this article is organized as follows. Section 2 gives the literature review on knowledge

discovery and healthcare system organization, as well as motivation of this study. Section 3 is the main

part to explain the proposed framework for ED knowledge discovery. Then, two case studies on “micro-to-

macro” link discovering are demonstrated in Section 4 to show the potential use of the proposed approach.

Finally, Section 5 closes the article with conclusions and future work.

2 RELATED WORKS AND MOTIVATIONS

Means and methods to obtain knowledge about the inherent uncertainties and complexities of a system

to support learning, problem solving, decision making, and policy formulation have attracted a great deal

of research attention. In relation to the difficulty arising from complexity and uncertainty in managing a

big critical healthcare system, Barach and Johnson (2006) proposed a microsystem framework as a design

concept, specifically the role of understanding and supporting process in designing and redesigning clinical

care. The microsystem in their work is a group of clinicians and staff, working together with shared clinical

purpose to provide care for population of patients. There are several micro-systems co-existing within

a larger organization such as a hospital. Thus, the challenge for the management of the large system is

transferred to the management of several relatively independent micro-systems. In this way, the behavior

of the large system will be the aggregate of these micro-systems. Their work highlighted the issues of

managing a complex system due to the difficulty in understanding complexities as well as the decentralized

solution.
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There are massive operational research (OR) results in the reviewed literatures achieved by using a

simulation approach. System Dynamics (SD), Discrete Event Simulation (DES) and Agent-Based Simulation

(ABS) are three widely used simulation methods in operational research community. The main differences

among these three simulation methods is the level of perspective (Barnes, Golden, and Price 2013). SD is

a top-down approach from the macro-level perspective; The DES is a process-oriented approach focused

on workflow simulation and the ABS is a bottom-up one from an individual level. At the 2010 OR Society

Simulation Workshop, there was a lively panel discussion (Siebers et al. 2010). From the discussion, we

can see that actually both DES and ABS are widely used now. Neither have the absolute substituting

capability in all application fields. The same workshop in 2011, as well as Ref. (Macal and North 2014)

discussed the challenges of DES and several typical features of a system with which the ABS is more

appropriate (Brailsford 2013). There is no fixed rule to select a suitable approach for studying a specific

system, a proper combination may halve the work with double the results. Based on this idea, Djanatliev

and German (2013) presented a multi-paradigm simulation method by using SD for simulations at a high

abstraction level and ABS/DES at an individual level in a common simulation environment. Two examples

were shown on how the new innovative technology can evaluate the “what-if” problems prospectively and

how new ideas can be derived by parameter variations. Combining the reviewed discussion and simulation

studies with our experience and objective, ABS was selected to simulate the emergency departments, the

reason will be given in Section 3.2.

As a healthcare service provider, the functionality of an ED emerges from individual interactions

among patients, healthcare staff and medical test equipments. Considering the importance of modeling

and simulating the interaction between physicians and delegates in ED, Lim et al. (2013) compared two

models with and without the consideration of agents interacting in an emergency department. In their

hospital ED model, comparisons between the approach with interaction and without showed physician

utilization increase from 23% to 41% and delegate utilization increase from 56% to 71%. They stated that

neglecting these relationships could lead to inefficient resource allocation due to inaccurate estimates of

physician and delegate time spent on patient related activities and length of stay. Their work strengthens

the importance of accurately modeling physician relationships and the roles in which they treat patients.

Furthermore, Axtell (2000) also discussed several reasons for using an agent-based modeling technique,

especially compared to traditional approaches to modeling economic systems.

The review of literature reveals that a modeling and simulation technique has been applied extensively

to study the patient flows in the ED systems mainly because of the complexities of patient flows and

the time-dependent characteristics of such systems. However, most of these simulation based studies are

oriented by specific requirements. Therefore, the simulator lacks scalability in application perspective and

becomes an appropriative tool for a specific requirement. In addition, in many application domains it

is extremely important to have transparency in predictive modeling because domain experts do not tend

to prefer “black box” predictive models. They would like to understand how predictions are made, and

possibly, prefer models that emulate the way a human expert might make a decision, with a few important

variables, and a clear convincing reason to make a particular prediction (Rudin 2014).

Due to the complexity and criticality of ED systems, knowledge for full insight into the dynamics

of the system will provide a great deal of help to efficient and optimum management. However, there is

little work on knowledge discovery through simulating micro-level behavior. Discovering from micro-level

behavior is a way to gain insight into the emergent behavior of complex systems. It is not only able to

carry out prediction, but also provides knowledge on how predictions are made at individual level. Given

this motivation, we tried to model an emergency department from an individual behavior perspective, the

goal of this micro-level behavior model is to fully represent interactions among individuals. In view of the

massive atomic data (The lowest level of detail from which the aggregate data is computed.) generated by

the individual behavior simulator, we designed a layer based framework for information extraction. It can

provide more flexibilities for simulator users on problem solving and it is easier to add more functionality

(without always starting from scratch) than it is on a requirement specified simulator.
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3 KNOWLEDGE DISCOVERY FROM SIMULATED MICRO-LEVEL BEHAVIOR

One benefit of simulating the micro-level behavior is that it provides a potential to know the root cause of

macro-level features. For an existing macroscopic phenomenon, it is possible to trace back to the micro-level

behavior that accounts for it. In addition, compared with a direct macro-level behavior simulator, adding

more functionality to the micro-level behavior simulator is easier because an overall knowledge of the

whole system will not be mandatory. Moreover, real data collecting for refining the individual model is

easier and more straightforward because real data for defining an individual component model can be used

directly with few or even without systemic abstraction. For instance, real data collecting for defining the

behavior model of a doctor and admission staff can be done separately without an overall knowledge of

the emergency department system.

3.1 Architecture

For a complex system like an emergency department, the macro-level features of the system emerge from the

corresponding micro-level interactions. However, the interaction data generated from the agent simulator

is massive and unreadable without being analyzed. To meet the massive simulation data generated by

micro-level simulator as well as constantly changing requirement, we designed a layer architecture to

simulate, monitor and discover knowledge for full insight into the complex system (see Figure 1).

Individual Behavior Simulator
(Agent Based Model)

[Core]

Monitoring Layer (Sensor)

Data Process Layer (Adaptation)

Macro Level Simulator (Application)

Abstraction Path

 simulation scenarios[s1, s2, s3...]

Simulator User, to discover macro-level system features 
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Figure 1: Layer architecture of application framework for knowledge discovering from micro-level behavior

simulator. The micro-level simulator generates interaction information among the system components,

configurable monitoring layer records all the needed interaction information and state information in a

given format for the upper processing layer.

As shown in Figure 1, the core of the knowledge discovery system is an agent-based micro-level

behavior simulator. It can provide detailed interaction information among the smallest components of the

ED as well as state information of the simulated environment. This information is the source of knowledge

to understand behavior of the entire system. However, not all the data is required for specific analysis, thus

the monitoring layer is designed to provide the flexibility on micro-level data collecting and processing.

Moreover, the simulation scenario is defined as a set of parameter configurations for the agent-based model

and environment. Therefore, from the perspective of the simulator users, the whole system is a macro-level

features simulator because what the users get is the macro-level information extracted from the micro-level

data. The detailed function of each layer will be explained in the following subsections.
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3.2 Micro-level Agent-Based Simulator

Agent-based simulation (ABS) is an approach to model systems comprised of individual, autonomous,

interacting “agents”. The interacting is a key characteristic since that is the smallest element emerges the

functionality of the system. Such interaction data has incredible potential to address complex features and

dynamics of the objective system. Agent-based modeling offers ways to model individual behaviors more

easily and to see how behaviors affect others in ways that have not been available before (Macal and North

2014). Furthermore, in the micro-level, the spatial agent-based simulator is not a design for any specified

application. Instead, it is just a general behavior simulator to simulate interaction among the smallest

components of the ED system. Thus, it is customizable for different emergency department simulation

requirements.

The reasons why ABS was selected to model an emergency department in this study include: (1) in an

emergency department system, agents have dynamic relationships with other agents. For example, patients

have dynamic relationships with sanitary staff, doctors have dynamic relationships with nurses and medical

test rooms. These dynamic relationships are important to consider and, by their nature, well suited to be

modeled as part of agent-based model. (2) The agents have a spatial component to their behaviors and

interactions, i.e., most of the agents in ED need to move around and the spatial location is one of the key

states which determines their potential interacting object and state transferring. (3) A large numbers of

agents, agent interactions and agent states are important for information extraction. In an ED, services are

provided via multiple interactions, patients pass through ED with a series of non-deterministic interactions.

These interactions can deeply reflect the functionality of the target system. (4) Model reusability. Agent-

based model directly represents behavior of the system components, so it can provide the all-side atomic

data needed for analyzing the macro-level behavior of the system.

In this study, the micro-level behavior simulator for emergency departments is a pure spatial agent-based

model. It is formed entirely of the rules governing the behavior of the individual agents which populate the

system, no higher-level behavior is modeled. Thus, the system behavior emerges as a result of micro-level

actions and interactions. Without loss of generality, we consider all the components of the emergency

department as agents. In this way, there are two kinds of agents, passive and active. The passive agents

include the test service (laboratory and medical imaging) and information center (work as a task detacher

and information exchange center). Active agents include all the staff and patients. Concerning the staff, we

considered: admission staff for registration service, triage nurses for classifying patients according to their

body condition, doctors, nurses and auxiliaries for helping patients move around the ED for medical tests.

The sanitary staff are modeled as junior or senior according to their expertise. As for the environment model,

except waiting rooms, admission desk and triage box, there are two areas which work independently for

treatment: area A for high acuity patients with some careboxes (a room with bed and essential equipment)

and area B for low acuity patients with some chairs. Doctors and nurses are specified for different areas but

test rooms are shared by all the patients. All of these agent models are parameterized to be configurable for

simulator users. A detailed description of the entire emergency department model using the agent-based

paradigm can be found in our previous publication (Liu et al. 2014) and (Liu et al. 2015). This model

is carried out with the participation of the ED Staff Team of the Hospital of Sabadell (one of the most

important Hospitals in Spain, that gives care service to an influence area of 500,000 people, and attends

160,000 patients/year in the ED) who are knowledgable about the actual system, and implemented in

Netlogo (Wilensky 1999) simulation environment.

The input of the model is the patients who arrive for emergency service. The patient arrivals were

modeled by a time-dependent Poisson process (uniquely defined by its time-dependent arrival intensity).

This intensity function was created by using a step function generated from hourly ED arrival rate data

obtained from our cooperating emergency department. This hourly ED arrival rate was given weekly, i.e.,

the arrival model repeats with an interval of one week in model execution. When a patient has arrived and

registered by the admission staff, a triage nurse will assign the patient a priority level based on the severity

of their condition. The priority consists of five levels, with one being the most critical (resuscitation), and
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five being the least critical (non-urgent). Patients with acuity level one to three will be assigned to area A,

with level four and five will be assigned to area B. The reference arrival rate and acuity level distribution

is obtained from our cooperative ED and configurable for simulator users.

3.3 Micro-level Data Monitoring

Simulation output from the agent-based simulator is subjected to extract the system-level behavior infor-

mation. However, the interaction data and the state information of the system are massive and some of it

may not be necessary for specific analysis. In data collection process of a real system, we tend to collect

as much data as possible in order to cover as much information as possible. Whereas in simulation, data

monitoring should be focused on the goal of analyzing because the simulation process is reproducible,

more data usually means greater difficulty to analyze and a waste of resources. Therefore, we designed a

configurable data monitoring layer between the micro-level behavior simulator and data processing layer

from a point view of “sensor”.

State information monitoring configuration

interaction information 
monitoring configuration

Figure 2: Interface of application for configuring the micro-level interaction information monitoring.

This layer is implemented in two parts: a separate application (shown in Figure 2) for data-monitoring

configuration and a data-collection program, along with the core simulator to record and store data in

a predefined format. The two parts communicate through a configuration file before simulation started.

Since this layer is considered as a set of sensors to monitor states of the core simulator, all of which are

customizable, e.g., enable/disable and sampling frequency. Moreover, some of the sensors also provide

some simple data processing methods to carry out some basic analysis (e.g., maximum, minimum, standard

deviation.) in order to reduce the size of micro-level simulation results without affecting final knowledge

discovery. Figure 2 demonstrates the user interactive application interface for configuring these “sensors”.

According to the character of an agent-based simulator, we classified the raw simulation data as two

categories: environment state and interaction information. The state information includes the state indicator

of the simulated environment as well as the agents. It is sampled and averaged in a given time interval. The

interaction information contains records of all the interaction among agents, this information is recorded

as five Ws (Who, What, When, Where, Why) and one H (How long it takes). The simulator only records

and stores information from “sensors” that has been enabled by user.

176



Liu, Cabrera, Rexachs, Epelde, and Luque

3.4 Data Processing

The data generated by the micro-level behavior simulator is massive and unreadable, whereas what the

simulator users need is the macro-level system key performance indicator, thus we must convert data into

information and information into knowledge. The data process layers are application-specific which transfer

the massive micro-level information to macro-level features of the complex system. Moreover, as shown in

Figure 1, the scenario is a set of parameter configurations for the agent-based model as well as simulated

environment. It has been defined as the smallest unit of simulation experiment in this study. Specifically,

knowledge discovery of the complex system may depend on several executions, we organize one execution

as one scenario. Therefore, there are two ways to process the data generated by agent-based simulator,

single scenario and cross-scenario for different requirements. Single scenario analysis is mainly used to

reproduce existing phenomenas, i.e., ground the agent-based model as close as possible to the real system,

then replay the system to identify root cause of macro-level phenomena (reverse direction of the abstraction

path in Figure 1). The cross analysis is used to analyze the influence trend of micro-level model indicator,

e.g., resource sensitivity analysis. Since the processing method is application-specific and due to lack of

space, we will not detail the methods here. Moving on from here, the steps to do simulation mainly include:

design scenarios (parameter variation), config micro-level data monitor, simulation and process data.

4 CASE STUDY: DISCOVER MACRO-LEVEL FEATURES FROM MICRO-LEVEL BEHAVIORS

Decision making in the field of healthcare service management assessment is not a simple task and it is

important for different stakeholders. For example, patients are expecting efficient services, insurers are aiming

for cost-effectiveness and the health industry is primarily interested in yield maximization. Understanding

the complexity of such a system requires more than experience and intuition alone. In this section, we will

demonstrate two case studies. The first one (4.1) is from the point view of resource configuration. The

second one (4.2) is about the influence of micro-level behavior on macro-level functionality.

The emergency department studied in the case studies uses a five-level triage system that is very similar

to the worldwide Canadian one to prioritize patients (Centeno et al. 2013), in which patients are dispatched

arbitrarily to the relevant area on their acuity level determined by triage nurses. Hence, the priority of

patients for doing a specific test is based on their acuity level and for patients with the same acuity level,

the priority is based on their arrival time. Here, we do not concentrate on complete study descriptions and

detailed validation steps, as it would be beyond the scope of this paper, but focus on practical use of the

presented methods. The base configuration of the simulated emergency department, such as number of

doctors, nurses as well as average attention time are fully specified in Table 1.

In these case studies, as the staff work shifts, we consider that the medical test technicians, admission

staff and triage nurse group run on two shifts and the number of staff is different during the day (6:30 -

18:30) and night (18:30 - 6:30) because the patients arrival rates are quite different. The rest of the staff

work on one shift by turns. We simulate one scenario for 1464 hours, to avoid initialization bias, the

simulation allowed a warm-up period of 24 hours, then monitoring was carried out during the following 1440

hours. Considering that the agent-based modeling methodology has one significant disadvantage vis-a-vis

mathematical modeling, i.e., despite the fact that each run of such a model yields a sufficiency theorem,

a single run does not provide any information on the robustness of such theorems (Axtell 2000). One

way to deal with this problem in agent computing is through multiple runs, systematically varying initial

conditions (different random seeds) and taking the average of indicators in order to assess the robustness

of results. Therefore, this study requires the execution of a huge amount of multi-parametric simulations

(same model, different parameter value configuration), for one scenario to make the results statistically

reliable. Specifically, we repeated one scenario for 50 times and took the average for each indicator. Given

this, a 18-node cluster with 648 cores in total was used and the execution task was assigned as one core for

one scenario repetition. According to our statistics, the average execution time for one scenario repetition
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Table 1: Configuration of the emergency department (environment) and individual behavior model.

Resource Capacity (#) Avg. Attention Time (AT, minutes) AT Distribution

day night first interaction follow-up

junior admission staff 3 2 5 Gamma

senior admission staff 2 0 3 Gamma

junior triage nurse 3 1 8 Gamma

senior triage nurse 2 1 6 Gamma

junior doctor in area A 2 20 15 exponential

senior doctor in area A 4 15 13 exponential

junior nurse in area A 5 25 18 exponential

senior nurse in area A 5 20 14 exponential

junior doctor in area B 2 8 7 exponential

senior doctor in area B 5 6 5 exponential

junior nurse in area B 4 11 7 exponential

senior nurse in area B 4 7 5 exponential

medical imaging test room 5 2 45 Beta

laboratory test place 4 2 30 Beta

carebox in area A 50 - -

chair in area B 60 - -

auxiliary nursing staff 3 15 exponential

is about 15 minutes. Thus, one simulation scenario with 50 repetitions can be done in about 20 minutes

(due to individual difference as well as extra time for mapping and reducing).

4.1 Influence of Capacity in Area A

Emergency department overcrowding is defined as a situation where the demand for emergency services

exceeds the ability of an emergency department (ED) to provide quality care within appropriate time frames.

By observing more than 20 million patient visits to emergency departments over five years, Guttmann et al.

(2011) determined that the risk of death and hospital readmission increases with the degree of crowding in

the emergency department. When an emergency department meets an overcrowding problem, usually there

are many patients waiting in the waiting room or even receiving attention in a corridor. Thus, it takes up

more patient time and results in worse satisfaction. From intuition, when there are many patients waiting

to enter the treatment zone, one way to solve this problem is by expanding the capacity. In this case study,

a cross-scenario analysis was used to discover the influence of additional careboxes in area A with the goal

of solving the overcrowding problem. Regarding this requirement, “sensor” to monitor patient’s behavior

and carebox utilization are enabled via the user interactive application shown in Figure 2.

As one of an important KPIs of an emergency department, the patient’s length of stay (LoS) is the

time when a patient arrives at the ED to the time they depart from the ED. From the point view of the

patient’s state, the LoS consists of two parts: the total length of waiting time (LoW, total length of time

on waiting for services) and the length of attention time (LoAt, total length of time on interacting), i.e.,

LoS = LoW +LoAt. Since the arrival patients keep the same in this case study and we assumed that the

service a patient needs is determined entirely by properties of patient, i.e., the average LoAt will keep no

change among scenarios, the LoS differences among different scenarios are the length of waiting (LoW )

time. The influence of area A capacity (carebox number) from the point of view of LoS is visualized in

Figure 3. Due to the randomness, slightly small changes may somewhat result in inconsistent change,

linear fit was used to demonstrate the trend in Figure 3(a, b).
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Figure 3: The influence of additional carebox on patients’ behavior. (note: the scale of vertical coordinates

are different.)

In this case study, we set the start point as an overcrowding scenario, i.e., when the number of careboxes

is 50, the studied ED is facing with overcrowding. Since patients with acuity 3 have the lowest priority to

be assigned a free carebox in area A, they will be delayed first (Figure 3(a)). From Figure 3(a), it is clear to

see that additional careboxes provides good results in patients with acuity level 3, the overcrowding problem

is solved. However, different from what we would expect, patients with higher acuity meet bad influence

because their LoS increased. As shown in Figure 3(b), all the patients met increasingly longer waiting

times for service with additional carebox. Therefore, the root cause is: after adding more careboxes, as

the number of corresponding nurses and doctors did not increase accordingly, they cannot provide service

to patient as instantly as before, so the patients need to wait more for their doctor and nurse (Figure

3(b)), which results in the increased LoS. Additionally, a resource with a high occupation rate will be

more sensitive to fluctuations in its arrival process than a resource with a lower occupation rate. Tracing

back to the micro-level indicator by single scenario analysis, the average occupancy of doctors in area

A (percentage of scheduled time spent on patient related activities) is 89.9%, and average occupancy of

nurses is 92.3%. However, one benefit of additional careboxes is the reduced length of “door-to-doctor”

time (i.e., the number of minutes from patient arrival until seeing a doctor). That is to say, the patients

can enter the treatment zone earlier and they may feel happier than waiting helplessly in the waiting room.

Furthermore, as shown in Figure 3(a), an additional 12 careboxes (i.e., 62 in total) in the ED may be a

good choice for current staff configuration if there is no cost constraint, because the patients with acuity

level 3 (about 30% of arrival) meet with the shortest LoS. Moreover, further studies could be done to find

the tradeoff between patient satisfaction and cost constraint.

4.2 Behavior of Doctor in Area B

Identifying the primary causes of overcrowding in an ED is a critical step in knowing how to increase

throughput. In this case study, the quantitive association between a doctors’ micro-level behavior and

macro-level patients’ average LoS was discovered via cross-scenario analysis.

Attention time, also known as service time, is the length of time for one interaction. The length is

determined by service provider drawn from an exponential distribution. Taking the interaction among

doctor and patient as an example, it is different in terms of doctors’ expertise, the patients’ condition

(patient’s acuity level, age) and interaction times (fist interaction or follow-up). The initial average value

for the exponential distribution was shown in Table 1. As we assumed that the relationship between the

patients and doctors is always static, only when doctors change shifts do they detach their patients to other

doctors on the next shift. In addition, according to empirical data, the first interaction with a patient always

takes longer. Thus, there are two values for the attention time model of a doctor and this will result in

four for the group of doctors (consisting of junior and senior) in area B. Therefore, to study the overall
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influence of doctor group in area B, in scenarios’ design step, we change the average length of attention

time of doctor in area B by percentage independently. As micro-level data monitor configuration, only a

“sensor” for recording patients’ behavior was enabled through the separate application shown in Figure 2.

The effects of doctors’ behavior on LoS and “door-to-doctor” time are illustrated in Figure 4.
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(b) “door-to-doctor” time
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Figure 4: The effect of length of doctors’ attention time on macro-level LoS and the root cause identification.

The horizontal axis is the percentage against the normal configuration show in Table 1. (note: the vertical

coordinate scale of (b) is quite different as (a) and (c).)

Figure 4(a) clearly shows the significant impact of doctors’ behavior on systemic functionality. With

the increasing length of doctors’ attention time (e.g., working with lower efficiency or more carefully

diagnose), average patient LoS increased dramatically in area B. After analyzing the “door-to-dctor” time

(Figure 4(b)), we find that the patients enter the treatment area after a very short waiting time, which

means that the increased LoS is not because of “door-to-doctor” time. Thus, the patient spent most of

their LoS in the treatment area. Moving on from here, we analyzed the length of waiting time in treatment

phrase (Figure 4(c)). It is clear that waiting for doctors’ attention is the root cause of the increasing LoS.

Furthermore, Figure 4(a) also provides the singularity of this micro-to-macro association, that is to say,

if doctor’s attention increases more than 125%, patients’ LoS will increase very fast. This information

is useful for managers to avoid mistake in intuitive thinking. In summary, this case study quantifies the

effects of micro-level behavior on macro-level LoS, further study can be done to balance the quality of

service and efficiency of ED system under specific situations.

5 CONCLUSIONS AND FUTURE WORK

This article presents an approach to discover knowledge of emergency department through simulating

individual behavior of its components. Agent-based modeling technique was used to simulate the behavior

of system components. The behavior simulation model can generate interaction information under various

configuration scenarios. Analyzing this interaction information thoroughly enables knowledge discovery

towards a better understanding of the complex systemic behavior. This makes it possible to explore association

between micro-level behaviors of individuals and macro-level patterns that emerge from their interactions,

thus assisting users to better understand a system’s behavior under various conditions. Additionally, a

layer-based architecture was used to achieve flexibility and configurability. The demonstrated case studies

show the potential use of the presented approach as well as how small changes in procedure yield important

changes in flow. This proposed framework can be used to promote learning, hypothesis testing, decision

making support, and policy formulation after being properly validated, offering the user and organization

the ability to understand the complexity of healthcare systems and to facilitate the redesign of optimal

outcomes. It is also capable of predicting and quantifying how a particular emergency department will

respond to a given “what if” scenario and what could be the well-targeted changes to make for a “how-to”

(simulation optimization) issue via cross-scenario analysis. In addition, looking deep into the system is one
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side to provide information, another challenge for supporting critical decision is to find a tradeoff between

different parameter configurations, such as service satisfaction of patients and efficiency for providers.

Accordingly, an optimization based framework for managing complex processes in the healthcare domain

is a scope of future work.
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