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ABSTRACT 

To provide automated access from a formal system model to multiple analysis tools, such as discrete 
event simulation or optimization, we extend current model-based systems engineering (MBSE) 
methodologies by introducing a new model to model transformation method based on object-oriented 
creational patterns from software design. Implemented in MATLAB’s discrete event simulation tool, 
SimEvents, we demonstrate the methodology by generating two distinct use cases based on a distribution 
supply chain and manufacturing system. 

1 INTRODUCTION 

Automated access to multiple computational analyses from a single model of the system of interest is 
typical in many engineering disciplines, e.g., in mechanical design both finite element analysis (FEA) and 
computational fluid dynamics (CFD) from a single CAD model. However, in contemporary practice, 
supply chain logistics analyses are often purpose-built to answer specific questions, with an implicit 
system model and many possible analysis implementations depending on the question, the instance data, 
and the solver. Automated and cost-effective access to multiple analyses from a single conceptual model 
of the target supply chain logistics system would provide much broader support for operational decision 
making and system optimization, and that is the motivation for the research reported here. 
 Over the past twenty years, the software engineering community has faced similar issues, and one 
approach to solving the problem has been the development of automated code generation technologies. 
One of the most widely-known is Model Drive Architecture® (OMG MDA® 2003) promoted by the 
Object Management Group (OMG ®). In MDA, a representation of the desired computation is referred to 
as the “platform independent model” or PIM while the desired implementation is the “platform specific 
model” or PSM. 

In both mechanical design and software engineering, one key to automation is a formal model of the 
system of interest, i.e., the mechanical part or the desired computation. The target model in both cases is 
inherently formal, either as a mathematical formulation or as executable code. Thus, it seems reasonable 
to infer that a basic requirement for automating the generation of simulation models will be a formal 
statement of the source model, i.e., the system of interest. Given that, the remaining challenge is to devise 
a generic and re-usable method for translating the source model into the target model. 
 This research has been motivated by the desire to achieve similar results for the automation of OR 
analysis model generation, by adapting OMG’s model transformation approach. There are, however, 
significant differences between generating code and generating discrete event simulations in commercial 
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off the shelf (COTS) tools. These differences provide a unique set of challenges for adapting existing 
model transformation methodologies (discussion in Section 3.4). 
 In this paper, we describe a transformation methodology, rooted in object oriented design patterns, 
which exploits the network structure inherent to many supply chain logistics systems. The proposed 
transformation methodology is implemented using the SimEvents® tool, integrated with MATLAB®; 
however, the approach can be extended to other simulation platforms and other types of analyses 
(discussion in future work, Section 6).  

2 DISCRETE EVENT LOGISTICS SYSTEMS 

Discrete event logistics systems (DELS) are a class of dynamic systems that are defined by the 
transformation of discrete flows through a network of interconnected subsystems (Mönch et al. 2011). 
The DELS domain includes systems such as supply chains, manufacturing systems, transportation 
networks, warehouses, health care delivery systems, etc. DELS are inherently complex systems due to the 
large scale of the networks, the dynamic nature of interactions between actors, and the randomness of 
both the external and internal environments. This makes any decision making process difficult and 
implies the need for a wide range of modeling and analysis methodologies. 

2.1 The DELS Conceptual Model 

An object oriented modeling (OOM) paradigm is a natural way to model a complex system because it 
builds upon the domain expert’s ability to view a system as collections of related objects, including 
attributes of those objects, sub-components of those objects, and groupings of similar objects (Coad and 
Yourdon 1991). OOM facilitates modular design and promotes reusability. OMG's SysML™ (2012), an 
extension of the UML, provides an OOM environment that is used in many system engineering design 
paradigms, such as Model-Based Systems Engineering (MBSE) (Estefan 2007) or Object-Oriented 
Systems Engineering Method (OOSEM) (Friedenthal, Moore, and Steiner 2009). SysML has proven to be 
a powerful modeling language for system applications in a diverse range of engineering domains, such as 
electrical, mechanical, and industrial (Huang, Ramamurthy, and McGinnis 2007; Johnson et al. 2007; 
Peak et al. 2007; Shah 2010; Thiers and McGinnis 2011; Wu et al. 2011)  
 The formal domain modeling used in software engineering for designing and developing systems has 
been extended to the DELS domain, resulting in a conceptual model for supply chain engineering that 
integrates a SCOR-compliant domain specific language (DSL) with an object-oriented supply chain 
reference architecture specified in SysML (Sprock and McGinnis 2014).  SCOR (2012) is a well-known 
diagnostic and benchmarking tool for evaluating and comparing supply chain activities and performance. 
Using SysML, SCOR’s commonly reused elements have been captured as a collection of stereotypes, and 
the patterns for process flows as activity diagrams. Additionally, the process-oriented SCOR model has 
been augmented with a model for the physical architecture of the supply chain. Since there is a small 
intersection between the supply chain and MBSE communities, implementing SCOR in SysML bridges 
some of the semantic gap by making the conceptual model as familiar as possible to all stakeholders. 
 Because very few analysis tools are designed using the same formalism, the ability to directly 
exchange information between analysis tools is limited. The DELS conceptual model provides a common 
formalism to exchange information between tools and thereby construct multiple transformations between 
different analysis tools. 

2.2 Discrete Event Simulation 

Due to the inherent complexity of DELSs, analytic models are often intractable and require significant 
assumptions to model the observed “real world” behavior. For these analysis use cases, discrete event 
simulation is an attractive option to evaluating the expected behavior and performance of the system of 
interest. However, there are significant hurdles to building, running, and analyzing simulation models. 
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One is the range of simulation analysis tool capabilities and characteristics (Son, Jones, and Wysk 2000), 
which means there is no “canonical” statement of a simulation problem, as there is, e.g., for optimization. 
This difficulty is compounded by the lack of model/data separation. In optimization, for example, a single 
formulation of the transportation problem can be reused for datasets having different numbers of sources, 
sinks, and transportation arcs. The corresponding simulation models, however, would have to be 
individually created in some way, either manually or via automation. Both of these challenges provide a 
great incentive to automate the generation of discrete event simulations in a generic and reusable way. 

In this research, we propose a method to automatically generate the DES structural model in 
SimEvents. Since a single simulation model can be reconfigured to answer multiple questions and 
perform multiple analyses, we leave the task of specifying the appropriate analysis to answer the question 
at hand to future work; e.g. simulation configuration parameters, input scenarios, output results to collect, 
etc. SimEvents was selected because of its integration with the MATLAB workspace and OOP 
environment, which provides an extensible scripting language and facilitates the implementation of the 
proposed methodology (specific discussion to follow in Section 4). Also because of its integration with 
popular optimization and statistics tools, MATLAB is also an attractive integrated development 
environment to implement the one model-many tools paradigm. 

3 AUTOMATED MODEL GENERATION 

3.1 Historical DES Generation Approaches 

Traditionally, automatic simulation generation approaches have relied on templates and ad-hoc scripts to 
generate simulation models in popular COTS tools. Cope et al. (2007) provide some review on integrating 
DES and supply chain modeling as well as efforts on generic and automatic simulation generation. Son, 
Jones, and Wysk (2000) propose a methodology to automatically generate simulation models from neutral 
libraries of simulation components for manufacturing job shops. However, there also has been research 
that focuses on developing methodologies that do not rely on COTS DES tools. Chatfield, Harrison, and 
Hayya (2006) recognize that a well-defined library of simulation objects and a well-defined schema to 
store the instance data can enable the generation of the DES through a simple mapping. They implement 
this strategy with their own object-oriented supply chain simulation tool and an XML-based system 
representation. Biswas and Narahari (2004) also model the supply chain infrastructure with a library of 
carefully designed objects with well-defined interactions. They provide an intermediate workbench model 
that potentially provides automated access to a range of analysis models, including DES. This strategy is 
also realized through the development of their own tools. These three methodologies provide insight into 
good strategies for developing an automated simulation generation methodology for COTS tools.  

3.2 M2M Transformations and The Meta-modeling Architecture 

MDA advocates the creation of a platform-independent model of software at a higher level of abstraction, 
which can be transformed as needed into platform-specific and executable models; adapting MDA would 
separate the development of a DELS model from its implementation in a specific simulation software 
package; the implementation would be constructed automatically using a reusable model to model (M2M) 
transformation.  
 Conceptually, the model transformation methodology involves an architecture that organizes the 
models involved in the transformation, and the transformation process itself, which consists of a mapping 
and associated transformation rules. The OMG four-layer meta-model architecture provides a hierarchical 
organization to this process; the four layers are MOF, SysML/UML, User Model, and Instance Model, 
illustrated in Figure 1. 
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Figure 1: OMG M2M transformation framework (Batarseh and McGinnis 2012a). 

 The transformation methodology consists of two components: the transformation definition, which is 
a mapping between classifiers in the source and target models, and then a transformation engine that 
transforms instances of each classifier in the source model to a corresponding and conforming instance in 
the target model (Figure 1). A survey of model transformation approaches is given by Czarnecki and 
Helsen (2006). 

3.3 Current State of the Art 

Current M2M methods, such as OMG's QVT (2011) or MOFM2T (2008), can execute transformations 
from SysML to an XML or structured text specification of the target analysis, e.g., AnyLogic™ or 
SimEvents™ respectively. Prior research has established the viability of this methodology to create a 
DSL in SysML, then describe the system of interest using the DSL, and finally transform a description of 
a system model specified using the DSL into a target analysis language, such as discrete event simulation 
using Arena®. (Batarseh and McGinnis 2012a; Batarseh and McGinnis 2012b; McGinnis and Ustun 
2009; McGinnis et al. 2011). An illustration of this mapping process for the DES tool AnyLogic is 
provided in Chapter 8 of Huang (2011). 

3.4 Challenges in Applying the OMG/MDA Approach 

Difficulties arise in applying current M2M methodologies for code generation to generating discrete event 
simulation. Because of its imperative nature, applying MDA’s M2M approach to the widely varying tool 
specifications results in ad-hoc transformations that aren’t reusable or extensible; essentially defeating the 
original intention. Moreover, the MDA transformation approach requires the target analysis tool to store 
its models in a well-structured and accessible format, for which there is a published schema. Many 
popular simulation tools fail to satisfy this requirement. However, often these simulation tools provide an 
object oriented or imperative programming environment that allows the modeler to construct the 
simulation indirectly (not using the typical drag-and-drop model construction interface). This provides a 
path to developing a transformation that does not rely on the translation of XML to another structure text 
format.  
 Second, whereas code generation is a translation of syntax, the typical simulation model is only an 
approximate morphism of the corresponding system model, which makes the PIM to PSM transformation 
exceptionally difficult. That is, it requires significantly more simulation blocks and elements to express a 
simple function or structure, and the mapping is different for each different simulation language. In 
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response to the difficulty and complexity of the mapping process for DES tools, Huang (2011) suggests 
that one possibility for handling this complexity would be to provide reusable behavioral and structural 
libraries in the target simulation language. 
 Two additional issues with automating the transformation process are identified in McGinnis and 
Ustun (2009). First is the management of large amounts of instance data where the total number of unique 
elements is small, yet the set of instances of each element is large. This instance data usually is natively 
stored in a relational database, and it is desirable for a M2M transformation to ingest the relational 
database as the source model’s instance data. This implicitly suggests that there is a low priority on 
completely specifying the user model in SysML, in favor of relying on the conceptual model to provide 
schema to the relational database and patterns on how the elements will be assembled in the target model. 
Secondly, additional information is required to transform a conceptual model, which needs to be captured 
in the conceptual model itself or provided during the transformation process. Whereas current M2M 
methods used to generate simulations are typically imperative, there is an opportunity to elaborate the 
transformation with additional knowledge on the construction of the target analysis. 
 Finally, most common DES language models do not conform rigidly to the four-layer meta-model 
architecture—in fact, it is rare indeed to find a published meta-model. However, the MOF Core explicitly 
states the four-layer architecture is not supposed to be rigid, but merely should be reflective and allow 
navigation between a classifier and its instance. This is particularly convenient because it is not clear that 
discrete event simulation languages, as currently implemented, clearly conform to that architecture. This 
opens the possibilities for a more natural transformation architecture that maps classifier to classifier and 
then transforms instance to instance without being constrained by the rigid four-layer architecture. 

4 THE PROPOSED M2M TRANSFORMATION METHODOLOGY 

4.1 The Transformation Architecture 

The proposed model transformation methodology consists of an architecture that organizes the 
transformation process, a two-level approach to transformation, and—in a departure from MDA—the use 
of software factories (Gamma et al. 1995) rather than contemporary M2M tools for executing the final 
transformation. 
 The architecture, shown in Figure 2, presents a two-step transformation that generates an intermediate 
model before generating the simulation, and is a departure from the standard MDA M2M approach. This 
addition of the intermediate model provides two advantages. First, it provides a method to extend the 
functionality of the target simulation language. Second, it provides flexibility and reusability by allowing 
the user to change the target analysis tool by implementing a different transformation in the second step. 

The architecture also captures the transformation process as a two-level transformation. The higher-
level transformation maps the abstract DELS concepts, such as subsystem definitions, from SysML to the 
target analysis tool, and the transformation outputs the DELS model library for the tool. The lower-level 
transformation maps classifiers in the conceptual model in SysML to members of the DELS model 
library, and the transformation takes instance data from a relational database and outputs simulation 
blocks for the target tool. Essentially, the second transformation is a formal and reusable method for 
executing a ‘when you see one of these in the instance data, generate one of these in the target language’ 
process. 
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Figure 2: Two-step, two-level transformation. 

4.2 Benefits of this Architecture 

While designed as object-oriented languages, the OO functionality of the provided modeling constructs is 
limited in most COTS tools. One desirable extension would implement simulation objects with extensible 
properties and methods, which may, for example, allow them to store the results of an optimization 
routine and make corresponding modifications to themselves. Therefore, one benefit of this architecture is 
the opportunity to extend the functionality of the target simulation language. We have implemented a 
method that pairs a MATLAB object with its corresponding SimEvents component by requiring the 
MATLAB object to store a pointer to the SimEvents object. Then we can treat the pair of objects as if 
they were a single object and the functionality of a class of SimEvents blocks can be extended by adding 
new properties and methods to the MATLAB class definition.  
 For example if the target analysis requires a specific metric to be reported by a SimEvents objects, its 
corresponding MATLAB object executes the desired modification. Moreover rather than writing the 
metric to a global table or the MATLAB workspace, the MATLAB object stores the information which 
can be accessed during the analysis of the simulation results or returned to an optimization routine. More 
germane to the generation of the simulation itself, the SimEvents blocks are extended to provide methods 
to clone and modify themselves, which is integral to executing the transformation from the intermediate 
model to the SimEvents model. 
 Second, the transformation enables a solution to the instance data problem presented above by 
transforming instance data stored in a relational database, such as MS Access, to persistent objects in the 
MATLAB workspace, and finally to SimEvents blocks. Moreover, the schema of the relational database 
is contained in the DELS User Model, and the database tables can be automatically generated using an 
implementation of UML2RDBMS (OMG QVT 2011). This is a particularly important development 
because it provides a bridge from sources of industrial data to the simulation platform. In the process, this 
conversion, together with the coupling method described above, explicitly enables the OOP techniques 
used to generate the simulation.  
 Due to the complexity of a limited number of highly reusable components in DELS models, it is 
advantageous to build and debug the reusable simulation components in their native simulation 
environment and then incorporate them into a model library. One important aspect of the DELS Model 
Library in SimEvents is the development of a robust interface block, which is automatically generated 
depending on the flow types and message handling protocols of the target subsystem. This interface 
allows each construct in the model library to be reused repeatedly with modification through 

2719



Sprock and McGinnis 
 
parameterization or variation points; e.g. the method to instantiate a direct ship transportation channel 
with a single source and destination is the same as a milk-run consolidation transportation channel with n 
sources and one destination.  
 There are two distinct benefits from designing the model library this way. First, the simulation 
distinguishes between the types of flow between subsystem blocks, which provides flexible and 
extensible tools for designing protocols for routing entities throughout the network. Second, users are able 
and encouraged to create and register their own variants of the subsystem blocks, which are cloned from 
the model library during the generation process. 
 Finally, we adopt an OOP approach to implementing the transformation which is in contrast to the 
imperative and declarative languages defined by the QVT standard. This approach is a natural extension 
of the benefits discussed in this section. Specifically, the object oriented data storage method 
complements the pairing of MATLAB and SimEvents objects, and allows us to embed useful machinery 
into the transformation. This results in a transformation that is more reusable and extensible than current 
model transformation languages. In the next section, we provide detail on the proposed method, which 
integrates each of the developments discussed in this section, to transform the intermediate model into the 
target simulation model. 

4.3 Generative Methods Based on Creational Patterns 

One of the strategic goals in the development of a model transformation method is to promote reusability 
across multiple, if not all, DELS subdomains. This reusability is achieved by relying heavily on the 
network flow abstraction discussed above and exploiting design patterns that abstract the instantiation 
process. Therefore, a significant contribution of this paper is the development of a generative method that 
exploits the network structure to construct a reusable and extensive model transformation method through 
the usage of creational patterns adapted from the software engineering domain.  
 Creational patterns abstract the instantiation process by encapsulating the knowledge about which 
concrete classes the system uses and hiding how instance of these classes are created and assembled 
(Gamma et al. 1995). Therefore, deploying this method provides flexibility on what is created and how it 
is created, and ultimately allows configuring a system with objects that vary widely in structure and 
functionality. While there are several different strategies for assembling these creational patterns into a 
useful transformation method, Figure 3, each of these strategies begins with the abstract factory pattern. 

 
 The abstract factory pattern is used to take advantage of the network flow abstraction, and is 
implemented as the NetworkFactory, NodeFactory, and EdgeFactory classes (Figure 4). The 
AbstractFactory pattern declares an interface for creating products, such as CreateNode(), and declares an 
abstract class for each of the products that can be produced by the AbstractFactory, the corresponding 
Node class. A significant amount of reusability is realized by designing the transformation process at an 
abstract level and then relying on differentiated concrete subclasses to instantiate a wide variety of 
concrete products that conform to the flow network abstraction. 

1) Abstract Factory pattern 
2a) Single parameterized concrete factory 
2b) Multiple concrete factories, one for each product to be created 
3) Prototyping from Model Library 
4) Builder Classes to make modifications 

Figure 3 Organization of Generative Process. 
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 With the type of product known and a method to create it in the simulation, the last component to the 
generative process is a method to modify the internal machinery of each product. The builder pattern is 
well-suited to this task by creating a Director object and configuring it with a Builder object, which makes 
systematic modifications to the product. This is useful since we created our simulation from stock objects 
cloned from a model library, and now we need to make several small modifications to the blocks. We 
implement the builder pattern through two basic methods. Figure 5 illustrates the first method, where after 
creating the stock Workstation object the Workstation Factory switches to the Director role and instructs 
its builder object, the Workstation object, to make modifications, such as building the resource groups or 
the cycle time metric, to the corresponding SimEvents block. The key aspect of this pattern is that the 
Builder modifies the product step by step under the Director’s control; moreover, it does this through a 
uniform interface, the “Construct” operation, which improves modularity by encapsulating the way a 
complex object is constructed and represented. 

 

 
Figure 5: Example for creating and modifying workstation classes. 

 The development of a new model transformation method had several common, but important 
requirements. First, the method needs to be reusable to generate models in any subdomain within the 

 
Figure 4: UML Schema of M2M Method Based on Creational Patterns. 
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DELS domain, e.g. supply chain logistics, warehousing, manufacturing, etc. Second, the method needs to 
be extensible by being capable of handling additional refinements to an existing domain. The method 
achieves a high degree of reusability by relying on the network flow abstraction underlying each of the 
target domains. Model transformation extensibility is achieved with variation points and the management 
of subsystem variants as well as specialized builder classes to achieve precise refinements to the internal 
machinery of a subsystem. 

5 TWO EXAMPLE USE CASES: DISTRIBUTION SUPPLY CHAIN & WORKSTATION 
CONFIGURATION 

By basing the generative approach on the abstract network definition, we can move seamlessly across 
multiple domains, perhaps representing different levels of abstraction or detail. In this section, we provide 
two use cases for deploying this generative methodology. Each is intended to illustrate a different, but 
broad, set of use cases that are specifically enabled by this tool chain. By enabled we mean to discuss 
what attributes and extensions of the use cases make the generative methodology useful. As a broad 
statement, we intend to illustrate use cases where we make structural changes to the simulation rather than 
simply exploring a parameterized trade space. 
 The first use case is a two-echelon spare parts distribution supply chain (Figure 6) where the supply 
chain is structured as a small set of centralized distribution centers (1 in this case) that source directly 
from suppliers and distribute inventory to forward depots (usually geographically dispersed) which serve 
a set of customers in their customer bases. In this use case, the typically set of analysis questions focus on 
optimal inventory stocking levels that minimize total cost while attaining a contractual service level. 

 

 
Figure 6: Distribution supply chain model created in SimEvents. 

 However, several additional analysis questions can be examined effectively only by modifying the 
structure of the simulation. 1) A facility location problem introduces questions about the number and 
location of depots and assignment of customers to each depot. 2) Transportation related extensions 
include the possibility of additional expedite channels running directly from supplier to depot or hub to 
customers or consolidating multiple direct channels into a milk-run type channel. 3) Examining the 
resiliency and reliability of the network by removing channels or reassigning customers to depots in 
response to an event. Each of these use cases requires making modifications to the existing simulation 
document or generating a new network structure rather than parameterizing the base model. 
 The second use case focuses on allocating the steps of a manufacturing process plan to workstations 
which execute the operations (Figure 7). This use case has several interesting implications. From a 
modeling paradigm perspective, it is difficult or impossible to separate concerns within a discrete event 
simulation environment. For example, we may want to generate a simulation of the process plan 
(transformed from an activity diagram) separate from or side-by-side with the workstation configuration. 
This would allow the system designer to perform preliminary analyses on the process network prior to 
allocating each process to a workstation.  
 The second implication is closely related to the assembly line balancing problem, where we try to 
allocate processes to workstations to optimize a set of metrics while adhering to precedent and capability 
constraints. We can modify the structure of this network by adding additional workstations in parallel, 
splitting a workstation into two in series, or through the reallocation of processes. Each of these 
modifications, which are representative local search neighborhoods in a broader optimization meta-
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heuristics, generally requires you to regenerate the entire simulation or significant portions of the 
network. 

These two use cases demonstrate that this methodology is reusable across several domains, extends 
the capabilities of this particular simulation language, and provides new capabilities for constructing and 
executing analysis use cases. 

 

 
Figure 7: Workstation configuration model captured in SysML. 

6 CONCLUSION AND FUTURE WORK 

The goal of this research is a methodology that connects a conceptual model for discrete event logistics 
systems (DELS) to desired analysis tools, such as discrete event simulation using SimEvents. This 
methodology relies heavily on object oriented creational patterns and a network abstraction to construct 
an extensible and reusable transformation for the target domain. A future research goal is to develop a 
conceptual model for DELS that is more abstract, which would allow a greater degree of simplicity and 
reusability of the M2M transformations. Two additional considerations include the applicability and 
usefulness to other analyses and the process of extending the methodology to accommodate those 
analyses. 
 The applicability and usefulness of the proposed methodology is scoped by three qualities of the 
target use case. First, can the use case be abstracted to a network flow problem? For many analyses 
applicable to the DELS domain, this isn’t a particularly restrictive requirement. Second, generative 
methodologies are most useful when the structure of the network is changing at each iteration of an 
analysis. Use cases that can be explored through parameterization tend to be less effective aside from 
cases when the model is prohibitively large to build by hand. Third, the analysis model language must 
support generation through an object oriented API. In the case of SimEvents, we can manipulate the 
model document from the MATLAB command line.  
 One of the major strengths of basing the generative methods on the abstract factory pattern is that we 
are abstracting the object creation process itself. Earlier we exploited this trait by creating a variety of 
concrete SimEvents products that were derived from the same abstract node class. However, we can also 
exploit it by porting the entire process itself to another platform by replacing the entire set of concrete 
factories with a new set that generates different analysis all together. One example would be to generate 
the schema in VBA, and then use the DSL for Arena to generate Arena process blocks. We can also 
extend the intermediate model in MATLAB to support the generation of optimization models through the 
IBM’s CPLEX® API. This use case is particularly compelling because it demonstrates that our method 
can provide access to multiple types of analysis models, not only simulation, while preserving the 
integrity of the transformation model itself.  
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