
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

SIMULATION MODEL GENERATION OF DISCRETE EVENT LOGISTICS SYSTEMS
(DELS) USING SOFTWARE DESIGN PATTERNS

Timothy Sprock
Leon F. McGinnis

Georgia Institute of Technology

School of Industrial and Systems Engineering
755 Ferst Drive NW

Atlanta, GA 30332-0205 USA

ABSTRACT

To provide automated access from a formal system model to multiple analysis tools, such as discrete
event simulation or optimization, we extend current model-based systems engineering (MBSE)
methodologies by introducing a new model to model transformation method based on object-oriented
creational patterns from software design. Implemented in MATLAB’s discrete event simulation tool,
SimEvents, we demonstrate the methodology by generating two distinct use cases based on a distribution
supply chain and manufacturing system.

1 INTRODUCTION

Automated access to multiple computational analyses from a single model of the system of interest is
typical in many engineering disciplines, e.g., in mechanical design both finite element analysis (FEA) and
computational fluid dynamics (CFD) from a single CAD model. However, in contemporary practice,
supply chain logistics analyses are often purpose-built to answer specific questions, with an implicit
system model and many possible analysis implementations depending on the question, the instance data,
and the solver. Automated and cost-effective access to multiple analyses from a single conceptual model
of the target supply chain logistics system would provide much broader support for operational decision
making and system optimization, and that is the motivation for the research reported here.
 Over the past twenty years, the software engineering community has faced similar issues, and one
approach to solving the problem has been the development of automated code generation technologies.
One of the most widely-known is Model Drive Architecture® (OMG MDA® 2003) promoted by the
Object Management Group (OMG ®). In MDA, a representation of the desired computation is referred to
as the “platform independent model” or PIM while the desired implementation is the “platform specific
model” or PSM.

In both mechanical design and software engineering, one key to automation is a formal model of the
system of interest, i.e., the mechanical part or the desired computation. The target model in both cases is
inherently formal, either as a mathematical formulation or as executable code. Thus, it seems reasonable
to infer that a basic requirement for automating the generation of simulation models will be a formal
statement of the source model, i.e., the system of interest. Given that, the remaining challenge is to devise
a generic and re-usable method for translating the source model into the target model.
 This research has been motivated by the desire to achieve similar results for the automation of OR
analysis model generation, by adapting OMG’s model transformation approach. There are, however,
significant differences between generating code and generating discrete event simulations in commercial

2714978-1-4799-7486-3/14/$31.00 ©2014 IEEE

Sprock and McGinnis

off the shelf (COTS) tools. These differences provide a unique set of challenges for adapting existing
model transformation methodologies (discussion in Section 3.4).
 In this paper, we describe a transformation methodology, rooted in object oriented design patterns,
which exploits the network structure inherent to many supply chain logistics systems. The proposed
transformation methodology is implemented using the SimEvents® tool, integrated with MATLAB®;
however, the approach can be extended to other simulation platforms and other types of analyses
(discussion in future work, Section 6).

2 DISCRETE EVENT LOGISTICS SYSTEMS

Discrete event logistics systems (DELS) are a class of dynamic systems that are defined by the
transformation of discrete flows through a network of interconnected subsystems (Mönch et al. 2011).
The DELS domain includes systems such as supply chains, manufacturing systems, transportation
networks, warehouses, health care delivery systems, etc. DELS are inherently complex systems due to the
large scale of the networks, the dynamic nature of interactions between actors, and the randomness of
both the external and internal environments. This makes any decision making process difficult and
implies the need for a wide range of modeling and analysis methodologies.

2.1 The DELS Conceptual Model

An object oriented modeling (OOM) paradigm is a natural way to model a complex system because it
builds upon the domain expert’s ability to view a system as collections of related objects, including
attributes of those objects, sub-components of those objects, and groupings of similar objects (Coad and
Yourdon 1991). OOM facilitates modular design and promotes reusability. OMG's SysML™ (2012), an
extension of the UML, provides an OOM environment that is used in many system engineering design
paradigms, such as Model-Based Systems Engineering (MBSE) (Estefan 2007) or Object-Oriented
Systems Engineering Method (OOSEM) (Friedenthal, Moore, and Steiner 2009). SysML has proven to be
a powerful modeling language for system applications in a diverse range of engineering domains, such as
electrical, mechanical, and industrial (Huang, Ramamurthy, and McGinnis 2007; Johnson et al. 2007;
Peak et al. 2007; Shah 2010; Thiers and McGinnis 2011; Wu et al. 2011)
 The formal domain modeling used in software engineering for designing and developing systems has
been extended to the DELS domain, resulting in a conceptual model for supply chain engineering that
integrates a SCOR-compliant domain specific language (DSL) with an object-oriented supply chain
reference architecture specified in SysML (Sprock and McGinnis 2014). SCOR (2012) is a well-known
diagnostic and benchmarking tool for evaluating and comparing supply chain activities and performance.
Using SysML, SCOR’s commonly reused elements have been captured as a collection of stereotypes, and
the patterns for process flows as activity diagrams. Additionally, the process-oriented SCOR model has
been augmented with a model for the physical architecture of the supply chain. Since there is a small
intersection between the supply chain and MBSE communities, implementing SCOR in SysML bridges
some of the semantic gap by making the conceptual model as familiar as possible to all stakeholders.
 Because very few analysis tools are designed using the same formalism, the ability to directly
exchange information between analysis tools is limited. The DELS conceptual model provides a common
formalism to exchange information between tools and thereby construct multiple transformations between
different analysis tools.

2.2 Discrete Event Simulation

Due to the inherent complexity of DELSs, analytic models are often intractable and require significant
assumptions to model the observed “real world” behavior. For these analysis use cases, discrete event
simulation is an attractive option to evaluating the expected behavior and performance of the system of
interest. However, there are significant hurdles to building, running, and analyzing simulation models.

2715

Sprock and McGinnis

One is the range of simulation analysis tool capabilities and characteristics (Son, Jones, and Wysk 2000),
which means there is no “canonical” statement of a simulation problem, as there is, e.g., for optimization.
This difficulty is compounded by the lack of model/data separation. In optimization, for example, a single
formulation of the transportation problem can be reused for datasets having different numbers of sources,
sinks, and transportation arcs. The corresponding simulation models, however, would have to be
individually created in some way, either manually or via automation. Both of these challenges provide a
great incentive to automate the generation of discrete event simulations in a generic and reusable way.

In this research, we propose a method to automatically generate the DES structural model in
SimEvents. Since a single simulation model can be reconfigured to answer multiple questions and
perform multiple analyses, we leave the task of specifying the appropriate analysis to answer the question
at hand to future work; e.g. simulation configuration parameters, input scenarios, output results to collect,
etc. SimEvents was selected because of its integration with the MATLAB workspace and OOP
environment, which provides an extensible scripting language and facilitates the implementation of the
proposed methodology (specific discussion to follow in Section 4). Also because of its integration with
popular optimization and statistics tools, MATLAB is also an attractive integrated development
environment to implement the one model-many tools paradigm.

3 AUTOMATED MODEL GENERATION

3.1 Historical DES Generation Approaches

Traditionally, automatic simulation generation approaches have relied on templates and ad-hoc scripts to
generate simulation models in popular COTS tools. Cope et al. (2007) provide some review on integrating
DES and supply chain modeling as well as efforts on generic and automatic simulation generation. Son,
Jones, and Wysk (2000) propose a methodology to automatically generate simulation models from neutral
libraries of simulation components for manufacturing job shops. However, there also has been research
that focuses on developing methodologies that do not rely on COTS DES tools. Chatfield, Harrison, and
Hayya (2006) recognize that a well-defined library of simulation objects and a well-defined schema to
store the instance data can enable the generation of the DES through a simple mapping. They implement
this strategy with their own object-oriented supply chain simulation tool and an XML-based system
representation. Biswas and Narahari (2004) also model the supply chain infrastructure with a library of
carefully designed objects with well-defined interactions. They provide an intermediate workbench model
that potentially provides automated access to a range of analysis models, including DES. This strategy is
also realized through the development of their own tools. These three methodologies provide insight into
good strategies for developing an automated simulation generation methodology for COTS tools.

3.2 M2M Transformations and The Meta-modeling Architecture

MDA advocates the creation of a platform-independent model of software at a higher level of abstraction,
which can be transformed as needed into platform-specific and executable models; adapting MDA would
separate the development of a DELS model from its implementation in a specific simulation software
package; the implementation would be constructed automatically using a reusable model to model (M2M)
transformation.
 Conceptually, the model transformation methodology involves an architecture that organizes the
models involved in the transformation, and the transformation process itself, which consists of a mapping
and associated transformation rules. The OMG four-layer meta-model architecture provides a hierarchical
organization to this process; the four layers are MOF, SysML/UML, User Model, and Instance Model,
illustrated in Figure 1.

2716

Sprock and McGinnis

Figure 1: OMG M2M transformation framework (Batarseh and McGinnis 2012a).

 The transformation methodology consists of two components: the transformation definition, which is
a mapping between classifiers in the source and target models, and then a transformation engine that
transforms instances of each classifier in the source model to a corresponding and conforming instance in
the target model (Figure 1). A survey of model transformation approaches is given by Czarnecki and
Helsen (2006).

3.3 Current State of the Art

Current M2M methods, such as OMG's QVT (2011) or MOFM2T (2008), can execute transformations
from SysML to an XML or structured text specification of the target analysis, e.g., AnyLogic™ or
SimEvents™ respectively. Prior research has established the viability of this methodology to create a
DSL in SysML, then describe the system of interest using the DSL, and finally transform a description of
a system model specified using the DSL into a target analysis language, such as discrete event simulation
using Arena®. (Batarseh and McGinnis 2012a; Batarseh and McGinnis 2012b; McGinnis and Ustun
2009; McGinnis et al. 2011). An illustration of this mapping process for the DES tool AnyLogic is
provided in Chapter 8 of Huang (2011).

3.4 Challenges in Applying the OMG/MDA Approach

Difficulties arise in applying current M2M methodologies for code generation to generating discrete event
simulation. Because of its imperative nature, applying MDA’s M2M approach to the widely varying tool
specifications results in ad-hoc transformations that aren’t reusable or extensible; essentially defeating the
original intention. Moreover, the MDA transformation approach requires the target analysis tool to store
its models in a well-structured and accessible format, for which there is a published schema. Many
popular simulation tools fail to satisfy this requirement. However, often these simulation tools provide an
object oriented or imperative programming environment that allows the modeler to construct the
simulation indirectly (not using the typical drag-and-drop model construction interface). This provides a
path to developing a transformation that does not rely on the translation of XML to another structure text
format.
 Second, whereas code generation is a translation of syntax, the typical simulation model is only an
approximate morphism of the corresponding system model, which makes the PIM to PSM transformation
exceptionally difficult. That is, it requires significantly more simulation blocks and elements to express a
simple function or structure, and the mapping is different for each different simulation language. In

2717

Sprock and McGinnis

response to the difficulty and complexity of the mapping process for DES tools, Huang (2011) suggests
that one possibility for handling this complexity would be to provide reusable behavioral and structural
libraries in the target simulation language.
 Two additional issues with automating the transformation process are identified in McGinnis and
Ustun (2009). First is the management of large amounts of instance data where the total number of unique
elements is small, yet the set of instances of each element is large. This instance data usually is natively
stored in a relational database, and it is desirable for a M2M transformation to ingest the relational
database as the source model’s instance data. This implicitly suggests that there is a low priority on
completely specifying the user model in SysML, in favor of relying on the conceptual model to provide
schema to the relational database and patterns on how the elements will be assembled in the target model.
Secondly, additional information is required to transform a conceptual model, which needs to be captured
in the conceptual model itself or provided during the transformation process. Whereas current M2M
methods used to generate simulations are typically imperative, there is an opportunity to elaborate the
transformation with additional knowledge on the construction of the target analysis.
 Finally, most common DES language models do not conform rigidly to the four-layer meta-model
architecture—in fact, it is rare indeed to find a published meta-model. However, the MOF Core explicitly
states the four-layer architecture is not supposed to be rigid, but merely should be reflective and allow
navigation between a classifier and its instance. This is particularly convenient because it is not clear that
discrete event simulation languages, as currently implemented, clearly conform to that architecture. This
opens the possibilities for a more natural transformation architecture that maps classifier to classifier and
then transforms instance to instance without being constrained by the rigid four-layer architecture.

4 THE PROPOSED M2M TRANSFORMATION METHODOLOGY

4.1 The Transformation Architecture

The proposed model transformation methodology consists of an architecture that organizes the
transformation process, a two-level approach to transformation, and—in a departure from MDA—the use
of software factories (Gamma et al. 1995) rather than contemporary M2M tools for executing the final
transformation.
 The architecture, shown in Figure 2, presents a two-step transformation that generates an intermediate
model before generating the simulation, and is a departure from the standard MDA M2M approach. This
addition of the intermediate model provides two advantages. First, it provides a method to extend the
functionality of the target simulation language. Second, it provides flexibility and reusability by allowing
the user to change the target analysis tool by implementing a different transformation in the second step.

The architecture also captures the transformation process as a two-level transformation. The higher-
level transformation maps the abstract DELS concepts, such as subsystem definitions, from SysML to the
target analysis tool, and the transformation outputs the DELS model library for the tool. The lower-level
transformation maps classifiers in the conceptual model in SysML to members of the DELS model
library, and the transformation takes instance data from a relational database and outputs simulation
blocks for the target tool. Essentially, the second transformation is a formal and reusable method for
executing a ‘when you see one of these in the instance data, generate one of these in the target language’
process.

2718

Sprock and McGinnis

Figure 2: Two-step, two-level transformation.

4.2 Benefits of this Architecture

While designed as object-oriented languages, the OO functionality of the provided modeling constructs is
limited in most COTS tools. One desirable extension would implement simulation objects with extensible
properties and methods, which may, for example, allow them to store the results of an optimization
routine and make corresponding modifications to themselves. Therefore, one benefit of this architecture is
the opportunity to extend the functionality of the target simulation language. We have implemented a
method that pairs a MATLAB object with its corresponding SimEvents component by requiring the
MATLAB object to store a pointer to the SimEvents object. Then we can treat the pair of objects as if
they were a single object and the functionality of a class of SimEvents blocks can be extended by adding
new properties and methods to the MATLAB class definition.
 For example if the target analysis requires a specific metric to be reported by a SimEvents objects, its
corresponding MATLAB object executes the desired modification. Moreover rather than writing the
metric to a global table or the MATLAB workspace, the MATLAB object stores the information which
can be accessed during the analysis of the simulation results or returned to an optimization routine. More
germane to the generation of the simulation itself, the SimEvents blocks are extended to provide methods
to clone and modify themselves, which is integral to executing the transformation from the intermediate
model to the SimEvents model.
 Second, the transformation enables a solution to the instance data problem presented above by
transforming instance data stored in a relational database, such as MS Access, to persistent objects in the
MATLAB workspace, and finally to SimEvents blocks. Moreover, the schema of the relational database
is contained in the DELS User Model, and the database tables can be automatically generated using an
implementation of UML2RDBMS (OMG QVT 2011). This is a particularly important development
because it provides a bridge from sources of industrial data to the simulation platform. In the process, this
conversion, together with the coupling method described above, explicitly enables the OOP techniques
used to generate the simulation.
 Due to the complexity of a limited number of highly reusable components in DELS models, it is
advantageous to build and debug the reusable simulation components in their native simulation
environment and then incorporate them into a model library. One important aspect of the DELS Model
Library in SimEvents is the development of a robust interface block, which is automatically generated
depending on the flow types and message handling protocols of the target subsystem. This interface
allows each construct in the model library to be reused repeatedly with modification through

2719

Sprock and McGinnis

parameterization or variation points; e.g. the method to instantiate a direct ship transportation channel
with a single source and destination is the same as a milk-run consolidation transportation channel with n
sources and one destination.
 There are two distinct benefits from designing the model library this way. First, the simulation
distinguishes between the types of flow between subsystem blocks, which provides flexible and
extensible tools for designing protocols for routing entities throughout the network. Second, users are able
and encouraged to create and register their own variants of the subsystem blocks, which are cloned from
the model library during the generation process.
 Finally, we adopt an OOP approach to implementing the transformation which is in contrast to the
imperative and declarative languages defined by the QVT standard. This approach is a natural extension
of the benefits discussed in this section. Specifically, the object oriented data storage method
complements the pairing of MATLAB and SimEvents objects, and allows us to embed useful machinery
into the transformation. This results in a transformation that is more reusable and extensible than current
model transformation languages. In the next section, we provide detail on the proposed method, which
integrates each of the developments discussed in this section, to transform the intermediate model into the
target simulation model.

4.3 Generative Methods Based on Creational Patterns

One of the strategic goals in the development of a model transformation method is to promote reusability
across multiple, if not all, DELS subdomains. This reusability is achieved by relying heavily on the
network flow abstraction discussed above and exploiting design patterns that abstract the instantiation
process. Therefore, a significant contribution of this paper is the development of a generative method that
exploits the network structure to construct a reusable and extensive model transformation method through
the usage of creational patterns adapted from the software engineering domain.
 Creational patterns abstract the instantiation process by encapsulating the knowledge about which
concrete classes the system uses and hiding how instance of these classes are created and assembled
(Gamma et al. 1995). Therefore, deploying this method provides flexibility on what is created and how it
is created, and ultimately allows configuring a system with objects that vary widely in structure and
functionality. While there are several different strategies for assembling these creational patterns into a
useful transformation method, Figure 3, each of these strategies begins with the abstract factory pattern.

 The abstract factory pattern is used to take advantage of the network flow abstraction, and is
implemented as the NetworkFactory, NodeFactory, and EdgeFactory classes (Figure 4). The
AbstractFactory pattern declares an interface for creating products, such as CreateNode(), and declares an
abstract class for each of the products that can be produced by the AbstractFactory, the corresponding
Node class. A significant amount of reusability is realized by designing the transformation process at an
abstract level and then relying on differentiated concrete subclasses to instantiate a wide variety of
concrete products that conform to the flow network abstraction.

1) Abstract Factory pattern
2a) Single parameterized concrete factory
2b) Multiple concrete factories, one for each product to be created
3) Prototyping from Model Library
4) Builder Classes to make modifications

Figure 3 Organization of Generative Process.

2720

Sprock and McGinnis

 With the type of product known and a method to create it in the simulation, the last component to the
generative process is a method to modify the internal machinery of each product. The builder pattern is
well-suited to this task by creating a Director object and configuring it with a Builder object, which makes
systematic modifications to the product. This is useful since we created our simulation from stock objects
cloned from a model library, and now we need to make several small modifications to the blocks. We
implement the builder pattern through two basic methods. Figure 5 illustrates the first method, where after
creating the stock Workstation object the Workstation Factory switches to the Director role and instructs
its builder object, the Workstation object, to make modifications, such as building the resource groups or
the cycle time metric, to the corresponding SimEvents block. The key aspect of this pattern is that the
Builder modifies the product step by step under the Director’s control; moreover, it does this through a
uniform interface, the “Construct” operation, which improves modularity by encapsulating the way a
complex object is constructed and represented.

Figure 5: Example for creating and modifying workstation classes.

 The development of a new model transformation method had several common, but important
requirements. First, the method needs to be reusable to generate models in any subdomain within the

Figure 4: UML Schema of M2M Method Based on Creational Patterns.

2721

Sprock and McGinnis

DELS domain, e.g. supply chain logistics, warehousing, manufacturing, etc. Second, the method needs to
be extensible by being capable of handling additional refinements to an existing domain. The method
achieves a high degree of reusability by relying on the network flow abstraction underlying each of the
target domains. Model transformation extensibility is achieved with variation points and the management
of subsystem variants as well as specialized builder classes to achieve precise refinements to the internal
machinery of a subsystem.

5 TWO EXAMPLE USE CASES: DISTRIBUTION SUPPLY CHAIN & WORKSTATION
CONFIGURATION

By basing the generative approach on the abstract network definition, we can move seamlessly across
multiple domains, perhaps representing different levels of abstraction or detail. In this section, we provide
two use cases for deploying this generative methodology. Each is intended to illustrate a different, but
broad, set of use cases that are specifically enabled by this tool chain. By enabled we mean to discuss
what attributes and extensions of the use cases make the generative methodology useful. As a broad
statement, we intend to illustrate use cases where we make structural changes to the simulation rather than
simply exploring a parameterized trade space.
 The first use case is a two-echelon spare parts distribution supply chain (Figure 6) where the supply
chain is structured as a small set of centralized distribution centers (1 in this case) that source directly
from suppliers and distribute inventory to forward depots (usually geographically dispersed) which serve
a set of customers in their customer bases. In this use case, the typically set of analysis questions focus on
optimal inventory stocking levels that minimize total cost while attaining a contractual service level.

Figure 6: Distribution supply chain model created in SimEvents.

 However, several additional analysis questions can be examined effectively only by modifying the
structure of the simulation. 1) A facility location problem introduces questions about the number and
location of depots and assignment of customers to each depot. 2) Transportation related extensions
include the possibility of additional expedite channels running directly from supplier to depot or hub to
customers or consolidating multiple direct channels into a milk-run type channel. 3) Examining the
resiliency and reliability of the network by removing channels or reassigning customers to depots in
response to an event. Each of these use cases requires making modifications to the existing simulation
document or generating a new network structure rather than parameterizing the base model.
 The second use case focuses on allocating the steps of a manufacturing process plan to workstations
which execute the operations (Figure 7). This use case has several interesting implications. From a
modeling paradigm perspective, it is difficult or impossible to separate concerns within a discrete event
simulation environment. For example, we may want to generate a simulation of the process plan
(transformed from an activity diagram) separate from or side-by-side with the workstation configuration.
This would allow the system designer to perform preliminary analyses on the process network prior to
allocating each process to a workstation.
 The second implication is closely related to the assembly line balancing problem, where we try to
allocate processes to workstations to optimize a set of metrics while adhering to precedent and capability
constraints. We can modify the structure of this network by adding additional workstations in parallel,
splitting a workstation into two in series, or through the reallocation of processes. Each of these
modifications, which are representative local search neighborhoods in a broader optimization meta-

2722

Sprock and McGinnis

heuristics, generally requires you to regenerate the entire simulation or significant portions of the
network.

These two use cases demonstrate that this methodology is reusable across several domains, extends
the capabilities of this particular simulation language, and provides new capabilities for constructing and
executing analysis use cases.

Figure 7: Workstation configuration model captured in SysML.

6 CONCLUSION AND FUTURE WORK

The goal of this research is a methodology that connects a conceptual model for discrete event logistics
systems (DELS) to desired analysis tools, such as discrete event simulation using SimEvents. This
methodology relies heavily on object oriented creational patterns and a network abstraction to construct
an extensible and reusable transformation for the target domain. A future research goal is to develop a
conceptual model for DELS that is more abstract, which would allow a greater degree of simplicity and
reusability of the M2M transformations. Two additional considerations include the applicability and
usefulness to other analyses and the process of extending the methodology to accommodate those
analyses.
 The applicability and usefulness of the proposed methodology is scoped by three qualities of the
target use case. First, can the use case be abstracted to a network flow problem? For many analyses
applicable to the DELS domain, this isn’t a particularly restrictive requirement. Second, generative
methodologies are most useful when the structure of the network is changing at each iteration of an
analysis. Use cases that can be explored through parameterization tend to be less effective aside from
cases when the model is prohibitively large to build by hand. Third, the analysis model language must
support generation through an object oriented API. In the case of SimEvents, we can manipulate the
model document from the MATLAB command line.
 One of the major strengths of basing the generative methods on the abstract factory pattern is that we
are abstracting the object creation process itself. Earlier we exploited this trait by creating a variety of
concrete SimEvents products that were derived from the same abstract node class. However, we can also
exploit it by porting the entire process itself to another platform by replacing the entire set of concrete
factories with a new set that generates different analysis all together. One example would be to generate
the schema in VBA, and then use the DSL for Arena to generate Arena process blocks. We can also
extend the intermediate model in MATLAB to support the generation of optimization models through the
IBM’s CPLEX® API. This use case is particularly compelling because it demonstrates that our method
can provide access to multiple types of analysis models, not only simulation, while preserving the
integrity of the transformation model itself.

2723

Sprock and McGinnis

REFERENCES

Batarseh, O., and L. F. McGinnis. 2012a. “SysML to Discrete-Event Simulation to Analyze Electronic
Assembly Systems.” In Proceedings of the 2012 Symposium on Theory of Modeling and Simulation,
Article 48.

Batarseh, O. and L. F. McGinnis. 2012b. “System Modeling in SysML and System Analysis in Arena.” In
Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach, R.
Pasupathy, O. Rose, and A. M. Uhrmacher, 2924-2935. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Biswas, S., and Y. Narahari. 2004. “Object Oriented Modeling and Decision Support for Supply Chains.”
European Journal of Operational Research 153 (3): 704–26.

Chatfield, D. C., T. P. Harrison, and J. C. Hayya. 2006. “SISCO: An Object-Oriented Supply Chain
Simulation System.” Decision Support Systems 42 (1): 422–434.

Coad, P., and E. Yourdon. 1991. Object-Oriented Design. Englewood Cliffs, NJ: Yourdon Press.
Cope, D., M. S. Fayez, M. Mollaghasemi, and A. Kaylani. 2007. “Supply Chain Simulation Modeling

Made Easy: An Innovative Approach.” In Proceedings of the 2007 Winter Simulation Conference,
edited by S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 1887–
1896. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Czarnecki, K., and S. Helsen. 2006. “Feature-Based Survey of Model Transformation Approaches.” IBM
Systems Journal 45 (3): 621–645.

Estefan, J. A. 2007. “Survey of Model-Based Systems Engineering (MBSE) Methodologies.” Technical
Data. Pasadena, California: Jet Propulsion Laboratory.

Friedenthal, S., A. Moore, and R. Steiner. 2009. A Practical Guide to SysML: The Systems Modeling
Language. Elsevier.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns - Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Huang, C.-C. 2011. “Discrete Event System Modeling Using Sysml and Model Transformation.” Ph.D.
thesis. Atlanta, GA: Georgia Institute of Technology. http://smartech.gatech.edu/handle/1853/45830.

Huang, E., R. Ramamurthy, and L. F McGinnis. 2007. “System and Simulation Modeling Using SysML.”
In Proceedings of the 2007 Winter Simulation Conference, edited by S. G. Henderson, B. Biller, M.-
H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 796–803. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Johnson, T. A., C. J. J. Paredis, R. Burkhart, and J. M. Jobe. 2007. “Modeling Continuous System
Dynamics in SysML.” In Proceedings of the 2007 ASME International Mechanical Engineering
Congress.

McGinnis, L., E. Huang, K. S. Kwon, and V. Ustun. 2011. “Ontologies and Simulation: A Practical
Approach.” Journal of Simulation 5 (3): 190–201.

McGinnis, L., and V. Ustun. 2009. “A Simple Example of SysML-Driven Simulation.” In Proceedings of
the 2009 Winter Simulation Conference, edited by M. D. Rossetti, R. R. Hill, B. Johansson, A.
Dunkin and R. G. Ingalls, 1703–1710. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Mönch, L., P. Lendermann, L. F. McGinnis, and A. Schirrmann. 2011. “A Survey of Challenges in
Modelling and Decision-Making for Discrete Event Logistics Systems.” Computers in Industry 62
(6): 557–567.

OMG MDA. 2003. “OMG Model Driven Architecture (OMG MDA) Version 1.0.1”. Object Management
Group. http://www.omg.org/mda/

OMG MOFM2T. 2008. “OMG MOF Model to Text Transformation Language (OMG MOFM2T)
Version 1.0”. Object Management Group. http://www.omg.org/spec/MOFM2T/1.0

2724

Sprock and McGinnis

OMG QVT. 2011. “OMG MOF 2.0 Query/View/Transformation Specification (OMG QVT) Version

1.1”. Object Management Group. http://www.omg.org/spec/QVT/1.1/
OMG SysML. 2012. “OMG Systems Modeling Language (OMG SysML) Version 1.3”. Object

Management Group. http://www.omg.org/spec/SysML/1.3/
Peak, R. S., R. M. Burkhart, S. A. Friedenthal, M. W. Wilson, M. Bajaj, and I. Kim. 2007. “Simulation-

Based Design Using SysML—part 1: A Parametrics Primer.” In Proceedings of the 2007 INCOSE
International Symposium.

SCOR. 2012. “SCOR: The Supply Chain Reference Model Version 11.0”. Supply Chain Council, Inc.
www.supply-chain.org.

Shah, A. A. 2010. “Combining Mathematical Programming and SysML for Component Sizing as Applied
to Hydraulic Systems”. M.S. thesis. Atlanta, GA: Georgia Institute of Technology.

Son, Y. J., A. T. Jones, and R. A. Wysk. 2000. “Automatic Generation of Simulation Models from
Neutral Libraries: An Example.” In Proceedings of the 2000 Winter Simulation Conference, edited by
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 2:1558–1567. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Sprock, T., and L. F. McGinnis. 2014. “Towards Automated Access to Supply Chain Analyses.” In
Proceedings of the 2014 POMS Annual Conference.

Thiers, G., and L. F. McGinnis. 2011. “Logistics Systems Modeling and Simulation.” In Proceedings of
the 2011 Winter Simulation Conference, edited by S. Jain, R.R. Creasey, J. Himmelspach, K.P.
White, and M. Fu, 1531–1341. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Wu, D., L. L. Zhang, R. J. Jiao, and R. F. Lu. 2011. “SysML-Based Design Chain Information Modeling
for Variety Management in Production Reconfiguration.” Journal of Intelligent Manufacturing,
24(3): 575–596.

AUTHOR BIOGRAPHIES

TIMOTHY SPROCK is a graduate student in the Stewart School of Industrial and Systems Engineering
at Georgia Tech. Before returning to school he was employed by The Boeing Company in Philadelphia,
PA and received a bachelor’s degree in applied physics and economics from Rensselaer Polytechnic
Institute, Troy, NY. His email address is tsprock3@gatech.edu.

LEON F. MCGINNIS is Professor Emeritus in the Stewart School of Industrial and Systems
Engineering at Georgia Tech and founder of the Keck Virtual Factory Lab. He is internationally known
for his leadership in the material handling research community and his research in the area of discrete
event logistics systems. A frequent speaker at international conferences, he has received several awards
from professional societies for his innovative research, including the David F. Baker Award from IIE, the
Reed-Apple Award from the Material Handling Education Foundation, and the Material Handling
Innovation Pioneer award from Material Handling Management Magazine. He is author or editor of seven
books and more than 110 technical publications. At Georgia Tech, Professor McGinnis has held
leadership positions in a number of industry-focused centers and multi-disciplinary programs, including
the Material Handling Research Center, the Computer Integrated Manufacturing Systems Program, the
Sustainable Design and Manufacturing Program, and the Tennenbaum Institute for Enterprise
Transformation. His current research explores the use of formal systems modeling methods to support
systems engineering of discrete event logistics systems. Professor McGinnis is a Fellow of the Institute of
Industrial Engineering. His e-mail address is leon.mcginnis@gatech.edu.

2725

