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Abstract

The	present	article	uses	agent-based	social	simulation	to	study	rational	behaviour	in	networked	innovation.	A	simulation	model	that	includes	network
characteristics	and	network	participant's	characteristics	is	run	using	parameter	sweeping,	yielding	1450	simulation	cases.	The	notion	of	coalitions
was	used	to	denote	partnerships	in	networked	innovation.	Coalitions	compete	against	each	other	and	several	variables	were	observed	for	winning
coalitions.	Close	analysis	of	the	variations	and	their	influence	on	the	average	power	per	winning	coalition	was	analysed	using	stepwise	multiple
regression	analysis.	The	analysis	brought	forward	two	main	conclusions.	First,	as	average	betweenness	centrality	per	winning	coalition	increases,
the	average	power	per	winning	coalition	decreases.	This	implies	that	having	high	betweenness	centrality	as	a	network	participant	makes	it	easier	to
build	a	successful	coalition,	as	a	coalition	needs	lower	average	power	to	succeed.	Second,	as	the	number	of	network	participants	increases,	the
average	power	per	winning	coalition	decreases.	This	implies	that	in	a	larger	network,	it	may	be	easier	to	form	a	successful	coalition.	The	results	form
the	basis	for	the	development	of	a	utility-based	recommendation	system	that	helps	people	choose	optimal	partners	in	an	innovation	network.
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	Introduction

1.1 The	rise	of	the	Internet	has	sparked	off	a	snowballing	development	of	new	technologies.	In	such	a	rapidly	changing	world,	it	is	very	hard	for	companies
to	remain	innovative.	Only	few	companies	can	retain	their	market	share	by	relying	on	their	internal	R&D	departments.	An	increasing	number	of
companies	connect	to	other	parties	outside	the	firm	to	come	up	with	innovations	more	easily,	faster	and	more	cheaply;	this	is	referred	to	as	networked
innovation.	By	sharing	their	knowledge	in	their	social	network,	they	can	profit	in	a	number	of	ways.	To	illustrate,	Google	shares	its	Android	mobile
platform	technology	under	an	open	source	license.	By	doing	so,	others	can	advance	Google's	knowledge.	Google	is	well	aware	that	they	do	not	have
to	invent	new	technology	themselves	in	order	to	make	money	from	it.	Instead,	they	use	the	expert	knowledge	that	is	present	among	the	Android
developer	community	and	profit	from	increased	adoption	and	popularity	of	their	Android	platform.	If	good	initiatives	arise,	Google	adopts	the	technology
behind	it,	works	together	with	its	originators,	or	acquires	the	technology.	They	fend	off	risks	of	financial	failure	by	making	effective	and	efficient	use	of
the	knowledge	that	is	present	in	their	network.

1.2 The	value	of	networked	innovation	is	emphasised	by	Cassiman	and	Veugelers	(2006),	who	found	that	supportive	expertise	present	in	an	R&D's	social
network	can	boost	new	product	development.	Furthermore,	Kratzer	and	Lettl	(2008)	concluded	that	people	that	are	on	the	edge	of	two	social	networks
have	more	information,	as	a	result	thereof	being	more	creative	than	others	in	their	network.	Ronald	Burt	(2004)	coined	the	term	brokerage	for	such
situations.	Perry-Smith	(2006)	points	out	the	significance	of	a	central	network	position	and	weak	ties	outside	the	firm	to	be	more	creative.

1.3 In	sum,	we	can	be	more	creative	by	profiting	from	knowledge	within	our	network.	Yet,	the	innovative	process	does	not	merely	consist	of	one's	creative
utterances.	Good	ideas	are	often	generated,	but	are	for	some	reason	not	implemented.	Klein	and	Sorra	(1996)	point	out	the	importance	of	skilfulness
and	commitment	for	the	implementation	of	innovation.	Kotter	(1996)	suggests	a	powerful	guiding	coalition	to	lead	organisational	change.	Such	a
coalition	is	not	driven	by	mere	organisational	hierarchy,	but	rather	by	status,	information,	expertise,	reputations	and	relationships.	The	guiding	coalition
can	persuade	others	in	the	network	to	support	innovation	implementation,	which	is	one	of	the	crucial	steps	in	innovation	management	(Adamides	&
Karacapilidis	2006).	A	coalition	implies	a	shared	intention	(commitment)	from	distinct	parties	(Ensminger	&	Surry	2008;	Sie	et	al.	2010).	It	is	necessary
to	have	commitment	of	all	members	in	order	to	effectively	persuade	others	in	the	network.	Therefore,	we	argue	that	a	coalition	must	have	added	value
for	all	coalition	members	as	compared	to	no	cooperation	(superadditivity).	To	aid	the	decision	on	whom	to	form	a	coalition	with,	we	zoom	in	on	the
connections	that	people	make	during	open	networked	innovation.	Forming	the	right	coalitions	leads	to	more	innovative	power	for	organisations.

1.4 A	number	of	problems	arise	when	in	search	of	coalitions.	Firstly,	people	are	not	aware	of	the	value	of	peers	in	their	network	neighbourhood	(Beham	et
al.	2010).	Secondly,	the	number	of	weak	ties	increases	as	a	social	network	grows,	thereby	leading	to	information	overload	(De	Choudhury	et	al.	2008).
Finally,	people	lack	the	cognitive	abilities	(bounded	rationality	(Selten	1998;	Simon	1982,	1991))	to	adequately	make	a	choice	whom	to	connect	with	in
order	to	receive	support	in	adopting	their	innovation.

1.5 In	the	work	presented	here,	we	adopt	an	agent-based	simulation	methodology	to	study	coalition	formation	under	rational	play	in	networked	innovation.
We	explicitly	limit	ourselves	to	rational	play,	because	the	agents'	cooperation	mechanism	is	based	on	game	theory.	More	specifically,	prospective
connections	between	agents	are	viewed	as	coalitions,	and	the	Shapley	value	(Hart	1987;	Shapley	1953)	is	used	to	compute	the	added	value	of
cooperation	(forming	a	coalition)	over	non-cooperation.	Agents	exhibit	rational	behaviour	by	forming	valuable	coalitions.	The	agent-based	simulation	of
networked	innovation	presented	in	this	paper	allows	us	to	analyse	the	dynamics	of	coalition	formation	in	networked	innovation.	The	analysis	will	lead
to	a	model	that	helps	us	predict	the	behaviour	of	innovators	and	its	outcomes	in	a	network	of	innovators.	Subsequently,	this	will	result	in	a
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recommendation	of	coalitions	in	real-life	by	means	of	innovation-intervening	computer	software,	similar	to	work	by	Sie	et	al.	(2012).

1.6 Gilbert,	Pyka	and	Ahrweiler	(2001)	previously	developed	a	simulation	of	innovation	networks.	Their	simulation	was	characterized	by:	1)	actors,	2)
kenes,	and	3)	research	strategies.	The	actors	in	the	simulation	represented	firms.	These	firms	possessed	knowledge	and	skills,	represented	by	so-
called	kenes.	Research	strategies	dominated	the	behaviour	of	the	agents	and	the	interaction	between	agents.	That	is,	an	agent	could	do	research	and
generate	knowledge	on	its	own,	but	it	could	also	form	alliances	with	other	agents	in	order	to	'lurk'	(copy	knowledge	and	skills)	from	those	agents.
Moreover,	agents	cooperated	to	generate	new	knowledge.

1.7 We	argue	that	the	dynamics	of	coalitions	in	networked	innovation	is	very	much	dependent	on	the	network	characteristics	and	the	characteristics	of	the
network's	members.	By	network	characteristics	we	mean	the	network	size	and	network	density	(Harary	et	al.	1965).	By	the	characteristics	of	the
network's	members,	we	mean	their	age,	gender,	personality,	betweenness	centrality	and	power.	By	power,	we	mean	the	power	to	influence	others	of
the	value	of	an	idea,	but	this	is	also	dependent	on	the	innovative	capabilities	of	the	individual.	Besides,	power	is	updated	at	each	simulation	iteration,
which	resembles	a	form	of	reputation.	Consequently,	the	purpose	of	the	present	study	is	to	determine	whether	these	have	an	influence	on	the	power
and	successfulness	of	coalitions.	A	detailed	description	of	the	method	of	simulation	and	our	model	will	be	presented	in	the	next	section.	Thereafter,	we
provide	the	results	of	our	simulation.	Next,	we	analyse	the	results	using	stepwise	multiple	linear	regression,	and	we	will	discuss	these	results	in	the
subsequent	section.	We	conclude	with	some	final	thoughts	and	suggestions	for	future	work.

	Methods

Simulation	scenario,	iterations	and	phases

2.1 We	run	our	simulation	using	the	Netlogo	simulation	environment.	It	provides	a	means	to	do	agent-based	social	simulation.	Agent-based	social
simulation	is	an	application	of	two	areas,	namely	agent-based	computing	and	computer	simulation	to	a	third	area,	social	science	(Davidsson	2002).
Agent-based	computing	is	mainly	aimed	at	the	interaction	between	distinct	computer	software	programs	called	agents.	Computer	simulation	is	a
method	by	which	computers	can	simulate	real	world	behaviour.	Unlike	agent-based	computing,	computer	simulation	does	not	necessarily	employ
agents.	It	uses	for	instance	statistical	models	and	Bayesian	models	to	simulate	and	study	the	behaviour	of	liquids	(Allen	&	Tildesley	1999).	Agent-based
social	simulation	allows	one	to	study	the	dynamics	of	social	interaction	such	as	networked	innovation,	without	the	need	to	implement	an	intervention
system	in	practice	to	pilot	its	workings.	This	is	especially	useful	if	researchers	have	a	one-shot	chance	of	intervening,	when	intervention	is	very	costly,
or	when	experimental	participants	are	scarce.

2.2 Besides	the	fact	that	there	is	no	need	to	intervene	in	a	real-world	setting	to	test	the	functioning	of	the	model,	there	are	a	number	of	other	advantages	to
the	modelling	approach	we	employ.	Meisel	and	Collins	(1973)	highlight	four	advantages	of	simplified	simulation	models.	First,	a	simplified	model	may
be	less	expensive	in	terms	of	modelling	time	and	computational	power	needed	to	run	the	model.	Second,	a	simplified	model	may	require	fewer	input
requirements.	Third,	a	simplified	model	may	be	easier	to	transfer	or	combine	with	other	models,	since	it	employs	few	and	compound	variables,	which
translate	more	easily	to	variables	in	other	models.	Finally,	a	simplified	model	may	be	easier	to	interpret,	since	it	reduces	the	complexity	of	the	model	in
terms	of	number	of	variables,	and	the	number	of	possible	interdependences	between	variables.

2.3 Also,	the	model	that	we	built	is	a	representation	of	reality,	and	is	based	on	extensive	literature	research	on	the	factors	that	may	influence	the	situation	at
hand.	This	allows	for	simulating	the	behaviour	in	networked	innovation.	Yet,	it	is	impossible	to	take	into	account	each	and	every	factor,	and	accounting
for	each	and	every	interdependence	between	factors	makes	it	even	harder	to	resemble	reality	closely	enough.	Often,	such	models	tend	to
undersimplify,	and	yield	behaviour	that	is	far	from	a	correct	representation	of	reality.	On	the	other	hand,	we	have	Ockham's	razor,	which	suggest	that
we	leave	out	variables	that	either	contribute	little	to	nothing	to	the	simulation	result	or	make	the	model	unnecessarily	complex.	Though,	there	is	always
the	possibility	of	leaving	out	too	many	variables	(the	model	tends	to	oversimplify)	his	simulation	model.	Hence,	a	simulation	model	should	have	a
complexity	that	suits	the	modelling	objectives	and	the	available	data.	In	this	case,	empirical	data	is	not	within	the	authors'	reach,	which	makes	it	difficult
to	estimate	the	model	fitness	using	the	same,	data-driven	supervision	employed	by	Gilbert	and	Gutierrez	(1973)	in	their	plant-aphid-parasite	model.

2.4 The	agent-based	social	simulation	that	we	developed	comprises	a	simulation	scenario.	A	simulation	scenario	is	a	workflow,	or	a	number	of	actions	that
has	to	be	performed	during	the	simulations.	Actions	can	be	performed	multiple	times,	and	they	often	take	place	in	pre-defined	sequences.	When
multiple	sequences	are	run	in	a	simulation,	we	call	them	iterations.	An	iteration	often	influences	the	subsequent	iteration	by	means	of	reinforcement,
as	is	the	case	with	our	simulation.	An	iteration	consists	of	multiple	phases,	to	distinguish	different	types	of	activities	performed	during	the	iteration.
During	an	iteration,	we	start	off	with	an	initialisation	phase	to	set	up	the	agent's	and	environment's	parameters;	this	is	followed	by	a	number	of	phases
in	which	the	agents	interact.	Akin	to	a	simulation	of	agent	coalition	formation	by	Klusch	and	Gerber	(2002),	we	distinguish	four	phases	(as	depicted	in
Figure	1):

1.	 Initialisation:	The	agent	and	environment	parameters	are	set	up
2.	 Simulation:	The	candidate	coalitions	are	determined
3.	 Negotiation:	Coalitions	are	formed
4.	 Evaluation:	The	winning	coalition	and	reinforcement	is	determined

Initialisation

2.5 The	simulation	commences	with	setting	up	the	network	of	agents	given	a	predefined	network	density	(Setup	Network).	Network	nodes	represent
individuals	and	the	edges	form	their	relationships.	Two	individuals	are	said	to	be	related	when	the	agents	are	known	to	each	other.	Agents	receive
initial	values	for	the	parameters	age,	Belbin	personality	and	gender	(Setup	Agents).	Based	on	their	position	in	the	network,	the	agents'	betweenness
centrality	(Brandes	1994)	is	estimated	(Calculate	Betweenness	Centrality).	Betweenness	centrality	tells	us	how	dependent	others	are	on	an	individual
in	a	network.	For	instance,	when	we	have	two	companies	A	and	B,	and	only	one	person	in	company	A	connects	to	company	B,	then	the	employees	in
companies	A	and	B	are	very	much	dependent	on	that	single	person	in	terms	of	information	exchange.	As	a	result,	that	person	will	have	high
betweenness	centrality.	Intuitively,	having	such	a	good	network	position	leads	to	increased	power.	Also,	high	betweenness	centrality	will	increase	the
creativity	of	an	agent	(Calculate	Creativity).

Simulation

2.6 During	the	simulation	phase,	the	initial	parameters	and	the	calculations	of	betweenness	centrality	and	creativity	will	be	used	to	let	the	agents	generate
new	'ideas'	(Generate	Ideas).	The	ideas	are	abstract	and	do	not	own	any	content.	They	receive	a	value	based	on	the	creativity	calculation	performed	in
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the	initialisation	phase	(Assign	value	to	ideas).	Based	on	the	idea	value	and	the	betweenness	centrality,	an	agent's	power	is	determined	(Compute
agents'	power).	An	agent	that	has	high	power	is	more	likely	to	convince	others	of	the	value	of	an	idea.	Besides,	if	it	has	high	betweenness	centrality,	it
may	have	more	decision	power,	as	other	agents	are	dependent	on	this	agent.	Power	and	social	similarity	(age,	gender,	personality)	(Ibarra	1992;
McPherson	et	al.	2001)	contribute	to	the	likelihood	that	an	agent	will	be	selected	for	cooperation,	the	so-called	agent	score	(Find	candidate	coalitions).
For	instance,	if	agent	A	has	high	power	and	is	very	similar	to	agent	B,	then	agent	B	will	most	likely	choose	agent	A	to	cooperate	with	(and	form	a
coalition).

Negotiation

2.7 We	use	the	Shapley	value,	a	measure	well	known	in	game	theory,	to	calculate	the	value	of	prospective	coalitions.	The	Shapley	value	calculates	the
added	value	of	forming	a	coalition	with	another	agent	over	going	at	it	alone	(Calculate	Dyads'	Strength).	Subsequently,	dyads	are	formed	based	on	the
calculated	dyad	strength:	the	dyad	which	has	the	highest	prospective	value	is	formed	(Form	Dyads).	It	must	be	noted	that	a	coalition	must	be	at	least
as	strong	as	the	accumulated	strength	of	its	members	(superadditivity).	In	fact,	a	coalition	must	be	stronger	than	the	accumulated	strength	of	its
members	(monotonicity).	In	this	case,	agents	are	compelled	to	cooperate	by	setting	the	individual	gain	to	zero.	The	latter	reflects	that	in	real	life	one
inherently	needs	support	to	have	one's	idea	accepted	by	the	community.	To	do	so,	we	form	coalitions	(Kotter	1996).	As	opposed	to	humans,	agents
always	play	rationally,	and	thus	choose	to	form	a	coalition	with	the	highest-scoring	prospective	coalition.	That	is,	a	coalition	may	consist	of	zero	to
multiple	dyads	(Accumulate	Dyads	/	Form	Coalitions).	Next,	the	coalitions'	strengths	are	calculated	(Compute	Coalitions'	Strength).

Evaluation

2.8 Finally,	a	winning	coalition	is	determined,	that	is,	the	coalition	that	has	the	highest	accumulated	power	(Declare	Winning	Coalition).	Payoff	in	the	form
of	additional	power	(in	the	next	iteration)	is	given	to	the	agents	of	the	winning	coalition	(Payoff	Winning	Coalition).	Payoff	is	divided	among	members	of
the	coalition,	relative	to	their	power	(Divide	Payoff	among	Members).	No	payoff	is	given	to	non-winning	agents,	for	in	the	next	iteration,	power	for	all
agents	is	normalized	between	0	and	100,	which	implies	a	relative	change	for	all	agents	irrespective	of	their	payoff	in	the	previous	iteration.	The	power
update	gives	us	insight	into	the	overall	emergent	behaviour	in	networked	innovation.	More	specifically,	we	see	how	agent	power	changes,	and	how
this	influences	the	formation	of	coalitions	and	the	structure	of	coalitions.

2.9 In	sum,	the	simulation	expresses	dynamic	behaviour	in	two	ways.	First,	the	agents	generate	ideas	based	on	their	creativity,	plus	a	random	value.	In
turn,	this	affects	the	power	of	an	agent.	Second,	agents	that	belong	to	a	winning	coalition	receive	a	positive	update	of	their	power.	One	may	call	the
result	reputation.

Figure	1.	The	activity	flow	of	one	iteration.

Agent	interaction	model

2.10 The	above	overview	of	iterations	and	phases	does	not	by	itself	make	a	simulation	run.	In	agent-based	simulation,	agents	have	an	internal	reasoning
model.	This	model	may	be	regarded	as	the	internal	reasoning	structure	of	an	agent	and	allows	an	agent	to	perceive	other	agents	and	its	environment.
Figure	2	shows	the	internal	reasoning	structure	of	our	agents.	Note	that	every	agent	is	the	same	by	nature,	but	initial	parameters	such	as	gender,	age
and	personality	may	vary	per	agent.

http://jasss.soc.surrey.ac.uk/17/1/3.html 3 16/10/2015



Figure	2.	The	agent	internal	reasoning	model;	for	a	detailed	description,	see	text

Social	network	setup

2.11 Two	main	factors	were	used	to	determine	the	setup	the	social	network:	1)	number	of	turtles	and	2)	network	density.	Let	Gn,N	denote	a	network	having
n	edges	and	N	vertices.	The	vertices	V1	to	VN	are	represented	by	the	number	of	turtles	(agents).	The	edges	E1	to	En	are	represented	by	relationships
between	the	turtles.	Network	density	describes	the	probability	pe	that	a	relationship	E	is	formed	between	two	turtles	(pe	=	N	*	network	density).	In	other
words,	it	is	the	number	of	relationships	that	is	formed,	as	a	proportion	of	the	total	number	of	edges	that	can	be	formed	((N*N/2)).	It	similar	to	Erdös	and
Rényi's	formation	of	a	random	graph	(Erdös	&	Rényi	1960),	yet	the	probability	p	that	an	edge	E	is	formed	between	two	vertices	Vx	and	Vy,	is	equal	to
the	network	density.

Agent	reasoning	model

Weights

2.12 There	are	two	factors	that	mainly	influence	the	decision	to	form	a	coalition:	1)	power	and	2)	homophily.	Power	and	the	similarity	between	two
individuals	(homophily)	directly	influence	the	agent's	score.	The	agent's	score	represents	the	likelihood	that	agent	A	is	interested	in	forming	a	coalition
with	agent	B.	There	are	seven	other	factors	that	indirectly	contribute	to	an	agent's	score	through	the	two	central	factors.	The	factors	(including	the
agent	score)	are	connected	through	weights	(Figure	2),	to	indicate	the	effect	of	one	factor	on	another.	The	value	of	the	weights	is	not	decided	upon
arbitrarily;	literature	was	used	to	determine	their	value.	The	value	per	weight	may	vary,	as	is	shown	in	Table	1.	Note	that	it	is	not	a	goal	to	perfectly	and
precisely	display	reality	in	this	model.	To	do	so,	we	would	have	to	include	all	possible	factors	and	the	exact	weights	between	them	to	exhibit	the
appropriate	behaviour.	We	merely	seek	to	simulate	behaviour	that	sufficiently	closely	resembles	reality.	In	fact,	it	is	common	knowledge	among	agent-
based	modelling	researchers	that	a	more	complex	model	often	results	in	a	less	representative	simulation	of	a	situation.	In	our	practice,	this	means	we
included	relatively	few	factors	in	our	simulation	model	to	maximise	outcome.

Table	1:	Weights,	their	values,	and	origin	in	literature

Weight Value Literature
w1 0.45 (Brass	1984;	Ibarra	1992,	1993;	Krackhardt	1990;	Perry-Smith	2006;	Simon	1982)
w2 0.45 (Klein	&	Sorra	1996)
w3 0.67 (Kraatz	1998;	Kratzer	&	Lettl	2008;	Tsai	&	Ghoshal	1998)
w4 0.1 (Burkhardt	&	Brass	1990)
w5 1 (Ibarra	1993;	McPherson	et	al.	2001)
w6 1 (Ibarra	1992;	Kotter	1996)
w7 1 (Ibarra	1993;	McPherson	et	al.	2001)
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w8 0.25 (Ibarra	1993;	McPherson	et	al.	2001)
w9 0.25 (Ibarra	1993;	McPherson	et	al.	2001)

2.13 The	concept	of	betweenness	centrality	originates	from	Social	Network	Analysis	(Wasserman	&	Faust	1994)	and	is	used	to	express	someone's	position
in	a	network.	It	measures	how	dependent	others	are	on	a	target	node	(individual)	in	a	network.	It	is	computed	by	the	number	of	shortest	paths	between
individuals	that	pass	through	a	node,	as	a	proportion	of	all	shortest	paths	possible.	In	our	case,	betweenness	centrality	measures	how	dependent
people	are	on	one	another	if	they	want	to	connect.	People	cannot	form	a	coalition	if	there	is	no	path	that	connects	them.	If	an	agent	possesses	high
betweenness	centrality,	agents	very	likely	have	to	pass	it	to	reach	any	one	agent	in	the	network.	Betweenness	centrality	has	an	impact	on	a	number	of
factors.	First,	people	that	are	on	the	edge	of	two	networks,	and	thus	have	higher	betweenness	centrality,	are	more	likely	to	be	creative	or	innovative
than	others	(Kratzer	&	Lettl	2008;	Tsai	&	Ghoshal	1998).	To	take	this	one	step	further,	interorganisational	ties	may	advance	social	learning,	thereby
contributing	to	organisational	growth	(Kraatz	1998).	Secondly,	central	individuals	are	found	to	be	more	powerful	(Brass	1984;Ibarra	1992,	1993;
Krackhardt	1990;	Perry-Smith	2006;	Simon	1982).

2.14 Age	and	perceived	value	of	an	idea	are	also	associated	with	power.	Age	is	found	to	correlate	positively	with	power	(Burkhardt	&	Brass	1990).	Klein
and	Sorra	(1996)	suggest	that	'innovation-values	fit',	the	extent	to	which	an	innovation	(idea)	fits	the	perceiver's	values,	influences	support	for	an
innovation.	In	our	model	this	is	represented	by	the	perceived	value	of	an	idea.

2.15 Homophily,	the	similarity	between	people,	has	a	positive	influence	on	support	and	friendship	relationships	(Ibarra	1992).	Various	types	of	homophily
may	exist,	such	as	age	and	gender	(McPherson	et	al.	2001).	For	our	model,	we	use	age,	gender	and	personality	to	express	similarity.	Besides,	a
change	in	thought	must	be	led	by	a	group	that	has	decision	power	and	persuasive	power.	Kotter	(1996)	denotes	such	a	group	by	a	guiding	coalition.

Variables

2.16 Age	is	represented	as	a	random	value	between	15	and	65,	the	so-called	'working	age'	of	people.	Gender	is	represented	as	a	random	value	of	0
(female)	or	1	(male).	Personality	is	difficult	to	represent.	Multi-attribute	personality	scores	such	as	the	Big	Five	personality	traits	have	been	considered,
but	for	the	time	being,	we	choose	to	use	the	Belbin	Team	Roles	(Belbin	&	Belbin	1996).	The	nine	Belbin	profiles	express	the	role	of	a	person	within	a
team.	Use	of	these	predefined	team	roles	eases	the	computation	of	similarity.	Agents	have	a	power	attribute,	which	corresponds	to	their	power	in	the
model.	Agents'	ultimate	score	is	influenced	by	both	their	power	and	their	similarity	to	other	agents.

Table	2:	An	overview	of	the	variables,	their	initial	value,	value	range,	and	how	they	increment.

Variable Variable	abbreviation Range Increment Initial	value
Betweenness	centrality Cbi 1	–	∞ n/a n/a

Creativity Cri 0	–	100 progressive n/a

Power Pi 0	–	100 progressive

Gender Geni 0	=	female,	1	=	male n/a random

Age Agei 15	–	65 1 15	+	Random(50)

Belbin	personality Beli 1	–	9 1 Random(9)

Perceived	idea	value vij 0	–	100 progressive n/a

Similarity Simik -50	–	50 1 n/a

Belbin	similarity SimBelik 0	–	100 100	(Boolean) n/a

Age	similarity SimAgeik 0	–	100 1 n/a

Gender	similarity SimGenik 0	–	100 100	(Boolean) n/a

Formulae

Some	of	the	variables	in	Table	2	do	not	have	an	initial	value.	They	are	calculated	during	the	simulation.	Their	respective	formulas	are	shown	in	Table
3.

Table	3:	Formulae	used	for	determining	intermediate	value	and	weights.

# Name Abbreviation Formula Variables
1 Creativity Cri Cri	=	w3	*	Cbi w3,	Cbi
2 Idea	value vij vij	=	random(100)	+	Cri Cri
3 Power
(update)

Pi(t+1) Pi(t+1)	=	w1	*	Cbi	+w2	*	vij	+w4	*	agei	+	Pi(t) w1,	Cbi	,	w2,	vij,	w4,	agei,	Pi(t)

4 Similarity Simik Simik	=	w8	*	SimBelik	+	w9	*	SimGenik	-	w5	*
SimAgeik

w8,	SimBelik,	w9,	SimGenik,	w5,
SimAgeik

5 Agent	score Scorej Scorej	=	w7	*	Simik	+	w6	*	Pi w7,	Simik,	w6,	Pi
6 Dyad	score Dyadij Dyadij	=	Scorei	+	Scorej	–	individual_gaini	-

individual_gainj

Scorei,	Scorej,	individual_gaini,
individual_gainj

After	the	dyads	are	formed,	coalitions	are	collected	by	accumulating	all	dyads	that	are	interconnected.	That	is,	if	dyads	{i,j}	and	{j,k}	are	formed,	the
resulting	coalition	is	{i,j,k}.	The	strength	of	this	coalition	{i,j,k}	is	calculated	by	taking	the	sum	of	strengths	of	its	members	i,	j,	and	k.
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Procedure	and	data	collection

2.17 During	execution	of	the	simulation	model	we	set	two	parameters	using	parameter	sweeping	to	see	how	they	influence	coalition	formation	among
agents:	1)	network	density	(number	of	relationships	divided	by	the	number	of	total	possible	relationships)	and	2)	number	of	turtles	(number	of	network
participants).	In	parameter	sweeping,	we	vary	the	values	for	these	independent	variables	in	a	structured	way	within	a	predefined	range.	Parameter
sweeping	allows	one	to	report	and	analyse	the	dynamics	of	simulations	within	a	wide	parameter	space.	It	requires	little	human	effort,	as	one	does	not
have	to	enter	all	parameter	combinations	manually	(Brueckner	&	Van	Dyke	Parunak	2003).	The	range	of	the	network	density	parameter	varies	from	.01
to	0.05	with	an	increment	of	.01	(5	values).	The	range	of	the	number	of	turtles	parameter	varies	from	2	to	30,	with	an	increment	of	1	(29	values).	This
results	in	145	possible	combinations	of	parameters.	Each	combination	of	the	parameters	(simulation	run)	is	executed	10	times	to	yield	stable	results.
This	implies	that	in	total	we	run	1450	simulations.	We	observe	the	following	parameters	for	their	fluctuations	and	to	find	relationships	with	the	average
power	per	winning	coalition:

network	density:	The	extent	to	which	relationships	are	formed	as	a	function	of	all	possible	relationships
number	of	turtles:	The	total	number	of	participants	in	the	network
average-betweenness-per-winning-coalition:	We	measure	the	average	betweenness	centrality	of	the	members	of	a	winning	coalition	to	see	if
there	is	a	relationship	between	the	independent	variables	and	this	dependent	variable
average-idea-value-per-winning-coalition:	We	measure	the	average	idea	value	of	the	members	of	a	winning	coalition	to	see	if	there	is	a
relationship	between	the	independent	variables	and	this	dependent	variable
max-power-per-winning-coalition:	We	measure	the	highest	power	of	a	member	of	a	winning	coalition	to	see	if	there	is	a	relationship	between
the	independent	variables	and	this	dependent	variable
max-idea-value-per-winning-coalition:	We	measure	the	highest	idea	value	of	a	member	of	a	winning	coalition	to	see	if	there	is	a	relationship
between	the	independent	variables	and	this	dependent	variable

Data	Analysis

2.18 We	will	analyse	the	simulation	results	in	two	steps.	First,	we	use	multiple	regression	analysis	to	create	a	model	that	uses	the	independent	variables	to
predict	the	dependent	variable	average	power	per	winning	coalition.	Second,	we	investigate	the	validity	of	the	model	by	analysing	the	correlation
between	its	residuals	(Durbin-Watson	statistic),	as	regression	assumes	absence	of	such	correlation.	A	Durbin-Watson	statistic	near	2	implies	that	there
is	no	correlation	between	adjacent	residuals.	When	using	regression,	it	is	key	that	the	residuals	be	independent.

	Results

3.1 A	total	of	nine	variables	were	exported	from	the	simulation	to	determine	if	and	to	what	extent	they	predicted	the	average	power	per	winning	coalition.
The	correlation	coefficients	for	the	variables	using	Pearson	Bi-variate	correlation	are	provided	in	Table	4.	High	correlation	exists	between	the	pairs
{total	number	of	coalitions,	number	of	turtles},	{max	betweenness	per	winning	coalition,	average	betweenness	per	winning	coalition},	{max	idea	value
per	winning	coalition,	average	idea	value	per	winning	coalition}.	Moderate	correlation	exists	between	the	pairs	{max	betweenness	per	winning	coalition,
average	power	per	winning	coalition},

Table	4:	Correlation	coefficients	for	each	of	the	variables.

average	power
per	winning
coalition

network
density

number
of
turtles

average
betweenness	per
winning	coalition

average	idea
value	per
winning	coalition

max	power
per	winning
coalition

max	idea	value
per	winning
coalition

average	power
per	winning
coalition

1.00

network	density -.28 1.00
number	of	turtles -.59 .00 1.00
average
betweenness	per
winning	coalition

-.57 .33 .41 1.00

average	idea
value	per	winning
coalition

.05 .07 .14 .29 1.00

max	power	per
winning	coalition

.26 .12 -.08 .11 .30 1.00

max	idea	value
per	winning
coalition

-.38 .22 .41 .56 .76 .29 1.00

3.2 The	outcome	of	multiple	regression	analysis	using	the	stepwise	method	is	presented	in	Table	5.	Table	5	shows	the	predictive	values	for	the	variables
of	the	best	scoring	model	in	which	six	variables	were	included.

Table	5:	Multiple	regression	analysis	of	the	simulation	for	average	power	per	winning	coalition.	Six	variables	were
included	in	the	model,	sorted	in	the	order	they	were	entered.

b SE	b β
Constant 42.42 2.95
Number	of	turtles -.44 .03 -.31*
Average	betweenness	per	winning	coalition -.33 .02 -.27*
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Max	power	per	winning	coalition .56 .03 -.29*
Network	density -115.39 13.43 -.14*
Average	idea	value	per	winning	coalition .31 .02 .50*
Max	idea	value	per	winning	coalition -.24 .01 -.54*

Note.	R2=	.68.	*	p	<	.001

3.3 Using	the	stepwise	method,	a	significant	model	emerged	(F6,1443	=	514,675,	p	<	0.001).	As	shown	in	Table	5,	two	variables	have	slightly	larger

predictive	capability	on	the	average	power	per	winning	coalition:	number	of	turtles	and	max	betweenness	per	winning	coalition.	The	R2	shows	that	the
variables	account	for	68%	of	the	predictability	of	average	power	per	winning	coalition.	The	variable	network	density	yielded	no	significant	results.	To
make	sure	no	auto-correlation	exists	we	used	the	Durbin-Watson	statistic.	A	Durbin-Watson	value	of	1.80	(near	2)	implies	that	there	is	no	auto-
correlation.

	Discussion

4.1 The	correlation	scores	in	Table	4	inform	us	about	the	co-occurrence	of	variables.	We	see	that,	as	the	network	size	(number	of	turtles)	increases,	so
does	the	total	number	of	coalitions.	This	is	to	be	expected,	as	a	larger	network	implies	more	candidate	connections	between	people.	However,	a
decreasing	network	density	may	have	a	counter	effect	on	the	number	of	coalitions	that	is	formed.	Most	important	for	the	multiple	regression	analysis	is
that	there	is	no	relationship	between	the	independent	variables	(predictors)	number	of	turtles	and	network	density.	Otherwise,	the	multiple	regression
model	could	not	be	written	in	the	form	of	Y	=	c+b1X1+b2X2.

4.2 The	R2	of	.68	indicates	that	the	variables	in	Table	5	account	for	68%	of	the	predictive	value	of	the	average	power	per	winning	coalition.	Our	results	are
in	contrast	with	literature	that	shows	that	betweenness	centrality	influences	power	within	networks	(Brass	1984).	Table	5	shows	that	the	average
betweenness	centrality	of	a	winning	coalition	has	negative	predictive	power	on	the	average	power	of	a	winning	coalition.	The	study	by	Brass,	though,
was	not	designed	to	take	into	account	innovation	within	networks,	a	special	case	of	social	networks.	Subsequently,	we	see	a	positive	association	of	the
average	idea	value	per	winning	coalition	and	the	power	of	a	coalition,	in	line	with	our	reasoning.

4.3 Another	value	that	stands	out	is	the	network	density.	The	reason	for	this	is	that	we	used	relatively	small	variations	of	the	network	density,	thus
compensating	for	the	supposedly	high	association	observed	in	Table	5.

4.4 A	notable	observation	we	find	in	a	combination	of	Tables	4	and	5.	Average	betweenness	per	winning	coalition	correlates	moderately	high	with	the
average	power	per	winning	coalition	(-.57).	Besides,	it	has	a	negative	predictive	power	on	the	average	power	per	winning	coalition.	A	high
betweenness	often	means	that	one	has	a	lot	of	contacts	in	one's	social	network	that	others	do	not	have.	Having	lots	of	contacts	implies	one	cannot
maintain	close	relationship	with	all	contacts,	leading	to	an	increased	number	of	weak	ties.	Literature	is	suggestive	of	the	strength	of	weak	ties
(Granovetter	1973;	Hauser	et	al.	2007)	in	social	networks	(Granovetter	1973).	Especially,	networked	learning	(Jones	et	al.	2008)	and	networked
innovation	(Burt	2004;	Hauser	et	al.	2007)	value	weak	ties	as	predictors	of	successful	cooperation	in	networks.	Our	results	imply	practically	the	same;
Table	5	shows	that	average	betweenness	per	winning	coalition	has	negative	predictive	power	for	the	average	power	per	winning	coalition.	In	other
words,	having	high	betweenness	centrality	makes	it	easier	to	build	a	successful	coalition	as	one	needs	a	lower	average	power	to	succeed.

4.5 Another	interesting	observation	lies	in	the	negative	association	with	the	number	of	turtles	on	the	average	power	per	winning	coalition	(Table	5).	This
implies	that	as	the	network	size	increases,	it	becomes	easier	to	build	a	successful	coalition.	Although	other	factors	may	influence	the	process	as	well,
we	may	conclude	that	it	may	be	easier	to	form	a	successful	coalition	in	a	larger	network.

4.6 There	are	two	implementations	of	the	Shapley	value.	First,	we	have	the	situation	in	which	all	agents	form	a	coalition	at	once,	the	one	that	we	used	in
this	simulation.	Second,	the	agents	may	join	a	coalition	one	after	another.	In	case	of	a	high-betweenness	agent	attracting	a	lot	of	partners,	we	could
consider	using	the	second	method	of	coalition	formation	to	further	optimise	the	simulation.	Besides	improving	the	way	the	Shapley	value	is	calculated
and	used	for	the	formation	of	coalitions,	we	may	decide	to	implement	the	nucleolus.	The	Shapley	value	does	not	consider	the	expected	contribution	of
an	agent	to	a	coalition,	whereas	the	nucleolus	(Schmeidler	1969)	does.	During	payoff	distribution,	the	nucleolus	tries	to	minimise	the	maximum
dissatisfaction	of	participants	in	a	coalition.

	Conclusion

5.1 The	present	study	investigated	whether	network	characteristics	and	network	member's	characteristics	influence	the	average	power	per	winning
coalition.	To	aid	people	in	their	search	for	optimal	coalitions,	we	studied	the	dynamics	of	coalitions	in	networked	innovation.	We	ran	a	simulation	of
networked	innovation	under	rational	behaviour	(to	yield	optimal	decisions),	and	monitored	the	variable	variations.	Multiple	regression	analysis	led	to	a
model	that	predicts	the	average	power	per	winning	coalition	as	a	function	of	network	size	and	network	density.

5.2 The	current	study	allows	us	to	make	two	interesting	observations.	First,	average	betweenness	negatively	influences	the	average	power	per	winning
coalition.	This	means	that	having	high	betweenness	centrality	makes	it	easier	to	build	a	successful	coalition,	as	one	needs	lower	average	power	to
succeed	as	a	coalition.	Second,	the	number	of	network	participants	negatively	influences	the	average	power	per	winning	coalition.	This	implies	that	in
a	larger	network,	it	may	be	easier	to	form	a	successful	coalition.

5.3 The	regression	model	presented	in	this	paper	offers	interesting	uses.	Our	simulation	presumes	rational	play	by	network	participants.	In	other	words,
optimal	decisions	are	made	concerning	the	formation	of	coalitions.	Assuming	rational	play,	we	compute	how	coalitions	should	ideally	be	formed	within
networked	innovation.	An	important	implication	of	this	model	is	that	we	can	assist	in	real	life	networked	innovation	by	recommendation	of	optimal
coalitions	(with	a	necessary	average	power	or	betweenness	centrality),	given	that	we	know	what	the	network	density	and	network	size	are.

	Future	Work

6.1 The	model	presented	in	this	work	was	based	on	extensive	literature	review.	The	research	articles	that	we	studied	employ	empirical	methods	to
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determine	if	and	what	relationships	between	variables	exist.	We	combined	the	outcomes	of	several	influential	studies	to	develop	a	simulation	model.
We	programmed	agents	on	an	individual	level	to	study	the	emergent	dynamics	of	networked	innovation	(macro	level),	an	approach	that	is	characteristic
for	agent-based	social	simulation.	The	next	step	in	the	process	of	deriving	a	model	that	correctly	describes	reality	is	the	validation	of	the	model.	We
plan	to	validate	our	model	by	testing	its	behaviour	against	empirical	data.	Subsequently,	we	will	use	the	model	to	generate	optimal	coalitions	for
innovation	in	networks	in	an	empirical	setting.
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