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ABSTRACT 

In this paper verification and validation of simulation models are discussed. Different approaches to 
deciding model validity are described and a graphical paradigm that relates verification and validation to 
the model development process is presented and explained. Conceptual model validity, model 
verification, operational validity, and data validity are discussed and a recommended procedure for model 
validation is presented. 

1 INTRODUCTION 

This paper discusses verification and validation of simulation models. Verification and validation are 
concerned with determining whether a model and its results are “correct” for a specific use or purpose. 
Model verification is formally defined as “ensuring that the computer program of the computerized model 
and its implementation are correct” and model validation is defined as the “substantiation that a 
computerized model within its domain of applicability possesses a satisfactory range of accuracy 
consistent with the intended application of the model.” Our discussion of verification and validation will 
focus primarily on simulation models that are used to predict system behaviors such as systems outputs. 
Two related topics are model credibility and model usability. Model credibility is concerned with 
developing in (potential) users the confidence they require in order to use a model and the information 
derived from that model. Model usability is determining that the model and its user instructions are easy 
to use. 

A model should be developed for a specific purpose and its validity determined with respect to that 
purpose. A developed model should usually be a parsimonious model, meaning the model is as simple as 
possible yet meets its purpose. Also the accuracy of a model (sometimes referred to as model fidelity) 
should be only what is needed to satisfy the model’s use or purpose. If the purpose of a model is to 
answer a variety of questions, the validity of the model needs to be determined with respect to each 
question. The developers and users of models, the decision makers using information obtained from the 
results of models, and the individuals affected by decisions based on models are all rightly concerned 
with whether a model and the model’s results are “correct” for each question being addressed.  
 Numerous sets of experimental conditions are usually required to define the domain of a model’s 
intended applicability. (A set of experimental conditions contains a set of values for the set of variables 
that define the domain of applicability.) A model may be valid for one set of experimental conditions and 
invalid in another. A model is considered valid for a set of experimental conditions if the model’s 
accuracy is within its acceptable range of accuracy, which is the accuracy required of the model for its 
intended purpose. This usually requires that the model’s output variables of interest (i.e., the model 
variables used in answering the questions that the model is being developed to answer) be identified and 
then their acceptable range of accuracy specified. A model’s acceptable range of accuracy should be 
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Sargent 
 
specified prior to starting the development of the model or very early in the model development process. 
If the variables of interest are random variables, then properties and functions of the random variables 
such as means and variances are usually what is of primary interest and are what is used in determining 
model validity. Several versions of a model are usually developed prior to obtaining a satisfactory valid 
model. The substantiation that a model is valid, i.e., performing model verification and validation, is 
generally considered to be a process and is usually part of the (total) model development process. 

It is often too costly and time consuming to determine that a model is absolutely valid over the 
complete domain of its intended applicability. Instead, tests and evaluations are conducted until sufficient 
confidence is obtained that a model can be considered valid for its intended application (Sargent 1982, 
1984a). If a test determines that a model does not have sufficient accuracy for any one of the sets of 
experimental conditions, then the model is invalid. However, determining that a model has sufficient 
accuracy for numerous experimental conditions does not guarantee that a model is valid everywhere in its 
applicable domain. The cost of model validation is usually quite significant, especially when extremely 
high model confidence is required.   

The remainder of the paper is organized as follows: Section 2 presents the basic approaches used in 
deciding model validity, Section 3 describes a graphical paradigm used in verification and validation, and 
the model development process that emphasizes verification and validation. Sections 4, 5, 6, and 7 discuss 
data validity, conceptual model validity, computerized model verification, and operational validity, 
respectively. Section 8 contains a recommended validation procedure and Section 9 has the summary. 

2 THE THREE DECISION-MAKING APPROACHES 

There are three basic decision-making approaches for deciding whether a simulation model is valid. Each 
of these three approaches uses a different decision-maker. All of the approaches require the model 
development team to conduct verification and validation as part of the model development process, which 
is discussed in Section 3. One decision-making approach, and a frequently used one, is for the model 
development team itself to make the decision as to whether a simulation model is valid. The decision is 
based on the results of the various tests and evaluations conducted as part of the model development 
process. It is usually better, however, to use one of the next two decision-making approaches, depending 
on which situation applies.  

A better decision-making approach is to have the user(s) of a simulation model decide the validity of 
the model. In this approach the users of the simulation model are heavily involved with the model 
development team when the team is conducting verification and validation of the model and the users 
determine if the model is satisfactory in each phase of verification and validation. This approach is 
generally used with a model development team whose size is not large. Also, this approach aids in model 
credibility.  

Another decision-making approach, usually called “independent verification and validation” (IV&V), 
uses a third party to decide whether the simulation model is valid. The third party (the IV&V team) is 
independent of both the simulation development team(s) and the model sponsor/user(s). The IV&V 
approach is generally used with the development of large-scale simulation models, whose development 
usually involves several teams. The IV&V team needs to have a thorough understanding of the intended 
purpose(s) of the simulation model in order to conduct IV&V. There are two common ways that the 
IV&V team conducts IV&V: (a) IV&V is conducted concurrently with the development of the simulation 
model and (b) IV&V is conducted after the simulation model has been developed.  
 In the concurrent way of conducting IV&V, the model development team(s) gives their model 
verification and validation test results to the IV&V team as the simulation model is being developed. The 
IV&V team evaluates these results and provides feedback to the model development team regarding 
whether the model verification and validation is satisfying the model requirements and when not, what the 
difficulties are. When conducting IV&V this way, the development of a simulation model should not 
progress to the next stage of development until the model has satisfied the verification and validation 
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requirements in its current stage. It is the author’s opinion that this is the better of the two ways to 
conduct IV&V. 

When IV&V is conducted after the simulation model has been completely developed, the evaluation 
performed by the IV&V team can range from simply evaluating the verification and validation conducted 
by the model development team to performing a separate thorough verification and validation effort 
themselves. Performing a complete IV&V effort after the model has been completely developed is usually 
both extremely costly and time consuming. This author’s view is that if IV&V is going to be conducted on 
a completed simulation model then it is usually best to only evaluate the verification and validation that 
has already been performed. 

When an IV&V team concludes that a model is valid, there is a much greater likelihood that others 
will accept the model as valid and results from the model as being “correct”. Cases where this decision-
making approach is helpful are (i) when the problem associated with the model has a high cost or involves 
a high risk situation and (ii) when public acceptance of results based on the model is desired. 

3 MODEL DEVELOPMENT PROCESS WITH VERIFICATION AND VALIDATION 

In this section a graphical paradigm is presented in subsection 3.1 that relates model verification and 
validation to the model development process. Then in subsection 3.2 the model development process is 
described that includes verification and validation. 

3.1 A Graphical Paradigm 

There are two common ways to view how verification and validation relate to the model development 
process. One way uses a simple view and the other uses a complex view. A simple graphical paradigm is 
presented in Figure 1 that was developed by this author called the Simplified View of the Model 
Development Process (Sargent 1981, 1982, 1983, 2001b, 2013). A more complex paradigm developed by 
this author that includes both the “Simulation World” and the “Real World” is contained in Sargent 
(2001b, 2013). 

 

 
 

Figure 1: Simplified version of the model development process. 
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Consider the simplified version of the model development process in Figure 1. The problem entity is 
the system (real or proposed), idea, situation, policy, or phenomena to be modeled; the conceptual model 
is the mathematical/logical/graphical representation (mimic) of the problem entity developed for a 
particular study; and the computerized model is the conceptual model implemented on a computer. The 
conceptual model is developed through an analysis and modeling phase, the computerized model is 
developed through a computer programming and implementation phase, and inferences about the 
problem entity are obtained by conducting computer experiments on the computerized model in the 
experimentation phase. 

We now relate model verification and validation to this simplified version of the model development 
process. (See Figure 1.) Conceptual model validation is defined as determining that the theories and 
assumptions underlying the conceptual model are correct and that the model representation of the problem 
entity is “reasonable” for the intended purpose of the model. Computerized model verification is defined 
as assuring that the computer programming and implementation of the conceptual model are correct. 
Operational validation is defined as determining that the model’s output behavior has a satisfactory range 
of accuracy for the model’s intended purpose over the domain of the model’s intended applicability. Data 
validity is defined as ensuring that the data necessary for model building, model evaluation and testing, 
and conducting the model experiments to solve the problem are adequate and correct. These items are 
discussed below. 

3.2 Model Development Process 

 A model should be developed for a specific purpose or use. Furthermore, a developed model should be a 
parsimonious model meaning that it is as simple as possible yet meets its purpose and also the accuracy of 
a model need not be more than what is required for its purpose.  A simulation model is a structural model 
meaning that the model contains logical and causal relationships that occur in the systems. Developing a 
valid simulation model is an iterative process where several versions of a model are developed prior to 
obtaining a valid model.  
 The model development process should include model verification and validation. Following the 
paradigm given in Figure 1, the iterative process shown in Figure 2 can be used to develop a valid 
simulation model (Sargent 1984a). We first develop a conceptual model through analyzing the problem 
entity and then developing a model of the problem entity, remembering that a parsimonious model is 
desired. Then conceptual model validation is performed. This process is repeated until the conceptual 
model is satisfactory. Next a computerized model is developed of the (validated) conceptual model by 
developing a simulation model of the conceptual model and implementing it on a computer. Then 
computerized model verification is performed. This process is repeated until the computerized model is 
satisfactory. Lastly, operational validation is performed on the computerized model. Model changes 
required by conducting operational validity can be in either the conceptual model or in the computerized 
model. Verification and validation must be performed again when any model change is made. This 
process is repeated until a valid simulation model is obtained. As stated above, several versions of a 
model are usually developed prior to obtaining a valid simulation model. There are numerous validation 
techniques that are used in conducting verification and validation. See, e.g., Sargent (2013) and references 
therein for various validation techniques used in validating a simulation model. 

4 DATA VALIDITY 

We discuss data validity, even though it is often not considered to be part of model validation, because it 
is usually difficult, time consuming, and costly to obtain appropriate, accurate, and sufficient data, and 
data problems are often the reason that attempts to validate a model fail. Data are needed for three 
purposes: for building the conceptual model, for validating the model, and for performing experiments 
with the validated model. In model validation we are usually concerned only with data for the first two 
purposes.  
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    Figure 2: The model development iterative process. 

 
To build a conceptual model we must have sufficient data on the problem entity to develop theories 

that can be used to build the model, to develop mathematical and logical relationships for use in the 
model that will allow the model to adequately represent the problem entity for its intended purpose, and to 
test the model’s underlying assumptions. In addition, behavioral data are needed on the problem entity to 
be used in the operational validity step of comparing the problem entity’s behavior with the model’s 
behavior. (Usually, this data are system input/output data.) If behavior data are not available, high model 
confidence usually cannot be obtained because sufficient operational validity cannot be achieved.  
 The concerns with data are that appropriate, accurate, and sufficient data are available, and all data 
transformations, such as data disaggregation, are made correctly. Unfortunately, there is not much that 
can be done to ensure that the data are correct. One should develop good procedures for (1) collecting and 
maintaining data, (2) testing the collected data using techniques such as data relationship correctness 
(Sargent 2013), and (3) screening the data for outliers and determining if the outliers are correct. If the 
amount of data is large, a database of the data should be developed and maintained.  
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5 CONCEPTUAL MODEL VALIDATION 

Conceptual model validity is determining that (1) the theories and assumptions underlying the conceptual 
model are correct and (2) the model’s representation of the problem entity and the model’s structure, 
logic, and mathematical and causal relationships are “reasonable” for the intended purpose of the model. 
The theories and assumptions underlying the model should be tested using mathematical analysis and 
statistical methods on problem entity data. Examples of theories and assumptions are linearity, 
independence of data, and arrivals follow a Poisson process. Examples of applicable statistical methods 
are fitting distributions to data, estimating parameter values from the data, and plotting data to determine 
if the data are stationary. In addition, all theories used should be reviewed to ensure they were applied 
correctly. For example, if a Markov chain is used, does the system have the Markov property, and are the 
states and transition probabilities correct? 
 Each submodel and the overall model must be evaluated to determine if they are reasonable and 
correct for the intended purpose of the model. This should include determining if the appropriate detail 
and aggregate relationships have been used for the model’s intended purpose, and also if appropriate 
structure, logic, and mathematical and causal relationships have been used. The primary validation 
techniques used for these evaluations are face validation and traces. Face validation has experts on the 
problem entity evaluate the conceptual model to determine if it is correct and reasonable for its purpose. 
This usually requires examining the flowchart or graphical model (Sargent 1986), or the set of model 
equations. The use of traces is the tracking of entities through each submodel and the overall model to 
determine if the logic is correct and if the necessary accuracy is maintained. If errors are found in the 
conceptual model, it must be revised and conceptual model validation performed again.  

6 COMPUTERIZED MODEL VERIFICATION 

Computerized model verification ensures that the computer programming and implementation of the 
conceptual model are correct. The major factor affecting verification is whether a simulation language or 
a higher level programming language such as FORTRAN, C, or C++ is used. The use of a special-
purpose simulation language generally will result in having fewer errors than if a general-purpose 
simulation language is used, and using a general-purpose simulation language will generally result in 
having fewer errors than if a general purpose higher level programming language is used. (The use of a 
simulation language also usually reduces both the programming time required and the amount of 
flexibility, and increases the model execution times.) 
 When a simulation language is used, verification is primarily concerned with ensuring that an error 
free simulation language has been used, that the simulation language has been properly implemented on 
the computer, that a tested (for correctness) pseudo random number generator has been properly 
implemented, and that the model has been programmed correctly in the simulation language. The primary 
techniques used to determine that the model has been programmed correctly are structured walkthroughs 
(Law (2014) and Sargent (2013)) and traces.  
 If a higher level programming language has been used, then the computer program should have been 
designed, developed, and implemented using techniques found in software engineering. (These include 
such techniques as object-oriented design, structured programming, and program modularity.) In this case 
verification is primarily concerned with determining that the simulation functions (e.g., the time-flow 
mechanism, pseudo random number generator, and random variate generators) and the computerized 
(simulation) model have been programmed and implemented correctly.  

There are two basic approaches for testing simulation software: static testing and dynamic testing 
(Fairley 1976). In static testing the computer program is analyzed to determine if it is correct by using 
such techniques as structured walkthroughs, correctness proofs, and examining the structure properties of 
the program. In dynamic testing the computer program is executed under different conditions and the 
values obtained (including those generated during the execution) are used to determine if the computer 
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program and its implementations are correct. The techniques commonly used in dynamic testing are 
traces, investigations of input-output relations using different validation techniques, data relationship 
correctness, and reprogramming critical components to determine if the same results are obtained. If there 
are a large number of variables, one might aggregate the numerical values of some of the variables to 
reduce the number of tests needed or use certain types of design of experiments (Kleijnen 2008).  
 It is necessary to be aware while checking the correctness of the computer program and its 
implementation that errors found may be caused by the data, the conceptual model, the computer 
program, or the computer implementation. (See Whitner and Balci (1989) for a detailed discussion on 
model verification.)  

7 OPERATIONAL VALIDITY 

Operational validation is determining whether the simulation model’s output behavior has the accuracy 
required for the model’s intended purpose over the domain of the model’s intended applicability. This is 
where much of the validation testing and evaluation take place. Since the simulation model is used in 
operational validation, any deficiencies found may be caused by what was developed in any of the steps 
that are involved in developing the simulation model including developing the system’s theories or 
having invalid data.  
 Numerous validation techniques are applicable to operational validity. Which techniques and whether 
to use them objectively or subjectively must be decided by the model development team and the other 
interested parties. The major attribute affecting operational validity is whether the problem entity (or 
system) is observable, where observable means it is possible to collect data on the operational behavior of 
the problem entity. Table 1 gives a classification of the validation techniques used in operational validity 
based on the decision approach and system observability. “Comparison” means comparing the simulation 
model output behavior to either the system output behavior or another model output behavior using 
graphical displays and/or statistical tests and procedures. “Explore model behavior” means to examine the 
output behavior of the simulation model using appropriate validation techniques, including parameter 
variability-sensitivity analysis (Sargent 2013). Various sets of experimental conditions from the domain 
of the model’s intended applicability should be used for both comparison and exploring model behavior. 
 To obtain a high degree of confidence in a simulation model and its results, comparisons of the 
model’s and system’s output behaviors for several different sets of experimental conditions are usually 
required. Thus if a system is not observable, which is often the case, it is usually not possible to obtain a 
high degree of confidence in the model. In this situation the model output behavior(s) should be explored 
as thoroughly as possible and comparisons made to other valid models whenever possible.  
 

   Table 1: Operational Validity Classification 

 

 
 
 

 

 

 

Decision 
Approach 

Observable 
System 

Non-observable 
System 

 
Subjective 
Approach 

• Comparison Using 
  Graphical Displays 
• Explore Model 
   Behavior 

•  Explore Model 
    Behavior 
•  Comparison to 
    Other Models 

 
Objective  
Approach 

• Comparison Using 
   Statistical Tests  
   and Procedures 
   

•  Comparison to 
    Other Models      
    Using Statistical    
    Tests        

124



Sargent 
 
7.1 Explore Model Behavior 

The simulation model output behavior can be explored either qualitatively or quantitatively. In qualitative 
analysis the directions of the output behaviors are examined and also possibly whether the magnitudes are 
“reasonable.” In quantitative analysis both the directions and the precise magnitudes of the output 
behaviors are examined. Experts on the system often know the directions and frequently know the 
“general values” of the magnitudes of the output behaviors. Many of the validation techniques can be 
used for model exploration. Parameter variability-sensitivity analysis should usually be used. Graphs of 
the output data discussed in Subsection 7.2.1 below can be used to display the simulation model output 
behavior. A variety of statistical approaches can be used in performing model exploration including 
metamodeling and design of experiments. (See Kleijnen (1999, 2008) for further discussion on the use of 
statistical approaches.) Numerous sets of experimental frames should be used in performing model 
exploration. 

7.2 Comparisons of Output Behaviors 

There are three basic approaches used in comparing the simulation model output behavior to either the 
system output behavior or another model output behavior: (1) the use of graphs to make a subjective 
decision, (2) the use of confidence intervals to make an objective decision, and (3) the use of hypothesis 
tests to make an objective decision. It is preferable to use confidence intervals or hypothesis tests for the 
comparisons because these allow for objective decisions. However, it is often not possible in practice to 
use either one of these two approaches because (a) the statistical assumptions required cannot be satisfied 
or only with great difficulty (assumptions usually required are data independence and normality) and/or 
(b) there is an insufficient quantity of system data available, which causes the statistical results to be 
“meaningless” (e.g., the length of a confidence interval developed in the comparison of the system and 
simulation model means is too large for any practical usefulness). As a result, the use of graphs is the 
most commonly used approach for operational validity. Extreme care must be used in using this approach. 
Each of these three approaches is discussed below using system output data (Note: these same approaches 
can also use with output data from a validated model instead of system output data when appropriate). 

7.2.1 Graphical Comparisons of Data 

The behavior data of the simulation model and the system are graphed for various sets of experimental 
conditions to determine if the model’s output behavior has sufficient accuracy for the model’s intended 
purpose. Three types of graphs are used: histograms, box (and whisker) plots, and behavior graphs using 
scatter plots. (See Sargent (1996a, 2001b) for a thorough discussion on the use of these for model 
validation.) Examples of a histogram and a box plot are given in Figures 3 and 4, respectively; both taken 
from Lowery (1996). Examples of behavior graphs, taken from Anderson and Sargent (1974), are given in 
Figures 5 and 6. A variety of graphs are required that use different types of (1) measures such as the 
mean, variance, maximum, distribution, and times series of the variables, and (2) relationships between 
(a) two measures of a single variable (see Figure 5) and (b) measures of two variables (see Figure 6). It is 
important that appropriate measures and relationships be used in validating a simulation model and that 
they be determined with respect to the model’s intended purpose. See Anderson and Sargent (1974) and 
Lowery (1996) for other examples of sets of graphs used in the validation of simulation models.  
 These graphs can be used in model validation in different ways. First, the model development team 
can use the graphs in the model development process to make a subjective judgment on whether a 
simulation model possesses sufficient accuracy for its intended purpose. Second, they can be used in the 
face validity technique where experts are asked to make subjective judgments on whether a simulation 
model possesses sufficient accuracy for its intended purpose. Third, the graphs can be used in Turing tests 
(Schruben 1980). Fourth, the graphs can be used in different ways in IV&V. We note that the data in 
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these graphs do not need to be independence nor satisfy any statistical distribution requirement such as 
normality of the data (Sargent 1996a, 2001a, 2001b). 
 

 
Figure 3: Histogram of hospital data 

 

 
 

Figure 4: Box plot of hospital data 
 
 

 

 

              Figure 6: Computer disk behavior

               Figure 5: Computer reaction time. 
  

7.2.2 Hypothesis Tests 

Hypothesis tests can be used in the comparison of means, variances, distributions, and time series of the 
output variables of a model and a system for each set of experimental conditions to determine if the 
simulation model’s output behavior has an acceptable range of accuracy. An acceptable range of accuracy 
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is the amount of accuracy that is required of a model to be valid for its intended purpose and is usually 
specified for each model variable of interest as a range for the difference between that model variable and 
the corresponding system variable. 

The first step in hypothesis testing is to state the hypotheses to be tested: 
  

•  H0  Model is valid for the acceptable range of accuracy under the set of experimental conditions. 
•  H1  Model is invalid for the acceptable range of accuracy under the set of experimental conditions. 

 
Two types of errors are possible in testing hypotheses. The first, or type I error, is rejecting the validity of 
a valid model and the second, or type II error, is accepting the validity of an invalid model. The 
probability of a type I error, α, is called model builder’s risk, and the probability of type II error, β, is 
called model user’s risk (Balci and Sargent 1981). In model validation, the model user’s risk is extremely 
important and must be kept small. Thus both type I and type II errors must be carefully considered when 
using hypothesis testing for model validation.  

Statistical hypothesis tests usually test for a single point. Since the acceptable range of accuracy for 
each model variable of interest is usually specified as a range, a hypothesis test that uses a range is 
desired. Recently, a new statistical procedure has been developed for comparisons of model and system 
outputs using hypothesis tests when the amount of model accuracy is specified as a range (Sargent 2010). 
This new statistical procedure is applied at each experimental condition to determine if the model is valid 
for that experimental condition. Both type I and II errors are consider through the use of the operating 
characteristic curve (Hines et al 2003; Johnson, Miller, and Freund 2010). Furthermore the model 
builder’s and the model user’s risk curves can be developed using the procedure. This procedure allows a 
trade-off to be made between the two risks for fixed sample sizes and for trade-offs among the two risks 
and variable sample sizes. See Sargent (2010) for details of performing this new procedure. 

7.2.3 Confidence Intervals 

Confidence intervals (c.i.) and simultaneous confidence intervals (s.c.i.) can be obtained for the 
differences between means, variances, and distributions of different simulation models and system output 
variables for each set of experimental conditions. These c.i. and s.c.i. can be used as the model range of 
accuracy for model validation, where the model range of accuracy is the conference interval or region (for 
the s.c.i.) around the estimated difference between some function (e.g., the mean) of the model and 
system output variable being evaluated. (Balci and Sargent (1984) contain details on the use of c.i. and 
s.c.i. for operational validity, including a general methodology.)  
 To construct the model range of accuracy, a statistical procedure containing a statistical technique and 
a method of data collection must be developed for each set of experimental conditions and for each 
variable of interest. The statistical techniques used can be divided into two groups: (1) univariate 
statistical techniques and (2) multivariate statistical techniques. The univariate techniques can be used to 
develop c.i., and with the use of the Bonferroni inequality (Law 2014) s.c.i. The multivariate techniques 
can be used to develop an s.c.i. Both parametric and nonparametric statistical techniques can be used. The 
method of data collection used must satisfy the underlying assumptions of the statistical technique that is 
being used. One approach to developing a model range of accuracy is to use the standard statistical 
techniques and data collection methods used in simulation output analysis (Banks et al. 2010, Law 2014), 
e.g., using the methods of replication or (nonoverlapping) batch means. 

8 RECOMMENDED PROCEDURE 

This author recommends that, as a minimum, the following eight steps be performed in model validation: 
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1. An agreement be made prior to developing the model between (a) the model development team 
and (b) the model sponsors and (if possible) the users that specifies the basic validation approach 
and a minimum set of specific validation techniques to be used in the validation process.  

2. Specify the amount of accuracy required of the simulation model’s output variables of interest for 
the model’s intended application prior to starting the development of the model or very early in 
the model development process.  

3. Test, wherever possible, the assumptions and theories underlying the simulation model.  
4. In each model iteration, perform at least face validity on the conceptual model.  
5. In each model iteration, at least explore the simulation model’s behavior using the computerized 

model.  
6. In at least the last model iteration, make comparisons, if possible, between the simulation model 

and system behavior (output) data for at least a few sets of experimental conditions, and 
preferably for several sets.  

7. Develop validation documentation for inclusion in the simulation model documentation.  
8. If the simulation model is to be used over a period of time, develop a schedule for periodic review 

of the model’s validity.  
 

Some simulation models are developed for repeated use. A procedure for reviewing the validity of 
these models over their life cycles needs to be developed, as specified in Step 8. No general procedure can 
be given, as each situation is different. For example, if no data were available on the system when a 
simulation model was initially developed and validated, then revalidation of the model should take place 
prior to each usage of the model if new data or system understanding has occurred since the last 
validation. 

9 SUMMARY 

Model verification and validation are critical in the development of a simulation model. Unfortunately, 
there is no set of specific tests that can easily be applied to determine the “correctness” of a model. 
Furthermore, no algorithm exists to determine what techniques or procedures to use. Every simulation 
project presents a new and unique challenge.  

Some topics regarding verification and validation of simulation models were not discussed in this 
paper. For a discussion on the philosophy of model validation, see Kleindorfer and Ganeshan (1993); for 
information on documentation of model validity, see, e.g., Gass (1984) and Sargent (1991, 1996b, 2013); 
and for a list of validation techniques with their definitions, see, e. g., Sargent (2013). 
 There is considerable literature on model verification and validation. Beyond the references already 
cited above, there are conference tutorials and papers (e.g., Sargent (1979, 1984b, 1990, 2000, 2005, 
2011)), journal articles (e.g., Gass (1983), Landry, Malouin, and Oral (1983)), discussions in textbooks 
(e.g., Banks et al. (2010), Law (2014), Robinson (2004), Zeigler, B. P., H. Praehofer, and T. G. Kim 
(2000)), U.S.A. Government Reports (e.g., DoDI 5000.61 (2009), U. S. General Accounting Office 
(1987)), and books (Knepell and Arangno (1993), Oberkampf and Roy (2010)) that can be used to further 
your knowledge on model verification and validation. 

Research continues on verification and validation of simulation models. This includes such topics as 
advisory systems (e.g. Balci (2001), Rao and Sargent (1988), Wang (2013)), cost of validation (e.g., 
Szabo and Teo (2012)), and new approaches, procedures, and techniques (e.g. Balci (2004), Balci et al. 
(2002), Gore and Diallo (2013), Ruess and de Moura (2003), Sargent (2010)). See Sargent et al. (2000) 
for a discussion on research directions. 
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