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ABSTRACT 

This paper presents preliminary analysis of the Panama Canal Expansion from the viewpoint of salinity in 
the Gatun Lake and the utilization of neural networks. This analysis utilized simulation modeling and 
artificial intelligence. We have built several discrete and system dynamics simulation models of the 
current Panama Canal operations and the future expansion which have been validated with historical and 
projected data and Turing/expert validation by engineers of the Panama Canal Authority. The simulation 
models have been exercised in order to generate enough information about the future expansion. This 
information has been used to develop neural networks that have the capability to indicate the volume of 
the Gatun Lake and its respective salinity taking into consideration lockages, spillovers, hydropower 
generation, fresh water supply volumes, and environmental factors such as precipitation, tides, and 
evaporation. Support vector machines were used to build time series regression models of the evaporation 
of Gatun Lake. 

1 INTRODUCTION 

The Panama Canal is located at a strategic location at the narrowest point between the Pacific and the 
Atlantic Ocean. The canal is 48 miles long and connects both oceans saving an 8,000 miles trip (12,875 
km) around the southern tip (Cape Horn) of South America. It is one of the greatest achievements for the 
global trade markets.  The canal has contributed to the growth of trade between countries since it allows a 
shorter route, in terms of distance and time between countries and consumers. The Panama Canal has not 
only open opportunities for the great international markets but it also has help the progress of the region, 
since its vital for the commercial development of emerging Latin American markets. The Panama Canal 
currently carries 5 percent of world’s traded goods, and it is an important competitor in some very 
important shipping routes. For example, the Canal currently handles about 16% of the United States 
maritime trade, and more than 25% of the containerized trade between North East Asia and the East Coast 
of the United States (Alvarez et al. 2009).  A global tendency of the maritime trade market is the raise on 
the oil prices, the Panama Canal represent a shorter itinerary for the ships. 

Another important factor is that the world’s maritime ships have grown in quantity and capacity. The 
size of the ships has been growing as the demand of goods increases. The need of larger containers 
capacity supports a tendency of the use of larger ships.  On the other hand, the 20th century Panama 
Canal model, with 49.7 miles in length, and 2 sets of locks on each side, carrying ships up and down 25

910978-1-4799-7486-3/14/$31.00 ©2014 IEEE



Rabelo, Cruz, Bhide, Joledo, Pastrana, and Xanthopoulos 
 

 

meters on a mountain range, is struggling to meet this demand. The 5.25 billion US dollar Panama Canal 
expansion project includes a new lane of traffic along the canal, with a construction of two locks 
complexes each of 426.72 meters long and 54.86 meters in width, one at each side of the canal, which 
means greater capacity and allows larger ships to transit (Panama Canal Authority 2006). The maximum 
size ship the canal can handle now is the Panamax (i.e., dimensions of 300 meters long and 30 meters 
across), but with the new expansion the PostPanamax ships (i.e., dimensions of 366 meters long and 49 
meters across) will be able to transit (see Figure 1).  

 

. 

Figure 1: Comparison of the new and old locks sizes (adapted from  http://www.oil-
electric.com/2011/08/panama-canal-expansion.html). 

 

Figure 2: Points 2 (Atlantic side) and 6 (Pacific side) indicate the location of the new set of locks for 
Post–Panamax ships (adapted and modified from: 
http://en.wikipedia.org/wiki/File:Panama_Canal_Map_EN.png). 

Gatun Lake is an artificial lake that was created when the Panama Canal was built in order to 
facilitate its creation (see Figure 2). The Gatun Lake has an area of 425 km2 at its normal level and 26 
meters above sea level. Gatun Lake not only provides the millions of gallons necessary to operate the 
Panama Canal locks when a ships pass through, but also provides drinking water for the cities of Panama 
City, Colon, and Chorrera (a city in the west of Panama City between the districts of Capira and 
Arraijan), which represents the region of greatest growth in Panama (Sandoval 2005). It is very important 
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to emphasize that Gatun Lake constitutes the natural habitat for native Central American animal and plant 
species. 

The Panama Canal expansion through a third set of locks presents new challenges. One challenge is 
the potential increase in the salinity of Gatun Lake above permissible levels. We have built several 
discrete and system dynamics models of the current Panama Canal operations and the future expansion. 
These simulation models have been validated with historical and projected data and Turing/expert 
validation by engineers of the Panama Canal Authority.  These simulation models were also compared to 
other models developed by different organizations. Then, the simulation models have been exercised in 
order to generate enough information about the future expansion. This information is been analyzed by 
using techniques such as principal component analysis and neural networks. The neural networks have the 
capability to indicate the volume of Gatun Lake and its respective salinity taking into consideration the 
lockages, spillovers, hydropower generation, fresh water supply volumes, and environmental factors such 
as precipitation, tides, and evaporation. This decision tool can be used to plan certain aspects of the 
operations of the future and expanded Panama Canal. 

2 SALINITY OF THE LAKES AND SYSTEM DYNAMICS MODEL 

Salinity refers to the mass quantity of dissolved salts per unit of water mass or water volume (1 unit = 1 
liter). Seawater’s salinity (S) amounts to 35 parts per thousand (ppt). The chloridity (Cl), which is 
sometimes used, represents the mass quantity of chloride ions per unit of water mass or water volume. 
The Cl of fresh water should not exceed 0.2 to 0.25 ppt. This fresh water limit corresponds to a salinity 
value of 0.4 to 0.5 ppt. 

The salinity diffusion was modeled using the exchange of mass transfer (Parchure et al. 2000; Marin 
et al. 2010). This involved the study of the different volumes and salinity gradients of the Panama Canal 
System: Water systems and Locks. In addition, it was complemented by collecting data using historical 
records provided by the Panama Canal Authority (and data collected by the research team). 

Table 1: Physical dimensions of the Panama Canal (current). 

Lock Width (m)  Length (m) Height over lock (m) Depth under or over PLD (m) 

L1 33.53  320.34 7.92 -15.85 

L2 33.53  326.44 8.53 -6.20 

L3 33.53  326.44 9.45 3.44 

L4 33.53  326.44 8.53 +3.96 

L5 33.53  320.34 8.83 -4.67 

L6 33.53  320.34 8.53 -13.50 

 
The Panama Canal has two lakes: Gatun and Miraflores. Water from these two lakes is used for the 

Panama Canal System to fill the navigation locks. Salt water from the Pacific and Atlantic Oceans gets 
added to the lakes during the transit of the ships. In addition, water from the lakes is lost to the sea during 
the same process. The Gatun Lake supplies fresh water to the population of Panama, Colon, and Chorrera 
Cities for drinking purposes. The Miraflores Lake has a level of salinity which is already considered 
“brackish” water (i.e., Brackish water is water that has more salinity than fresh water, but not as much as 
seawater) (Parchure et al. 2000). 
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The six locks have different volumes and geometric characteristics so that ships of different drafts can 
cross the Panama Canal from the Pacific Ocean to Gatun Lake. Table 1 shows the dimensions of the locks 
and all levels, heights, and depths are referenced to the “Precise Panama Canal Level Reference” (PLD) 
that matches sea level. 

Using the equations of exchange of salinity in the locks, it is possible to set a numerical and 
differential equations model to define the salinity in Gatun Lake (SGL), taking into account the exchange 
of water (and salinity) in the upper locks of Pedro Miguel and Gatun, the water contribution by lakes 
Gatun (VGL), the volumetric inflows of Madden (VMadden) and the river tributaries (Vtrib) that flow into 
these lakes (Parchure et al. 2000). Madden Lake is a reservoir of water which acts as additional water 
storage for the canal. ெ்ܸ  is the summation of the volumetric inflows of VMadden and Vtrib. These 
relationships are expressed by the following equations were evaporation and precipitation are added due 
to their potential impact: 

 
 ெ்ܸ ൌ ெܸ௔ௗௗ௘௡ ൅ ்ܸ ௥௜௕  (1) 

߂  ௅ܸଷ ൌ ௅ܸଷ െ ܸܵ (2) 

߂  ௅ܸସ ൌ ௅ܸସ െ ܸܵ (3) 

 Lossesሺtሻ ൌ 	Evaporation	ሺtሻ– Freshwater facilities ሺtሻ– Hydropower	plan	ሺtሻ 	
െ 	Panamax lockages 

(4) 

 డሺ௏ಸಽሻ	
డ௧

ൌ ∆ ெ்ܸ ൅ ∆ ௅ܸଷ. ௅ଷܺܧ ൅ ∆ ௅ܸସ . ௅ସܺܧ ൅ Precipitation ሺtሻ – Losses	ሺtሻ	  (5) 

 ߲ሺܵீ௅ሻ	
ݐ߲

ൌ
ܸீ ௅	. ܵீ௅ ൅ ሺ ெ்ܸ. ܵெ௔ௗௗ௘௡ ሻ ൅ ሺΔV୐ଷ . ܵ௅ଷ. EX୐ଷሻ ൅ ሺΔV୐ସ	. ܵ௅ସ. EX୐ସሻ

ܸீ ௅	 ൅ ெ்ܸ ൅ ሺΔV୐ଷ . N. EX୐ଷሻ ൅ ሺΔV୐ସ . N. EX୐ସ	ሻ
 

(6) 

 
where VL3 and VL4 are the volumes of Locks L3 and L4 respectively. VS is the displacement volume of a 
ship (average). SL3 and SL4 are the respective salinities of L3 and L4 taking into consideration the 
measured salinity gradients. EXL3 and EXL4 are the exchange ratios for L3 and L4 respectively. Piecewise 
linear profiles of Evaporation and Precipitation are added to the calculations of VGL (Marin et al. 2010). 
These differential equations are the basis of a system dynamics model that is formed by differential (first 
order) and algebraic equations. 

3 DISCRETE-EVENT MODELING 

Different interviews with different subject-matter experts (SMEs) to learn about the operations were 
performed in order to obtain the different distributions and times of the discrete-event processes. A 
discrete-event model was developed in AnyLogic (Rabelo et al. 2012), with the respective animations, 
Queues, Switches, Java Classes, and the Enterprise (i.e., discrete-event) Library. The Switches were 
complemented with Java statements to capture the logic of assignment of locks and the schedule of the 
Panama Canal. In addition, animation was added in order to support the visualization and validation by 
subject matter experts. 

4 MODELING EVAPORATION THROUGH SUPPORT VECTOR REGRESSION (SVR) 

Support vector regression (SVR) was used for estimating the evaporation level (Rabelo et al. 2012) by 
using as predictors: precipitation, temperature, humididy, salinity, windspeed and wind direction (Morton 
1986; Price et al. 2007; Sadek, Shahin, and Stigter 2007). The historical data was obtained from the 
respective weather stations of the Panama Canal (2003 – 2009). The SVR is the regression version of 
support vector machines (SVMs) a well known supervised learning algorithm used for supervised 
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classification and is based on separation by hyperplanes. In the regression setup we are given a set of m 
data point {(x_1,y_1), (x_2,y_2),…,(x_m,y_m)} where x_i∈R^n, i=1,…,m are the vector with the 
features and y_i∈R, i=1,…,m the output variable. Then under the support vector framework we wish to 
determine the optimal hyperplane defined by the parameters (w,b) as the optimal solution of the following 
convex optimization problem:  
 

 

	
min

୵,ୠ,ஞ౟,ஞ౟
∗

1
2
ݓ்ݓ ൅ ௜ߦ෍ܥ

௠

௜ୀଵ

൅ ௜ߦ෍ܥ
∗

௠

௜ୀଵ

.ݏ ݐ ௜ሻݔሺ߶்ݓ ൅ ܾ െ ௜ݕ ൑ ߳ ൅ ௜ߦ
	 ௜ݕ െ ௜ሻݔሺ߶்ݓ െ ܾ ൑ ߳ ൅ ௜ߦ

∗

 

(7) 

       
where ࢏ࣈ, ࢏ࣈ

∗ ൒ ૙, ࢏ ൌ ૚,… .is the weight vector and b is the bias. With ࣘሺ ࢝ ,In addition .࢓, ሻ we denote 
the kernel function. Through the kernel function we can generalize the method in nonlinear high 
dimensional spaces and thus overcome the limitations related to the linear nature of the basic formulation.  
Each feature was normalized in order to have zero mean and unitary standard deviation. This is a standard 
preprocessing step that allows all the predictors to have the same weight in the model. The output variable 
was left as it is since it doesn’t affect the model training. The SVR implementation was libSVM as 
employed through Matlab (ver 2011b) interface. A radius basis function (RBF) kernel was used with 
parameter σ=0.25. At each step a sliding window was used in order to select the sample to train the 
algorithm. The window parameter was set to three. The average per sample square error ࡾ૛ was found to 
be equal 0.0427 (or 4.27%). The short term prediction results are shown in the following Figure 3. This 
was compared with neural networks based on back propagation and radial-basis functions and the SVR 
was the one with higher performance. 

 

Figure 3: SVR’s performance (evaporation). 

5 MAPPING VOLUME TO HEIGHT (GATUN LAKE) USING NEURAL NETWORKS 

The modeling of the Panama Canal Expansion includes IF-THEN rules based on the level of the lakes and 
the respective volumes. In order to facilitate the execution of these rules, we have to develop a mapping 
from the volume to the height of Gatun Lake. A neural network was developed to perform this mapping.  
The data was obtained from a comprehensive study of Gatun Lake (Bunch, Johnson, and Sarruff  2003). 
The observed data is based upon pre-impoundment surveys from the early 1900’s and include estimation 
of changes that have occurred due to sedimentation in the last ninety years. The mapping is not 
straightforward because of Lake Gatun’s irregular shape. The reported bathymetry of Lake Gatun with its 
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numerous bends and small embayments is extremely difficult to match. Therefore, neural networks are 
good for this mapping.  

The architecture is of one input (Volume in millions of cubic meters), two hidden-units in one single 
hidden layer, and one output (Height in meters) (Figure 4). It is basically a look-up table with high 
accuracy and easy to execute during the execution time of the hybrid model. 

 

 

Figure 4: Neural network built to map volume to height (Gatun Lake). 

6 HYBRID MODEL 

The system dynamics model with the discrete-event model were combined into one model using the 
capabilities of the Active Object Class from AnyLogic (Borshchev and Filippov 2004; Karpov et al. 
2005; Wartha et al. 2002). The Active Object Class from AnyLogic has multiple concurrent activities that 
share object local data and object interface. Activities can be created and destroyed at any moment of the 
model execution. The discrete-event model feeds the number  
 In addition, the output in salinity of our model is compared against two other models for salinity of 
the current Panama Canal (see Table 3). The model developed by the Army Corps of Engineers predicts 
the salinity in the years 2003 – 2009 to be stable at a value of 0.032 ppt (Parchure et al. 2000). The Army 
Corps of Engineers did not consider precipitation, evaporation, hydropower plants, fresh water facilities, 
and spillways flows. The other model was commissioned by the Panama Canal Authority to the company 
Delft Hydraulics (http://www.wldelft.nl/) (Jongeling 2003). This model does not consider precipitation 
and evaporation. In addition, this model uses a constant transit rate of 36 ships/day for the current Panama 
Canal. The hybrid model has a higher quality than the previous models. 

Table 3: Accuracy in salinity simulations. 

Measure Army Corps of 
Engineers Model  

Delft Hydraulics 
Model  

Hybrid Model 

Mean Absolute Error (MAE) 0.021 0.032 0.007 

Mean Square Error (MSE) 0.00116 0.00189 0.00008 

Mean Square Error (MSE) 0.00116 0.00189 0.00008 

Root Mean Square Error (RMSE) 0.034 0.043 0.009 

Percent Bias (PBIAS) (Moriasi, 
Arnold, Liew, Bingner, Harmel, 
and Veith 2007) 

34.66% 64.27% -5% 

7 EXPANSION SIMULATION MODEL     

We utilized the same logic and add for the Gatun Lake equations for the new set of locks being built for 
the expansion of the Panama Canal. The equations for the Miraflores Lake stayed the same. The new 
Post-Panamax locks are given by the following notation and Table 4: 
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L7: Lowest Post-Panamax lock connected to the Pacific Ocean 
L8: Middle Post-Panamax Lock on the Pacific side 
L9: Highest Post-Panamax Lock on the Pacific side directly connected to Gatun Lake 
L10: Highest Post-Panamax Lock on Atlantic side directly connected to Gatun Lake 
L11: Middle Post-Panamax lock on the Atlantic side 
L12: Lowest Post-Panamax lock connected to the Atlantic Ocean 

Table 4: Physical dimensions of the Panama Canal Post-Panamax Locks - Post-Panamax is a term for 
ships larger than Panamax that do not fit in the canal (Arias et al. 2006). 

Lock Width (m)  Length (m) Height over lock (m) Depth under or over PLD (m) 

L7 55  427 8.83 -20.62 
L8 55  427 17.37 -10.67 
L9 55  427 25.91 -2.41 
L10 55  427 25.91 -2.41 
L11 55  427 17.30 -10.49 
L12 55  427 8.68 -18.62 

  
The Exchange Coefficients are different from the Panamax Locks due to the utilization of water 

saving basins (WSBs). EXL9 and EXL10 are the exchange ratios for L9 and L10 respectively that take into 
consideration the WSBs recycling (Arias et al. 2006). In addition, the  losses of fresh water due to the 
lockages of the Post-Panamax Locks are reduced by a factor of 64% due to the WSBs. VPPs is the volume 
of references for the Post-Panamax ships. Equations  8, 9, 10, and 11 show the additions with the Post-
Panamax operations. 

 
 ∆ ௅ܸଵ଴ ൌ ௅ܸଵ଴ െ ௣ܸ௣௦  (8) 

 ∆ ௅ܸଵ଴ ൌ ௅ܸଵ଴ െ ௣ܸ௣௦  (9) 

ݏ݁ݏݏ݋ܮ  ൌ ሻݐሺ݊݋݅ݐܽݎ݋݌ܽݒܧ െ ݎ݁ݐܽݓ݄ݏ݁ݎܨ ሻݐሺݏ݁݅ݐ݈݂݅݅ܿܽ െ ሻݐሺ݈݊݌	ݎ݁ݓ݋݌݋ݎ݀ݕܪ 		
െ ሺܲݔܽ݉ܽ݊ܽܲݐݏ݋ െ  ݏ݁݃ܽ݇ܿ݋ሻ݈ݔܽ݉ܽ݊ܽܲ

(10)

 ∂	ሺVGLሻ

dt
ൌ ∆ ெ்ܸ ൅ ∆ ௅ܸଷ. ௅ଷܺܧ ൅ ∆ ௅ܸସ. ௅ସܺܧ ൅ ∆ ௅ܸଽ. ௅ଽܺܧ ൅ ∆ ௅ܸଵ଴. ௅ଵ଴ܺܧ

൅ Precipitation ሺtሻ– Losses ሺtሻ 

(11)

 
 Meetings with personnel of the Panama Canal Authority and projections of future transits of Post-

Panamax ships were obtained. This supported the addition of the processes and rules to model the new 
Post-Panamax locks. The projections utilized for Post-Panamax traffic in the future are shown in Table 5. 
 Several additions were implemented into the model such as representations of the tides in the Pacific 
and Atlantic. The validation was just performed by using subject matter experts of the Panama Canal  
Authority. They agreed that the model approximates and obtains the projected transits of the Post-
Panamax locks. The prediction of the salinity is also very logical in comparison with the other models. 
Results and comparisons with the Deft Hydraulics model (Jongeling 2003) are depicted in Figure 6. 
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Table 5: Daily (projected) traffic for the new Post-Panamax lane - Panamax Plus vessels are of Panamax 
size with more than 12.04 m of draft. 

Type of Vessels Years: 2015-2020 Years: 2020-2025 Years: 2025-2030 

Panamax Plus 4 4 4 
Post-Panamax   2 3 
Total Daily Traffic 4 6 7 

 

 

Figure 6: Comparison of the model of Delf Hidraulics (Jongeling 2003) and the Hybrid Model for the 
period from 2015 to 2022. 

8 ENCAPSULATING THE HYBRID MODEL IN A NEURAL NETWORK (PRELIMINARY 
ANALYSIS) 

The hybrid model was exercised and hundreds of data samples were generated in order to train a neural 
network. The reason was to build a neural network that was able to capture the knowledge of the hybrid 
model. This neural network can be replicated and executed using common user interfaces such as Excel 
and avoid the execution of simulation models using licensed software.  
 After the generation of 400 examples was accomplished, we decided to use a 2-step process. The first 
step is the utilization of principal component analysis (PCA) in order to determine the best combination 
of variables (and avoid problems and take advantage of larger variances). PCA is used to reduce the 
number of variables. In our case, we will perform PCA to generate some of most informative features. 
The second step is to build a neural network in order to have a “clone” model in a different mathematical 
form.  
 PCA is a mathematical procedure that uses an orthogonal transformation to convert a set of samples 
into a set of values of linearly uncorrelated variables called principal components.  It is very clear that the 
number of principal components is less than or equal to the number of original variables. We have 35 
variables in the generated data from the simulations. Some of these variables such as 
Number_of_PostPanamax_Ships(t) are studied including its previous values (up to three previous periods, 
e.g., Number_of_PostPanamax_Ships(t-1), Number_of_PostPanamax_Ships(t-2), 
Number_of_PostPanamax_Ships(t-3)  where t (time) is by months) in order to capture trends and learn 
from the causality delays embedded in the system. The transformation from the PCA procedure is defined 
in such a way that the first principal component has the largest possible variance, and each succeeding 
component in turn has the highest variance possible under the constraint that it be orthogonal to the 
preceding components (http://yatani.jp/HCIstats/PCA).  
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 MATLAB was utilized in order to obtain the principal components (strictly with data generated from 
the simulation model with 35 variables and 75% of the examples). The components with the largest 
variance were selected with the respective variables and factors. Table 6 shows the most significant 
principal components and the respective variables utilized to build the neural network.  
 10-fold crossvalidation (Moody 1994) was used with 75% (300) of the examples generated in order to 
develop an appropriate neural network. The performance capabilities of the neural network developed 
were tested with the remaining 25% (i.e., 100) examples. 

The neural network architecture found using 10-fold crossvalidation had 14 input units (one for each 
principal component), 5 hidden units in one hidden layer, and one output unit (that corresponds to the 
increment of Salinity in Gatun Lake). Figure 7 depicts the neural network built using entirely simulated 
data and 300 training samples. The neural network had an average training error of 0.0005 ppt. On the 
other hand, the testing of the neural network developed with the testing set (i.e., 25% of the generated 
data) had an average testing error of 0.0023 ppt. In addition, the neural network with PCA was compared 
against a SVR without PCA. SVR had lower performance than the neural network with PCA. 

 

 

Figure 7: Neural network built to capture the knowledge of the hybrid simulation model (preliminary 
analysis). 

Table 6: Preliminary PCA Analysis. 

Principle Components 

PC 1 -0.206Tributaries(t-3) - 
0.298Tributaries (t-2) - 
0.315Tributaries(t-1) -  
0.219Tributaries(t)- 
0.26Hydro_Water_Spillovers(t-3)  -  
0.502Hydro_Water_Spillovers(t-2)- 
0.544Hydro_Water_Spillovers(t-1) -  
0.323Hydro_Water_Spillovers(t) 

PC 8 0.338Hydro_Water_Spillovers(t-3)- 
0.633Hydro_Water_Spillovers(t-2)+ 
0.593Hydro_Water_Spillovers(t-1)- 
0.353Hydro_Water_Spillovers(t) 

PC 2 0.592Hydro_Water_Spillovers(t-3)+ 
0.531Hydro_Water_Spillovers(t-2)- 
0.291Hydro_Water_Spillovers(t-1)- 
0.593Hydro_Water_Spillovers(t) 

PC 9 0.65Number_of_Panamax_Ships(t-3)- 
0.676Number_of_Panamax_Ships(t-2)+ 
0.276Number_of_Panamax_Ships(t-1)-
0.2Number_of_Panamax_Ships(t) 

PC 3 -0.603Tributaries(t-3) - 
0.392Tributaries (t-2) + 
0.299Tributaries(t-1) +  
0.4571Tributaries(t)+ 

PC 10 -0.507Number_of_Panamax_Ships(t-3)+ 
0.663Number_of_Panamax_Ships(t-1)– 
0.547Number_of_Panamax_Ships(t) 

P
ri
n
ci
p
al
 C
o
m
p
o
n
e
n
ts
 (
1
4
)

Increment of Salinity
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0.277Hydro_Water_Spillovers(t-2)- 
0.322Hydro_Water_Spillovers(t) 

PC 4 0.47Tributaries(t-1)+ 
0.485Hydro_Water_Spillovers(t-3)  - 
0.365Hydro_Water_Spillovers(t-2)- 
0.479Hydro_Water_Spillovers(t-1) + 
0.341Hydro_Water_Spillovers(t) 

PC 11 0.53Number_of_Panamax_Ships(t-3)+ 
0.68Number_of_Panamax_Ships(t-2)– 
0.501Number_of_Panamax_Ships(t) 

PC 5 -0.436Tributaries(t-3) + 
0.346Tributaries (t-2) + 
0.331Tributaries(t-1) - 
0.514Tributaries(t)  

PC 12 -0.693Number_of_Panamax_Ships(t-1)-
0.637Number_of_Panamax_Ships(t) 

PC 6 0.315Tributaries(t-3) + 
0.309Tributaries (t-2) + 
0.308Tributaries(t-1) + 
0.304Tributaries(t)  

PC 13 0.51Number_of_PostPanamax_Ships(t-3)+ 
0.55Number_of_PostPanamax_Ships(t-2) +  
0.510Number_of_PostPanamax_Ships(t-1)+ 
0.392Number_of_PostPanamax_Ships(t) 

PC 7 0.481Tributaries(t-3) + 
0.316Tributaries(t-1) + 
0.445Tributaries(t)- 
0.448Hydro_Water_Spillovers(t-3)- 
0.391Hydro_Water_Spillovers(t) 

PC 14 0.719Number_of_PostPanamax_Ships(t-3)+ 
0.669Number_of_PostPanamax_Ships(t) 

9 CONCLUSIONS AND FURTHER RESEARCH 

This research provides a unique example for applying hybrid modeling. Hybrid modeling can benefit 
organizations with complex systems by providing them with a modeling environment which takes into 
account the internal and external changes taking place in their systems where continuous and discrete 
variables are present. 
 AI methods support modeling by mapping complex relationships. In addition, these methods can 
encapsulate the knowledge of the simulation models and facilitate their utilization and replication. 
Currently, we are refining the model and adding more animations. Different scenarios with the Post-
Panamax locks are also being simulated. In addition, we are adding elements of the variability of the 
salinity levels in each ocean (i.e., the Pacific and Atlantic oceans have different levels and seasonality 
patterns of salinity) and a mixed of historical observations with a higher number of examples generated 
by the simulations to the PCA analysis. We will report in future papers the results of these developments. 
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