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Object-Oriented Modeling (OOM) and hybrid systems are
basic concepts of modern tools to model and simulate complex
dynamical systems. However, object-oriented modeling
technologies and state machines may be implemented in
different ways in various tools. Implementations of OOM and
hybrid systems in tools that support Modelica and Model Vision
Language are discussed. The paper may be interesting for
researches and instructors who use Dymola, OpenModelica,
and Rand Model Designer in research and education.

Obwvexmuo-Opuenmuposannoe Mooenuposanue (OMM) u
ubpuoHble cucmemul AGIAIOMCA OCHOGHBIMU NOHAMUAMU,
UCRONL3YeMbIMU 0151 MOOETUPOBAHUSL CTIONCHBIX OUHAMUYEC-
Kux cucmem. OOHAKO OObLEKMHO-OPUESHMUPOBAHHBIE MEXHON0-
2UU U MAUUHBL COCMOSTHULL MO2YI ObLIMb NO-PA3HOMY UCHOTb-
308aHbl 8 PAUUHBIX CPEOAX BU3YATLHO2O MOOCTUPOBAHUS.
B cmamve nposodumcs npedsapumenbHulii cpagHUumenbHblil
ananus szvikog Modelica u Model Vision Language. Cmamos
Mooicem Gvimb unmepecHa noivzoeamenam naxemog Dymola,
OpenModelica, and Rand Model Designer.
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l. Introduction

Object-Oriented Modeling (OOM) of complex dynamical systems is facili-
tated by such modeling languages as Modelica [5] and Model Vision Language
(MVL) [1, 2, 3]. Modelica and MVL are used in several tools [1, 4, 7, 8]. Both
modeling languages have many features in common, but there are also essential
differences between them in terms of hybrid system modeling.

Prof. Alfonso Urquia visited St. Petersburg Polytechnical University and
familiarized himself with Rand Model Designer (RMD), a MVL-based tool
for modeling and simulating complex dynamical systems. During his work at
Prof. Yu. B. Senichenkov’s lab, he made a preliminary comparative analysis of
Modelica and MVL, taking into consideration the capabilities these languages
bring for hybrid model description and their implementations in tools based on
Modelica and MVL. He gave his own interpretation of differences and illustrated
them by examples that are well-known to Modelica users.

The differences under consideration concern inheritance, hybrid systems,
and ways of their implementations in Dymola and RMD:

1. Inheritance
Modelica |multiple inheritance
MVL [single inheritance

In both languages, a derived class (subclass) inherits the behavior and
structure of the base class (superclass), and may extend the base class through
new behavior and structure (i.e., equations, components, connections, etc.).
In addition, MVL allows removing part of the inherited behavior in the derived
class.

MVL and Modelica allow declaring time-independent variables as a class of
formal parameters so that they can receive their actual values in each class
instance. Additionally, Modelica supports re-declaring classes of the objects
instantiated in the model.

2. Hybrid Systems
Modelica [An «if» statement is used to specify hybrid systems. Current
equations for composition of hybrid automata are built during
compilation.
MVL «State Machine» is used to specify hybrid systems. Current
equations for composition of hybrid automata are built at run
time.
Description of the hybrid behavior is a major difference between MVL and
Modelica (see Section 11.)
Modelica [6] environments (e.g., Dymola [7] and OpenModelica [8]) build and
reduce all systems of equations needed for hybrid automata composition during
the compilation stage. RMD_Transas, RMD, and OpenMVLShell (www.rand-
service.com, www.mvstudium.com, http://dcn.ics.spbstu.ru) build and reduce
current systems at run time.

The differences under discussion are illustrated by examples (Sections 1V
and V).
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I1. Hybrid Systems in Modelica and MVL

Hybrid systems («event-driven» systems) exhibit mixed discrete and
continuous behavior. Specification of a hybrid system includes specification of
modes’ behavior, conditions for transitions between modes, and entry and exit
actions for each mode. Hybrid model specification is different in Modelica and
MVL.

Modelica
1.1. Equations in Modelica follow the «synchronous data flow» principle [11].
The set of active equations can be composed of continuous equations only
(during continuous integration), or mixed continuous and discrete equations (if
an event has been triggered and needs to be evaluated). The equation evaluation
order is automatically determined by analyzing the model structure, leading to
unique computations of the unknown variables [12].
1.2. Modelica offers special constructions to describe hybrid systems [9-11].
Users can: (1) update the value of discrete-time variables (e.g., using the when
clause and the pre function); (2) reinitialize continuous-time state variables,
using when clauses and the reinit function; and (3) change the mathematical
description of equations and assignments, using the if statement.
1.3. Modelica allows describing special (limited) types of hybrid systems.
A Modelica model must comply with the single-assignment rule. This means
that the number of unknown variables and equations for hybrid automation
states has to be equal and constant, and that the number of equations in each
branch of a conditional if equation must also be equal and constant.

MVL

2.1. MVL uses Behavior Charts (B-Charts for short) to specify hybrid systems
(see Fig. 1). B-Chart is a special version of State Machine similar to StateFlow
(see Simulink).

2.2. Construction of the current system of equations for composed models
depends on the type of links (bonds) between components. If «input-output»
connections are used, everything that is needed to compose current systems
may be built during compilation. If «contact-flow» connections are used,

building at run time is preferred.

The allowed specification of hybrid
systems does not affect translating
isolated hybrid systems and component
models with «input-output» links
between components into the simulation
code. The number of possible modes
for composed hybrid automata may be
huge in any case, but for «physical»
component models mode switching
leads to the necessity of re-assigning
computational causality, which increases
the computational effort. Decreasing
computational effort for huge automata Fig. 1. B-chart mode (above) and
is possible by limiting the supported transition between modes (below)
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hybrid behavior (Modelica) or handling events at run time (Rand Model
Designer).

Let us consider a library of electrical components that contains models of a
voltage generator, resistor, capacitor, diode, etc. Let us suppose that the diode
is described with a B-chart with two modes [11], named off and on, as shown
in Fig. 2.

Interfaces of the library components are described with connectors that
represent electrical pins. This electrical connector is composed of an across
variable and a through variable: the voltage and electric current, respectively.
Electric circuits can be described by instantiating and connecting these library
components.

Let us consider the rectifier circuit shown in Fig. 3.

Fig. 2. B-chart describing the behavior Fig. 3. Rectifier circuit model
of a diode composed using RMD

The rectifier circuit model contains four diodes, so there are 2* =16 possible
combinations of modes. For every «switching» of any of the four diodes, RMD
automatically constructs the current system or equations that represents the new
structure of the complete model.

Modelica

Two state-of-the-art Modelica environments are taken as a reference in this
discussion: Dymola [7] and OpenModelica [8]. Symbolic manipulations that
these tools carry out on may be divided into two types according to their
purpose [13].

The first type is intended for translating object-oriented description of the
model into the so-called «flat model». The flat model contains a complete
set of model equations and functions, with all the object-oriented structure
removed.

The second type of manipulations transforms the flat model into an efficiently
solvable form.

These manipulations include [14]:

Efficient formulation of the complete-model equations, eliminating the
redundant variables and the trivial equations resulting from the component
connections.

Reduction of the system index to zero or one [15-17].

Analysis of computational causality (partition) and equation sorting.
Symbolic manipulation of linear systems of simultaneous equations.

Tearing [18] of nonlinear systems of simultaneous equations.
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All these manipulations, which are intended to generate an executable
simulation code from the Modelica model, are performed in a step (named
model translation) that is previous to the simulation run. This approach allows
using complex algorithms for model structure analysis, model symbolic
manipulation and generation of a highly efficient numerical code.

MVL
On the contrary, model manipulations are performed by RMD during the
simulation run. Every time a transition is fired, RMD constructs a mathematical
description for the current s mode, eliminates redundant variables and trivial
equations resulting from component connections, analyzes the model solvability
and structure, selects the best-suited numerical method and generates input to
the selected numerical method.

Two strong points of RMD are the following. One is the expressiveness of its
language in the specification of hybrid systems. The other one is that the system
of equations that describes the complete model at a certain time is automatically
built at simulation time by RMD from the active modes (one active mode per
B-chart) at that time.

RMD approach requires using only very fast algorithms to analyze and
build equations. However, symbolic differentiation and index reduction are not
currently supported by RMD.

I11. Example 1. Interactive Model. Selection of State Variables

A distinctive characteristic of interactive simulations is that external objects
are allowed to change the value of certain model quantities, named interactive
guantities at event instants. These events are called interactive events. Time
instants when these changes are triggered are determined by external objects.
An arbitrary finite number of interactive events can be triggered during the
simulation run. Depending on the application, external objects can be people
(e.g., in virtual laboratories), hardware (e.g., in hardware-in-the-loop simulations)
and other model simulations (e.g., in distributed real-time simulation). A bi-
directional flow of information between the interactive model and external
objects is established during the simulation. The model sends the actual value of
the selected model quantities to the external objects. The external objects send
the information required to execute the interactive events to the model.

RMD generates two types of an executable code [3]:

e Stand-alone Windows application. It is used to run experiments on the
model under RMD in the interactive mode. RMD provides some ready-to-use
2D and 3D animation components and tools to carry out typical computational
experiments.

¢ Application in the form of Window’s dynamic link library (dll). It is used
as an embedded interactive application (not supported in the lite version of
RMD).

Interactive quantities have to be state variables. Therefore, adapting a model
for interactive simulation implies modifying the model so that all the interactive
quantities are selected as state variables [19]. The original model of the system
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is called a physical model and its reformulation for interactive simulation is
called an interactive model.

Parameters (i.e., time-independent variables) of the physical model can also
be interactive quantities. To this end, they are defined as continuous-time state
variables of the interactive model. The derivative of these state variables is set to
zero. As a result, the value of these states remains constant between interactive
actions.

An interactive model can define several interactive events, each one with its
own interactive quantities. The following restrictions apply to the selection of
interactive quantities [20]:

¢ A time-dependent variable can be an interactive quantity if and only if there
is at least one selection of state variables that includes this variable.

o A set of variables can represent interactive quantities modified in the same
interactive action if and only if there is at least a selection of the state variables
that includes all the variables in the set.

In general, different choices of the state variables are possible in a physi-
cal model. Various interactive events may require different selections of state
variables. On the other hand, as the state variable values that are not explicitly
modified in the interactive event action remain unchanged at the event instant,
the result of interactive actions depends on the state variable selection.

The model shown in Fig. 4 will be used to illustrate the previous discussion.
The voltage applied to the pump (V) is an input variable (i.e. its value is not
calculated from the model equations). The cross-sections of the tank (A) and
the outlet hole (a), the pump parameter (k) and the gravitational acceleration (g)

are parameters (i.e. time-independent quanti-
ties of the model). The liquid volume (V), the
input and output flows (Fi,, F), and the liquid
level (h) are time-dependent variables of the
physical model.

Different choices of the state variables are
possible in this model. For instance, the liquid
volume (V), the liquid level (h) or the output

Fig. 4. Model used to illustrate  flow (F) could be chosen as a state variable.
run-time selection of state variables  The state should be selected so that it includes

all the interactive quantities. For instance, if
the user wants to change interactively the
level value, the appropriate choice for the
state variable is h. Likewise, if the user wants
to change the liquid volume, then the right
choice is V; and if they want to change the
output flow, then it is F.

In addition, changes in the value of inter-
active quantities can have different effects
depending on the state variable choice. Let
us consider that the user changes interactively
the tank cross-section (A). If the volume (V) is
a state variable, then the change in A produces

Fig. 5. B-chart of the tank system an abrupt change in the value of the liquid
shown in Fig. 4 level (h) and flow (F), whereas the liquid vol-
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ume remains constant. On the contrary, if the state variable is the height (h) or
the flow (F), these quantity values will not change as a result of an instantaneous
change in the cross section (A), but the volume will.

Let us consider a virtual lab intended to illustrate the tank system behavior.
Let us suppose that the virtual lab is required to support three ways to describe
interactive changes in the amount of liquid contained in the tank: changes in
the liquid volume (V), changes in the liquid level (h) and changes in the output
flow (F). Every time users need to change the amount of liquid, they have to be
allowed to choose between describing it in terms of the volume, level or output
flow. Different choices are possible within a given simulation run.

An interactive model can be implemented in RMD as shown in Fig. 5. The
B-chart is composed of as many modes as different state selections are required:
V_interact, h_interact and F_interact modes. The ve_V activity class, which
is associated with the V_interact mode, contains the tank system model with
the liquid volume as a state variable. Analogously, the ve_h and ve_F activity
classes, which are associated with the h_interact and F_interact modes, contain
the model with the liquid level and the output flow as state variables, respec-
tively. The tank area (A), hole area (a) and pump input voltage (v) are defined
as interactive quantities in the three activity classes. The adequate mode (i.e.,
the one with the required state selection) is used to execute each interactive
action from the user. The transition trigger conditions are defined using three
signals (to_V, to_h and to_F) that are emitted by buttons placed in the graphic
model-to-user interface. The simulation ends when the liquid volume becomes
equal or less than zero.

IV. Example 2. Models with Variable Behavior

Industrial boilers are widely used in chemical industry and education to illus-
trate control laws. A virtual laboratory for an industrial boiler with two different
control strategies (manual and decentralized PID) is described in [21, 22]. The
input of liquid water is placed at the boiler bottom and the vapor output valve is
placed at the top. Water in the boiler is heated permanently. Water level inside
the boiler and output flow of vapor are controlled variables. Pump throughput
and heater power are manipulated variables.

Water boiler, heating system, liquid source, vapor output valve and vapor
downstream pressure have been modeled using RMD. The model diagram is
shown in Fig. 6. The boiler model is based on the mathematical model described
in [23]. The constitutive relation of the valve is (1), where F, =1.1-10" Kg-s°
L.pal. The downstream vapor pressure at normal operating conditions is

p, =1.14-10° Pa.
F=F-Jp-(P-p) (1)

The relationship between vapor pressure p [Pa] and boiling temperature T
[K] is (2), where x =647.27-T K.

log 220.89-10° ) x 3.346+4.14-107 -x )
10 499 1+1.38-1072-x 2)
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The boiling process is described in [24].
While the liquid temperature is below the
boiling temperature, no phase change takes
place. If under this condition the liquid is
heated, its temperature will grow until it
reaches the boiling temperature. When the
boiling temperature is reached, the boiling
process starts. While the liquid is boiling,
the liquid temperature equals to the boiling
temperature at the corresponding vapor
pressure and the heat supplied to the liquid
is employed in producing steam.

B-Chart for the boiling process is
shown in Fig. 7. The degree-of-freedom
number depends on the mode. While being
in the no-boiling mode, the mass and
temperature of the liquid, and the number
of moles and temperature of the vapor can
be set independently. While being in the

Fig. 7. B-chart for the boling process  boiling mode, the liquid mass, and the mol

number and temperature of the gas can be

set independently. However, the liquid temperature is a function of the vapor

pressure, which is a function of the vapor pressure and moles, and the liquid
mass, which determines the gas volume.

Fig. 6. Diagram of the boiler model

V. Conclusions

Two strong points of MVL used in RMD are high flexibility in the description
of variable structure models and support for interactive simulations. However,
the adopted approach has limitations, because building equations for «physical»
component models with general hybrid behavior for large scale systems is only
possible at run time. Future research will provide development of highly efficient
algorithms for symbolic differentiation and index reduction.
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