
Abstract— Agent-Based Simulation (ABS) environments are
somewhat of a black box to many modelers in Social Simulation
or  Economics  and  their  inner  workings  are  often  only
understood by the computer scientists who developed them. We
intend  to  shed  some  light  into  the  inner  workings  of  such
systems. For this purpose we have developed our own simple
ABS environment in C++ using hierarchical state machines. In
this  paper  we  provide  insight  into  the  design  of  our  ABS
environment and then test the performance of it by comparing
it to that of an "off the shelf" commercial package. While some
programming knowledge is required to understand the paper in
all its depth we believe that non programming experts will also
benefit  from  this  paper  as  it  provides  an  insight  into  the
underlying  mechanisms  operating  within  an  ABS  using
graphical  representations  and  explanations  that  avoid  heavy
technical jargon.

I. INTRODUCTION

N Agent-Based  Simulation  (ABS)  environment  is  a

system in which a population of agents (autonomous

objects that behave in a predefined way) are created using a

template in order  to investigate the consequences of  these

agents  acting together  in  an environment.  The application

area that we focus on in this paper is Social Simulation [1]

and  we  use  examples  from  computer  games  (which  are

related to Social Simulation but much easier to understand)

to describe the agents we created during this investigation.

The  very  simple  experiments  we  conduct  help  us  to

understand  situations  which  can  otherwise  be  difficult  to

replicate. ABS experiments can sometimes yield unexpected

results,  for  example an ABS constructed by Bonabeau [2]

revealed that placing a column in front of an emergency exit

can  improve  the  flow  of  people  out  of  the  exit  in  an

emergency  situation,  which  is  not  the  first  idea  which

common sense would dictate.

A

This paper will describe and promote the understanding

of the inner workings of an ABS environment that has been

developed from the ground up. For the software engineering

process (i.e. the development of the ABS environment) we

take  our  ideas  from  the  Multi-Agent  Systems  field.  The

models we implement during the validation phase are those

typically created in the Agent-Based Modelling community

(e.g.  by  Social  Scientists).  A good  explanation  about  the

relevant differences between both fields can be found in [3].

In  order  to  explore  how  an  ABS  system  works,  and

subsequently construct  one,  it  is necessary to first  explore

the  concepts  that  are  involved  in  creating  such  a  system.

Simple ABS systems are generally implemented using finite

state  machines.  Once  the  behaviour  of  agents  gets  more

complex  the  introduction  of  hierarchical  state  machines

becomes necessary to avoid the over-complication of finite

state  machines,  leading  to  state  machines  that  can  be

notoriously  difficult  to  fully  understand.  Object-oriented

design principles will be used in the construction of our tool

in order to promote its extensibility, allowing anyone to add

features  or  extend  classes  where it  will  benefit  them. The

Unified Modelling Language (UML) is a graphical notation

that  is  often  employed  in  Software  Engineering  for

conducting object oriented analysis and design. AgentUML

is  an  extension  of  UML that  is  specifically  used  for  the

development  of  multi-agent  systems  [4],  as  for  example

mobile  agents  [5],  [6].  However,  in  the  field  of  Social

Simulation it is still rarely used for developing agent-based

simulation models that represent social processes [7]. In this

paper we use the UML on the one hand to show the structure

of  the  proposed  ABS  environment  (in  form  of  a  class

diagram) and we use statecharts on the other hand for the

design  of  our  agent  based  models  (i.e.  to  represent  the

behaviour of our agents) as proposed by [8].

In  order  to  provide  the  reader  with  the  necessary

understanding of all of the topics within this paper we first

provide  a  short  introduction  to  object-oriented  methods,

agent-based modelling and the concepts of state machines.

After this we illustrate the design of the ABS system which

we have implemented. Finally we focus on the validation of

our  system  in  order  to  demonstrate  that  its  components

adhere  to  the  standards  of  an  ABS  system.  During  the

validation process we also take a look at the efficiency of

our  system  compared  to  an  "off  the  shelf"  commercial

package in terms of memory usage and runtime.

II.BACKGROUND

A. Object Oriented Methods

Object-orientation is an important concept for designing

software  in  order  to  promote  extendibility  of  existing

systems. The object model encompasses the core principles

of abstraction, encapsulation, modularity, and hierarchy [9].
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It  leads to reusable components,  wherever possible,  rather

than  the  more  bespoke  solutions  which  procedural

programming  often  offers.  It  also  breaks  programs  down

into understandable chunks, and by designing software with

object-oriented  methods  in  mind  it  can  be  more  easily

extended and fixed when problems arise.

In  order  to  promote  object  oriented  principles  in  our

design  we  have  taken  a  number  of  design  patterns  into

consideration while designing our system. A design pattern

is a standardized way of implementing a certain feature in a

program [10] and makes it easier to reuse successful designs

and architectures [11]. This will be discussed in more detail

in Section III-A.

UML is a graphical notation commonly used in software

engineering for the purpose of object oriented analysis and

design.  Through  UML it  is  possible  to  visualise,  specify,

construct, and document software applications. It acts as a

specification  language  in  which  we  can  precisely  and

unambiguously capture our design decision [12]. Besides the

benefits for software design some of the diagrams (e.g. use

case  diagrams  and  state  machine  diagrams)  seem to  lend

themselves  particularly  well  to  Agent-Based  Modelling

(ABM) [13]. Therefore we use the UML notation not only

for designing our ABS environment but also for modelling

the agents that we use within our system.

B. Agent-Based Modelling

In  order  to  get  a  good  picture  of  what  an  ABS

environment is, we first need to define what the term agent

means, including the principles on which an agent acts and

behaves. In the eyes of software engineers agents are simply

"objects  with  attitude"  [14]  in  the  sense  of  them  being

objects with some additional behaviour added, for instance,

mobility, inference, etc. But there are a number of different

conflicting  views  on  what  an  agent  is,  depending  on  the

situation  and  discipline  for  which  it  is  being  used  [15].

However,  often  there  is  a  point  where  the  views  start  to

overlap  with  each  other.  Castle  and  Crooks  [16]  discuss

different points of view and merge them together to form a

universal  definition of an agent,  which varying disciplines

can  agree  with.  Closely  related  to  their  definition  we

understand an agent to be an autonomous object with some

memory, which is able to make individual decisions based

on influences from its environment (e.g. messages received

from other agents).

The agents which we intend to create have the ability to

make  decisions  based  on  internal  transition  trigger  rules

which might be influenced by the environment they observe.

These transition trigger rules which have been programmed

into the state machine of the agent and most often fall into

one  of  three  categories:  condition-based,  time-based,  or

message-based [17]. Details about different transition types

can be found in Section III-C.

An  agent  is  often  described  as  having  some  sort  of

memory, which comprises of the last state they were in or in

the case of composite states, the last super or sub-state they

were in. This is the concept of state history, and there are

two types: Deep history and shallow history. Deep history

goes  through  multiple  levels  of  composite  state,  and  will

return  to  the  last  state  within  a  state  within  a  state  etc.

Shallow history will  only return  the last  state to within a

state.

The last major thing to consider with agents is a form of

control. As mentioned previously, finite state machines are

often used in the creation of agents, as a means to describe

the behaviour of an agent, or in other words, a template for

how  they  should  act,  with  conditions  specifying  when  a

transition should be made. This leads us onto the topic of

Finite State Machines (FSMs).

C. Finite State Machines

A Finite-State Machine (FSM) is conceived as an abstract

machine that can be in one of a finite number of states. It

can change from one state to another  when initiated by a

triggering event or condition; this is called a transition [18].

There  are  different  types  of  FSMs that  can  be  used  in  a

variety of different situations. We distinguish in this paper

specifically  between  deterministic  and  stochastic  FSMs.

While  deterministic  FSMs  are  based  on  mathematical

formulas and can be formally proven, stochastic FSMs use

stochastic rules for deciding about transitions and therefore

the exact outcome cannot be predicted; however it may be

estimated using models and theories.  A turnstile is a good

example  of  a  simple  deterministic  FSM.  It  can  either  be

locked or unlocked, and there are predefined conditions that

determine which state the turnstile is in, and the transitions it

can take from each state. Fig. 1 demonstrates this.

Fig. 1 A simple deterministic FSM (Source: [19])

More complex state machines are often used for economic

models [20] and the transition function, which defines the

transitions between states, is a lot more complex. For ABM

we  normally  use  stochastic  FSMs.  When  behavioural

models start to be implemented, FSMs can quickly become

complex without  some sort  of  organisation.  In  such  cases

Hierarchical  State Machines  (HSMs) are  be introduced  in

order to keep such a model understandable. In HSMs states

may  contain  other  FSMs.  This  is  often  programmatically

done with nested "if" statements.

D. Hierarchical State Machines

A HSM is similar to the composite state we see in UML

state diagrams, and it provides the same functionality. One

of the simplest ways to describe a HSM is by showing an

example of one of its uses in Game AI design. Non Player

Characters (NPCs) must have the ability to act in a complex

way in order  to give the player  a  challenge.  If  all  of  this

behaviour were to be coded with a single if-then-else block,

the code would quickly become hard both to manage, and

for programmers to read and extend, specifically where the

more  recent  generation  of  game  AI  is  concerned.  Fig.  2
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shows the first level of a HSM of a typical NPC enemy in a

typical first person shooter game.

Fig. 2 Typical FSM for an NPC guard in a game

The HSM provides a structural concept for representing

behaviour, which can otherwise be complex and resulting in

somewhat  of  "Spaghetti"  code  when  trying  to  split  into

logical if statements, in order to structure the functionality

into  logical  categories  of  behaviour.  Fig.  3  shows  the

hierarchical state "attack" from Fig. 2.

Fig. 3 Hierarchical attack state from NPC guard

Reference  [21]  talks  about  an  object-oriented  software

tool  that  is  used  for  creating  the  behaviour  for  NPCs  in

games by making use of HSMs. The system uses the logical

components  of  a state machine,  as well  as making use of

object-oriented  principles  such  as  inheritance  and  design

patterns.  This  is  similar  to  the  work  we  are  conducting,

whereby state machines are being used as a template for the

behaviour of entities. In our tool, more focus will be placed

on the collaboration  and  communication  of  agents,  unlike

NPCs which often have no need to communicate or interact

with each other.

E. UML State Machine Diagrams

The UML state machine diagram (also called statechart) is

used to depict HSMs. Elements of this diagram are states,

transitions,  and  composite  states  (which  are  equivalent  to

hierarchical  states).  Fig.  4  shows  a  UML  state  machine

diagram of an office worker.

The  office  worker  has  three  main  states:  "atHome",

"elseWhere" and "atOffice". The "atOffice" state shows that

while the worker may be at the office, there are still two sub-

states that the worker can be in - "working" and "dozing".

The  statechart  entry (the  initial  state  the  state  machine  is

initialized into) is represented by the uppermost symbol in

the state-chart, the circle with an arrow with a line over it.

The history state in this example can be described using the

following scenario:  If  a worker  was doing work,  but then

decided to take a break and go elsewhere, they would return

to what they were doing before the break. The history state

provides this capability. However, if the worker was dozing

and then took a break, they would not start at the entry state

of working when returning, but instead would return to the

dozing state.

III. DESIGN

The design of the finite state machines that run the agents

is based on the logical components of a state machine, as is

the  case  in  UML,  where  state  machines  have  states,

transitions,  and  composite  states  (state  machines  within

states).  The agent  of  this  system contains  the information

relevant  to  the  state  machine,  which  includes  the  current

state, last known state and history states for the super-state it

was last in. This is a more memory-efficient way of storing

the information, rather than having each agent assigned its

own  state  machine,  although  the  logic  behind  this  is

explained later.

A. Design Description

This  section  will  describe  the  design  of  the  system,

including a simple class diagram of the main components of

the agent.  For the implementation we have decided to use

C++  which  in  some  cases  has  influenced  our  design

decisions (e.g. multiple inheritance is not supported in Java).

Fig.  5  shows the classes  and  initial  relationships  between

each of the classes in our system.

The numbers in Fig. 5 represent the associations between

objects, with * representing any number of. For example, the

relationship between  Agent and  StateMachine is  that

there  is  one  StateMachine to  one  Agent,  and  the

relationship between  StateMachine and  State is  that

one  StateMachine is composed of one or more  State

objects.  The  hollow  arrowhead  represents  inheritance,

showing that  CompositeState inherits  properties  from

both a State and a StateMachine. The Attributes

of each object are the variables stored within the object, and

the  Operations are  a  list  of  methods  which  are  used

Fig. 4 UML diagram for an office worker (Source: [13])
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within the object.  As such,  the object  can  be accessed  as

either  a  State or  a  StateMachine.  The  full  class

diagram including  the  methods  that  are  used  internally  is

available upon request.

The way the system is designed ensures object-oriented

principles are taken into account so as any one of the objects

in  the  system  can  be  extended.  The  CompositeState

class  makes  use  of  inheritance  to  reuse  the  code  from

StateMachine and  State,  since  it  exhibits  the

behaviours  of  both  classes.  A number  of  design  patterns

such  as  the  Observer  pattern,  the  State  pattern,  and  the

Model-View-Controller  pattern  have  been  taken  into

consideration  during the design process.  For  example,  the

Observer  pattern  defines  a  one-to-many  dependency

between objects so that when one object changes state, all its

dependents are notified and updated automatically [10]. In

our case the  Agent class is constructed using the ideas of

the  observer  design  pattern,  allowing agents  to  constantly

monitor  transition conditions  and  allow them to enact  the

transitions  themselves.  This  removes  the  need  for  the

transition conditions to be explicitly checked.

In  the  following  sub-sections  we  provide  some  more

detailed design strategies for the key elements of our ABS

environment.  Here  we look at  the environment  and  agent

design,  the state machine design and explain the different

time models we used.

B. Environment and Agent Design

The  Environment in  our  ABS  environment  is  a

container for the agents, which manages their creation and

deletion.  This  class  also handles  the sending  of  messages

intended for all agents rather than singular agents. The agent

class is designed to hold and handle the state machine for

the instance of the agent, including telling the state machine

to advance a time step in model time. There are two possible

ways  of  controlling  the  state  machine  which  links  to  an

agent.  The  first  (and  simpler)  way  is  to  assign  a  state

machine  to  each  agent.  The  second  (more  complex)  way,

proposed by [21], is to use a simplified representation of a

state machine without  having to create  a full  machine for

each agent; a way which can save a lot of memory. In the

latter case the information for the current state of the agent is

stored in the agent itself, whilst the state machine stores all

of  the logic  for  the  states  and  transitions.  The reason  for

storing information this way, rather than having a machine

for each agent, is that even for simple state machines, a high

number of objects will take up a lot of memory regardless of

how  small  these  objects  are.  Due  to  the  object-oriented

nature of this design, each state machine object requires the

creation  of  every state and  transition present  in  that  state

machine. The number of objects soon becomes very large,

and becomes somewhat of a waste of memory, albeit at the

expense of slower processing of state changes. However if a

small number of agents were being created or the user were

not concerned about memory usage, the gain in state change

speed may be preferable.

Let us illustrate this principle with an example. Presume a

state  machine  comprises  of  a  total  of  10  states  and  10

transitions, and each object takes 1 byte of memory. In order

to create 100,000 agents, 1 state machine + 10 states + 10

transitions + 1 agent object will be created for each agent.

This  totals  22  *  100,000  objects,  so 2,200,000 objects  in

memory.  If  there  is  only  1  state  machine  acting  as  a

template,  there  are  100,000  agent  objects,  plus  1  state

machine,  10  states  and  10  transitions,  totalling  100,022

objects in memory. Of course, the larger the state machine is,

the more effect it has on the size of the agent. Since we are

trying to save memory here, the choice is only logical. We

will provide evidence for the memory saving capabilities of

this  solution  in  Section  IV  when  we  validate  our  ABS

environment. 

C. State Machine Design

A  state  machine  has  logical  components  to  it,  which

makes it easy to split up into the objects we talk about in

object-oriented programming.  The typical  state machine is

fairly simple and composed of a set of states, and a set of

transitions. Composite states however, whilst being regarded

as a state within the agent state machine, effectively contain

their own state machine. This can be recursive, and there can

be many composite states within another state. Fig. 6 shows

Fig. 5 UML class diagram for our ABS environment
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a  UML diagram  similar  to  the  NPC  in  Fig.  2  but  more

complex.

Fig. 6 UML version of a more complex NPC Guard

What we can see in Fig. 6 is that within each composite

state there  is  an  initial  state pointer.  This  indicates  that  a

composite state effectively contains a state machine, and so

exhibits properties  of  both,  a  state machine  and a normal

state. Therefore it makes sense to reuse both, the state and

state machine  object,  through  use  of  multiple  inheritance.

Inheriting properties from multiple objects can be a complex

problem in object-oriented programming [22]. However, in

our  case  it  seems  an  appropriate  solution  to  the

CompositeState problem.

Transitions within a state machine have certain conditions

which cause the transition to trigger, and in the case of ABM

the  transitions  can  be  triggered  by a  number  of  different

things.  We  have  considered  the  four  following  triggers

which  are  often  associated  with  transitions:  condition;

message  arrival;  rate;  timeout.  These  are  quite  basic

transitions which will cover transitions most people need to

implement,  however  if  any  other  types  are  needed,  the

transition class can be extended appropriately.

Condition-based  transitions can  be  specified  by  the

programmer  when  a  certain  condition  is  met.  Since  this

condition could be any number of things (a block of code

which can return true or false), there are two feasible ways

of implementing such a transition. The first method would

be by introducing time steps to the model. This would be

using a synchronous time model, and therefore perhaps not

the  best  way  to  implement  things  which  reflect  the  real

world, in particular in Social Simulation. We as people are

not expected to make decisions every arbitrary unit of time,

we  simply  make  decisions  when  they  need  to  be  made.

Asynchronous time, which does not specify time steps and

instead  relies  on  agents  doing  things  when a  condition  is

met,  would  reflect  the  real  world  more  accurately,  and  is

also  more  computationally  efficient.  One  way  of

implementing  such  a  time  model  would  be  to  use  the

observer pattern. This means that once a condition is needed

for  a transition,  an observer  will  be added to monitor  the

condition,  and  when  the  condition  is  satisfied,  the

appropriate object will be notified. In our case, this will be

the lightweight object which is used to represent the agent

instance of our state machine.

Time-based transitions are based on either timeouts, or a

rate at which agents move from one state to another. The

method  in  which  this  transition  can  be  implemented  is

similar to Boolean condition based; however an easier way

of implementing such a transition in C++ would be simply

to set a timer, which notifies the agent  instance of a state

machine  upon  expiry.  This  eliminates  the  need  for  an

additional observer to be added to the system.

Message-based  transitions are  the  ones  which  are

triggered upon receiving a message. No particular observer

is required for this, as messages should be processed upon

arrival at an agent. When a message arrives, it will be stored

by the agent and a transition from the current state will be

triggered if that particular message matches the condition of

the agent.

D. Time Models

Agents  need  to  periodically  make decisions,  which  are

based on the transitions in the state machine. There are two

main  ways  of  doing  this:  using  an  asynchronous  and

synchronous time model. Both ways have their advantages

and disadvantages depending on what type of model is being

created.

Asynchronous time models are the most commonly used

when trying to model real world situations where an agent

acts of their own accord at random time intervals [23]. This

reflects  best  what  happens  in  the  real  world  in  social

systems.  It  can  also  be  said  that  typically  asynchronous

models  are  more  efficient  in  terms  of  computational

expense, due to the fact that things are only triggered when

they need to be triggered,  whereas the same model run in

asynchronous time will trigger at every time step regardless

of whether it is necessary or not.

Synchronous  time  models on  the  other  hand  are  where

"time steps" are defined, and each time step triggers an agent

to  perform  an  action.  This  action  can  directly  trigger  a

transition, or it can signal to the agent that it is time to make

a decision  on  whether  to  make a  transition or  not.  When

using  synchronous  time models,  time steps  can  notify  an

agent  based  on  probability,  effectively  imitating

asynchronous time models.

In our system we have the choice of which time model to

use. Obviously there are advantages and disadvantages for

both and it  really depends on the application,  which  time

model should be used.

IV. VALIDATION

Our  ABS environment  has  been  implemented in  Visual

Studio 12 using C++ as the programming language. The "off

the  shelf"  commercial  package  we  have  chosen  for  our

validation  experiments  is  AnyLogic  7,  which  is  a  multi-

paradigm  eclipse  based  simulation  IDE  that  supports
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graphical model design for all major simulation paradigms

(including  ABM)  [24].  In  order  to  assess  run  time  and

memory  usage  we  run  the  AnyLogic  7  and  the  C++

implementation on their own with no other processes using

significant RAM or CPU time. The experiments were run on

the same system to ensure fairness.

For  this  paper  we  have  conducted  two  validation

experiments which test individual components of the agent,

including simple behaviour and composite states. We used

the synchronous time model for our tests due to the fact that

only time-based conditions were included in the model. We

have conducted further experiments using the asynchronous

time model as well as all types of transition triggers but due

to the limited space we cannot present them here. Results of

those experiments are available on request.

A. Overview of Validation Experiments

We have constructed a number of experiments to test the

individual components of our system. The purpose of these

experiments is to verify that the models running in our ABS

environment behave as expected and we also compare the

performance (in terms of runtime and memory usage) of our

system to that of AnyLogic 7.

With  regards  to  creating  the  models  both  simulation

systems have a very different approach: Our system requires

some basic C++ programming while in AnyLogic you can

use drag/drop to create UML charts and then simply set up

the  transition  triggers.  The  AnyLogic  model  is  then

automatically translated into Java code and is ready to be

executed  from within the AnyLogic  environment.  For  our

system,  in  order  to  construct  the  state  machines  for  the

experiments,  an  empty  class  implementing

StateMachine is created, first listing each of the states as

variables,  including  composite  states.  The  transitions  are

then defined, and finally all the states and transitions linked

together by using an addTransition method.

B. Validation:  Experiment 1

The  first  experiment  focuses  on  testing  the  simple

decision-making capabilities of an agent. The state machine

used  to  control  behaviour  here  consists  of  two  states:

stateRed and  stateBlue.  When  created,  each  agent

initially is in stateBlue and based on probability takes a

transition that leaves it to a final state stateRed. Once in

stateRed the agent will not change states any more. The

UML statechart for the simple agent is provided in Fig. 7.

The initial environment was run using 400 agents.

A counter was used in each instance to count the number

of agents which are in each state initially, and after 5 time

steps.  Fig.  8  shows our  system after  5 time steps (with 0

representing  stateBlue and 1 representing  stateRed),

and  Fig.  9  shows  the  counter  variables  for  each  state  in

AnyLogic.

It  can  be  seen  that  there  is  a  slight  difference  in  the

number  of  agents  in  each  state,  due  to  random  number

generation in each instance yielding different  results.  This

shows that the agents in our system behave as expected. The

experiment  was  then  altered  to  run  in  virtual  mode  in

AnyLogic,  which  simply  executes  transitions  as  fast  as

possible, and was also run without any GUI in our system.

The results in each instance are shown in Tables I and II.

Since the time taken cannot be easily recorded in AnyLogic,

the number of time steps executed in virtual time over 10

seconds was gathered, and averaged per second. The time

steps per second on our model was calculated using the time

taken for all of the transitions to complete.

TABLE I.
EXPERIMENT 1 RESULTS USING OUR SYSTEM

TABLE II.

EXPERIMENT 1 RESULTS USING ANYLOGIC

As  can  be  seen  in  Table  I,  the  number  of  time  steps

executed per  second is linearly affected by the number of

Fig. 7: UML state-chart for a simple state machine agent

Fig. 8: Our system model after 5 time steps

Fig. 9: AnyLogic model after 5 time steps
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agents  present  in  the  model,  and  the  memory  used  also

grows  fairly  linearly  with  the  amount  of  agents  when

concerned with a large agent population. Table II shows that

AnyLogic also exhibits the same linear increase of memory

usage  with  agent  population  size;  however,  this  memory

usage is far higher than our tool. The amount of time steps

that is executed per second is also quite drastically affected

in AnyLogic when a large number of agents are put into the

simulation,  although  it  is  faster  than  with  our  tool.  This

could be due to the use of the lightweight state object which

is used to save memory, and a performance increase may be

obtained  with  the  expense  of  more  memory  usage  by

assigning  an  individual  state  machine  to  each  agent.  It

should be noted that AnyLogic can in fact execute multiple

transitions per time step, so the number of transitions taken

may be more than the time steps executed. This shows us

that an improvement needs to be made to our tool in terms

of  the  speed  of  the  model,  focusing  on  the  use  of  the

lightweight AgentMachine object used to save memory.

C. Validation: Experiment 2

This experiment implements the idea of composite state

machines.  In  addition  to  the  simple  agent  behaviour

experiment, the  stateRed state will now contain a clone

of the previous state machine. The agent should move into

the stateRed state and move between the states within this

composite state. The UML statechart for the more complex

agent is provided in Fig. 10.

Fig. 10: UML state-chart with a composite state machine agent

As with the previous experiment, a counter was used in

both AnyLogic and our tool to count the number of agents in

each state. Fig. 11 and 12 illustrate the number of agents in

each  state  after  5  time  steps  in  both,  our  system  and  in

AnyLogic.  In  Fig.  11,  the  numbers  0  and  1  represent

stateBlue and  stateRed,  respectively,  and  the

numbers  2  and  3  represent  compStateBlue and

compStateRed, respectively. As can be seen in Figs. 11 &

12, the number of agents in each state varies between our

tool  and  AnyLogic  due  to  random number  being  used  to

determine whether a transition should be made, however the

agent behaves as expected with a composite state.

Fig. 11: Our system model after 5 time steps

Fig. 12: AnyLogic model after 5 time steps

As previously, the experiment was then altered to run in

virtual mode in AnyLogic, which simply executes transitions

as fast as possible, and without any GUI in our system. The

results are presented in Table III for our system and in Table

IV for AnyLogic.

TABLE III.

EXPERIMENT 2 RESULTS USING OUR SYSTEM

TABLE IV.

EXPERIMENT 2 RESULTS USING ANYLOGIC

Table III shows that the performance for our system has

remained almost the same as in Experiment 1 in terms of

memory  usage  and  time  steps  executed  per  second.  The

same  is  true  for  AnyLogic  in  relation  to  the  time  steps

executed per second, as can be seen in Table IV. However,

memory  usage  has  gone  up  quite  significantly.  This

demonstrates  the  advantages  of  our  state  machine  design.

One can save potentially a lot of memory when constructing

models that feature more complex statecharts.

V.CONCLUSIONS

This paper provides an insight into the often unexplored

inside  world  of  ABS environments.  We have  defined  the

different components (classes) of such a system, including

Environment,  Agent,  StateMachine,  State,
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Transition, and CompositeState. For each of these,

we  have  defined  what  is  expected  of  them  in  an  ABS

system, the links  between  them, and  in  addition  we have

explored a variety of different ways in which these can be

implemented  whilst  fulfilling the requirements  of  an  ABS

system. We have also designed and implemented some basic

tests which showed that the components work as expected.

In Section IV we have compared the performance of our

system to that of the "off the shelf" package AnyLogic. The

results demonstrate that with a synchronous time model in

mind, memory usage of our tool is much lower than that of

AnyLogic.  This  demonstrates  the  value  of  our  ABS

environment when considering larger models where memory

usage  can  be  of  high  importance,  and  where  large  agent

populations are being implemented. However, there is still

much room for improvement in terms of performance, which

has become apparent from our experimentation.

We have  extensively  used  object  oriented  analysis  and

design principles to create a system that is easy for others to

use  and  extend.  This  should  allow  others  to  easily

implement  features  they  might  want  to  include.  Through

providing  UML  diagrams  we  are  hopeful  that  we  have

helped  non computer  scientists  to  understand,  perhaps  for

the first time, how ABS works internally. Through our tests

we  have  demonstrated  that  our  C++  implementation  is  a

promising  solution  for  use  within  the  area  of  ABS when

memory usage is of a higher priority than features.

Currently  we  are  continuing  our  validation  efforts  by

building  more  complex  real  world  models  in  our  ABS

environment  and  comparing  their  performance  to  the

performance  of  existing  models  that  we  have  previously

built in AnyLogic, e.g. [25]-[27]. With regards to extending

the  ABS  environment  we  are  considering  to  provide

researchers  with  an  easier  way  of  creating  simple  state

machines. XML would be a useful file format to consider for

storing  models  of  finite  state  machines,  as  all  the

information  on states  and  transitions could  be stored  in a

structured  way,  and  many  tools  which  are  used  to  draw

UML  diagrams  support  the  XML  file  format.  Here  we

follow the idea of [21] where a custom file format is used to

interpret HSMs.

REFERENCES

[1] M. W. Macy and R. Willer, "From factors  to actors:  Computational
sociology  and agent-based modeling",  Annual Review of  Sociology,
28(1),  pp.  143-166,  2002.  DOI:  10.1146/annurev.soc.28.110601.
141117

[2] E.  Bonabeau,  "Agent-based  modeling:  Methods  and  techniques  for
simulating human systems", Proceedings of the National Academy of
Sciences of the United States of America, 99, pp. 7280-7287, 2002.
DOI: 10.1073/pnas.082080899.

[3] Y. Shoham and K. Leyton-Brown,  Multiagent Systems: Algorithmic,
Game-Theoretic,  and  Logical  Foundations,  Cambridge  University
Press, 2008.

[4] B. Bauer, J. P. Müller, and J. Odell, "Agent UML: A formalism for
specifying  multiagent  software  systems",  International  Journal  of
Software Engineering and Knowledge Engineering, 11(03), pp. 207-
230, 2001. DOI: 10.1142/S0218194001000517

[5] G.  Fortino,  W. Russo,  and E. Zimeo,  "A statecharts-based software
development process for  mobile  agents",  Information  and  Software
Technology,  46(13),  pp.  907-921,  2004.  DOI:  10.1016/j.infsof.
2004.04.005

[6] G. Fortino, W. Russo, "ELDAMeth: An agent-oriented methodology
for  simulation-based  prototyping  of  distributed  agent  systems",
Information  and  Software  Technology,  54(6),  pp.  608–624,  2012.
DOI: 10.1016/j.infsof.2011.08.006

[7] Engineering  Agent-Based  Social  Simulations,  CfP  for  a  JASSS
Special  Issue,  http://www.cs.nott.ac.uk/~pos/docs/pos-CfP-
JASSS_EngineeringABSS.pdf [last accessed 12/04/2014]

[8] B.  Hugues,  "UML for  ABM",  Journal  of  Artificial  Societies  and
Social Simulation, 15(1) 9, 2012.

[9] G. Booch, R. A. Maksimchuk, M. W. Engle, B.J. Young, J. Conallen,
and  K.A.  Houston,  Object-Oriented  Analysis  and  Design  with
Applications, 3rd Edition, Pearson Education, 2007.

[10] E. Freeman, E. Robson, B. Bates, and K. Sierra,  Head First Design
Patterns, O'Reilly Media, Inc., 2004.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,  Design Patterns:
Elements of Reusable Object-Oriented Software,  Pearson Education,
1994.

[12] K.  Barclay  and  J.  Savage,  Object-oriented  Design  with  UML and
Java, Butterworth-Heinemann, 2003.

[13] P.-O. Siebers,  and B.  S. Onggo,  "Graphical representation of  agent-
based models in Operational Research and Management Science using
UML", in  Proceedings of  the 7th OR Society Simulation  Workshop
(SW14), 1-2 Apr 2014, Worcestershire, UK.

[14] J. Bradshaw (ed.), Software Agents, MIT Press, 1997. 
[15] J.  Ferber,  Multi-Agent  Systems:  An  Introduction  to  Distributed

Artificial Intelligence, Vol. 1, Addison-Wesley, 1999.
[16] C. J. E. Castle and A. T. Crooks, "Principles and concepts of agent-

based  modelling  for  developing  geospatial  simulations",  Working
Paper 110, London: University College London, Centre for Advanced
Spatial Analysis, 2006.

[17] M. Buckland,  Programming Game AI by Example, Jones & Bartlett
Learning, 2005.

[18] F. Wagner, R. Schmuki,  T. Wagner, and P. Wolstenholme,  Modeling
Software  with  Finite  State  Machines:  A  Practical  Approach.  CRC
Press, 2006.

[19] Wikipedia,  "File:Turnstile  state  machine  colored.svg.",
http://en.wikipedia.org/wiki/File:Turnstile_state_machine_colored.svg
[last accessed 12/04/2014]

[20] J.  D.  Farmer  and  D.  Foley,  "The  economy  needs  agent-based
modelling",  Nature,  460(7256)  pp.  685-686,  2009.  DOI:  10.1038/
460685a

[21] J.  Ricardo,  E.  B.  Passos,  W.  Esteban,  C.  Bruno  and  C.  Pedro,
"Dynamic  game  object  component  system  for  mutable  behaviour
characters",  in  Proceedings  of  the  VII  Brazilian  Symposium  on
Computer Games and Digital Entertainment, 10-12 Nov 2008, Brazil.

[22] R. C. Martin, "Java and C++; A critical comparison",  ObjectMentor,
1997. 

[23] A. Borshchev,  The Big Book of Simulation Modeling: Multi-Method
Modeling with AnyLogic 6. AnyLogic North America, 2013.

[24] XJ  Technologies,  http://www.anylogic.com/  [last  accessed
12/04/2014]

[25] P.-O. Siebers and U. Aickelin,  "A first approach on  modelling staff
proactiveness  in  retail  simulation  models",  Journal  of  Artificial
Societies and Social Simulation, 14(2) 2, 2011.

[26] T.  Zhang,  P.-O.  Siebers,  and  U.  Aickelin,  "Modelling  Electricity
Consumption in Office Buildings: An Agent Based Approach", Energy
and  Buildings,  43(10),  pp.  2882-2892,  2011.  DOI:  10.1145/
2422531.2422535

[27] T. Zhang,  P.-O. Siebers,  and U. Aickelin,  "Modelling the effects of
user learning on forced innovation diffusion", in  Proceedings of the
UK OR Society Simulation Workshop 2012 (SW12), 26-28 Mar 2012,
Worcestershire, UK.

1460 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014


