
Abstract— Agent-Based Simulation (ABS) environments are
somewhat of a black box to many modelers in Social Simulation
or Economics and their inner workings are often only
understood by the computer scientists who developed them. We
intend to shed some light into the inner workings of such
systems. For this purpose we have developed our own simple
ABS environment in C++ using hierarchical state machines. In
this paper we provide insight into the design of our ABS
environment and then test the performance of it by comparing
it to that of an "off the shelf" commercial package. While some
programming knowledge is required to understand the paper in
all its depth we believe that non programming experts will also
benefit from this paper as it provides an insight into the
underlying mechanisms operating within an ABS using
graphical representations and explanations that avoid heavy
technical jargon.

I. INTRODUCTION

N Agent-Based Simulation (ABS) environment is a

system in which a population of agents (autonomous

objects that behave in a predefined way) are created using a

template in order to investigate the consequences of these

agents acting together in an environment. The application

area that we focus on in this paper is Social Simulation [1]

and we use examples from computer games (which are

related to Social Simulation but much easier to understand)

to describe the agents we created during this investigation.

The very simple experiments we conduct help us to

understand situations which can otherwise be difficult to

replicate. ABS experiments can sometimes yield unexpected

results, for example an ABS constructed by Bonabeau [2]

revealed that placing a column in front of an emergency exit

can improve the flow of people out of the exit in an

emergency situation, which is not the first idea which

common sense would dictate.

A

This paper will describe and promote the understanding

of the inner workings of an ABS environment that has been

developed from the ground up. For the software engineering

process (i.e. the development of the ABS environment) we

take our ideas from the Multi-Agent Systems field. The

models we implement during the validation phase are those

typically created in the Agent-Based Modelling community

(e.g. by Social Scientists). A good explanation about the

relevant differences between both fields can be found in [3].

In order to explore how an ABS system works, and

subsequently construct one, it is necessary to first explore

the concepts that are involved in creating such a system.

Simple ABS systems are generally implemented using finite

state machines. Once the behaviour of agents gets more

complex the introduction of hierarchical state machines

becomes necessary to avoid the over-complication of finite

state machines, leading to state machines that can be

notoriously difficult to fully understand. Object-oriented

design principles will be used in the construction of our tool

in order to promote its extensibility, allowing anyone to add

features or extend classes where it will benefit them. The

Unified Modelling Language (UML) is a graphical notation

that is often employed in Software Engineering for

conducting object oriented analysis and design. AgentUML

is an extension of UML that is specifically used for the

development of multi-agent systems [4], as for example

mobile agents [5], [6]. However, in the field of Social

Simulation it is still rarely used for developing agent-based

simulation models that represent social processes [7]. In this

paper we use the UML on the one hand to show the structure

of the proposed ABS environment (in form of a class

diagram) and we use statecharts on the other hand for the

design of our agent based models (i.e. to represent the

behaviour of our agents) as proposed by [8].

In order to provide the reader with the necessary

understanding of all of the topics within this paper we first

provide a short introduction to object-oriented methods,

agent-based modelling and the concepts of state machines.

After this we illustrate the design of the ABS system which

we have implemented. Finally we focus on the validation of

our system in order to demonstrate that its components

adhere to the standards of an ABS system. During the

validation process we also take a look at the efficiency of

our system compared to an "off the shelf" commercial

package in terms of memory usage and runtime.

II.BACKGROUND

A. Object Oriented Methods

Object-orientation is an important concept for designing

software in order to promote extendibility of existing

systems. The object model encompasses the core principles

of abstraction, encapsulation, modularity, and hierarchy [9].

Opening Pandora's Box: Some Insight into the Inner Workings of
an Agent-Based Simulation Environment

Daniel Dawson
School of Computer Science,

University of Nottingham,
Nottingham, UK

Email: ddawson4417@gmail.com

Peer-Olaf Siebers
School of Computer Science,

University of Nottingham,
Nottingham, UK

Email: pos@cs.nott.ac.uk

Tuong Manh Vu
School of Computer Science,

University of Nottingham,
Nottingham, UK

Email:
psxtmvu@nottingham.ac.uk

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1453–1460

DOI: 10.15439/2014F335

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1453

It leads to reusable components, wherever possible, rather

than the more bespoke solutions which procedural

programming often offers. It also breaks programs down

into understandable chunks, and by designing software with

object-oriented methods in mind it can be more easily

extended and fixed when problems arise.

In order to promote object oriented principles in our

design we have taken a number of design patterns into

consideration while designing our system. A design pattern

is a standardized way of implementing a certain feature in a

program [10] and makes it easier to reuse successful designs

and architectures [11]. This will be discussed in more detail

in Section III-A.

UML is a graphical notation commonly used in software

engineering for the purpose of object oriented analysis and

design. Through UML it is possible to visualise, specify,

construct, and document software applications. It acts as a

specification language in which we can precisely and

unambiguously capture our design decision [12]. Besides the

benefits for software design some of the diagrams (e.g. use

case diagrams and state machine diagrams) seem to lend

themselves particularly well to Agent-Based Modelling

(ABM) [13]. Therefore we use the UML notation not only

for designing our ABS environment but also for modelling

the agents that we use within our system.

B. Agent-Based Modelling

In order to get a good picture of what an ABS

environment is, we first need to define what the term agent

means, including the principles on which an agent acts and

behaves. In the eyes of software engineers agents are simply

"objects with attitude" [14] in the sense of them being

objects with some additional behaviour added, for instance,

mobility, inference, etc. But there are a number of different

conflicting views on what an agent is, depending on the

situation and discipline for which it is being used [15].

However, often there is a point where the views start to

overlap with each other. Castle and Crooks [16] discuss

different points of view and merge them together to form a

universal definition of an agent, which varying disciplines

can agree with. Closely related to their definition we

understand an agent to be an autonomous object with some

memory, which is able to make individual decisions based

on influences from its environment (e.g. messages received

from other agents).

The agents which we intend to create have the ability to

make decisions based on internal transition trigger rules

which might be influenced by the environment they observe.

These transition trigger rules which have been programmed

into the state machine of the agent and most often fall into

one of three categories: condition-based, time-based, or

message-based [17]. Details about different transition types

can be found in Section III-C.

An agent is often described as having some sort of

memory, which comprises of the last state they were in or in

the case of composite states, the last super or sub-state they

were in. This is the concept of state history, and there are

two types: Deep history and shallow history. Deep history

goes through multiple levels of composite state, and will

return to the last state within a state within a state etc.

Shallow history will only return the last state to within a

state.

The last major thing to consider with agents is a form of

control. As mentioned previously, finite state machines are

often used in the creation of agents, as a means to describe

the behaviour of an agent, or in other words, a template for

how they should act, with conditions specifying when a

transition should be made. This leads us onto the topic of

Finite State Machines (FSMs).

C. Finite State Machines

A Finite-State Machine (FSM) is conceived as an abstract

machine that can be in one of a finite number of states. It

can change from one state to another when initiated by a

triggering event or condition; this is called a transition [18].

There are different types of FSMs that can be used in a

variety of different situations. We distinguish in this paper

specifically between deterministic and stochastic FSMs.

While deterministic FSMs are based on mathematical

formulas and can be formally proven, stochastic FSMs use

stochastic rules for deciding about transitions and therefore

the exact outcome cannot be predicted; however it may be

estimated using models and theories. A turnstile is a good

example of a simple deterministic FSM. It can either be

locked or unlocked, and there are predefined conditions that

determine which state the turnstile is in, and the transitions it

can take from each state. Fig. 1 demonstrates this.

Fig. 1 A simple deterministic FSM (Source: [19])

More complex state machines are often used for economic

models [20] and the transition function, which defines the

transitions between states, is a lot more complex. For ABM

we normally use stochastic FSMs. When behavioural

models start to be implemented, FSMs can quickly become

complex without some sort of organisation. In such cases

Hierarchical State Machines (HSMs) are be introduced in

order to keep such a model understandable. In HSMs states

may contain other FSMs. This is often programmatically

done with nested "if" statements.

D. Hierarchical State Machines

A HSM is similar to the composite state we see in UML

state diagrams, and it provides the same functionality. One

of the simplest ways to describe a HSM is by showing an

example of one of its uses in Game AI design. Non Player

Characters (NPCs) must have the ability to act in a complex

way in order to give the player a challenge. If all of this

behaviour were to be coded with a single if-then-else block,

the code would quickly become hard both to manage, and

for programmers to read and extend, specifically where the

more recent generation of game AI is concerned. Fig. 2

1454 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

shows the first level of a HSM of a typical NPC enemy in a

typical first person shooter game.

Fig. 2 Typical FSM for an NPC guard in a game

The HSM provides a structural concept for representing

behaviour, which can otherwise be complex and resulting in

somewhat of "Spaghetti" code when trying to split into

logical if statements, in order to structure the functionality

into logical categories of behaviour. Fig. 3 shows the

hierarchical state "attack" from Fig. 2.

Fig. 3 Hierarchical attack state from NPC guard

Reference [21] talks about an object-oriented software

tool that is used for creating the behaviour for NPCs in

games by making use of HSMs. The system uses the logical

components of a state machine, as well as making use of

object-oriented principles such as inheritance and design

patterns. This is similar to the work we are conducting,

whereby state machines are being used as a template for the

behaviour of entities. In our tool, more focus will be placed

on the collaboration and communication of agents, unlike

NPCs which often have no need to communicate or interact

with each other.

E. UML State Machine Diagrams

The UML state machine diagram (also called statechart) is

used to depict HSMs. Elements of this diagram are states,

transitions, and composite states (which are equivalent to

hierarchical states). Fig. 4 shows a UML state machine

diagram of an office worker.

The office worker has three main states: "atHome",

"elseWhere" and "atOffice". The "atOffice" state shows that

while the worker may be at the office, there are still two sub-

states that the worker can be in - "working" and "dozing".

The statechart entry (the initial state the state machine is

initialized into) is represented by the uppermost symbol in

the state-chart, the circle with an arrow with a line over it.

The history state in this example can be described using the

following scenario: If a worker was doing work, but then

decided to take a break and go elsewhere, they would return

to what they were doing before the break. The history state

provides this capability. However, if the worker was dozing

and then took a break, they would not start at the entry state

of working when returning, but instead would return to the

dozing state.

III. DESIGN

The design of the finite state machines that run the agents

is based on the logical components of a state machine, as is

the case in UML, where state machines have states,

transitions, and composite states (state machines within

states). The agent of this system contains the information

relevant to the state machine, which includes the current

state, last known state and history states for the super-state it

was last in. This is a more memory-efficient way of storing

the information, rather than having each agent assigned its

own state machine, although the logic behind this is

explained later.

A. Design Description

This section will describe the design of the system,

including a simple class diagram of the main components of

the agent. For the implementation we have decided to use

C++ which in some cases has influenced our design

decisions (e.g. multiple inheritance is not supported in Java).

Fig. 5 shows the classes and initial relationships between

each of the classes in our system.

The numbers in Fig. 5 represent the associations between

objects, with * representing any number of. For example, the

relationship between Agent and StateMachine is that

there is one StateMachine to one Agent, and the

relationship between StateMachine and State is that

one StateMachine is composed of one or more State

objects. The hollow arrowhead represents inheritance,

showing that CompositeState inherits properties from

both a State and a StateMachine. The Attributes

of each object are the variables stored within the object, and

the Operations are a list of methods which are used

Fig. 4 UML diagram for an office worker (Source: [13])

DANIEL DAWSON, PEER-OLAF SIEBERS, TUONG MANH VU: OPENING PANDORA’S BOX 1455

within the object. As such, the object can be accessed as

either a State or a StateMachine. The full class

diagram including the methods that are used internally is

available upon request.

The way the system is designed ensures object-oriented

principles are taken into account so as any one of the objects

in the system can be extended. The CompositeState

class makes use of inheritance to reuse the code from

StateMachine and State, since it exhibits the

behaviours of both classes. A number of design patterns

such as the Observer pattern, the State pattern, and the

Model-View-Controller pattern have been taken into

consideration during the design process. For example, the

Observer pattern defines a one-to-many dependency

between objects so that when one object changes state, all its

dependents are notified and updated automatically [10]. In

our case the Agent class is constructed using the ideas of

the observer design pattern, allowing agents to constantly

monitor transition conditions and allow them to enact the

transitions themselves. This removes the need for the

transition conditions to be explicitly checked.

In the following sub-sections we provide some more

detailed design strategies for the key elements of our ABS

environment. Here we look at the environment and agent

design, the state machine design and explain the different

time models we used.

B. Environment and Agent Design

The Environment in our ABS environment is a

container for the agents, which manages their creation and

deletion. This class also handles the sending of messages

intended for all agents rather than singular agents. The agent

class is designed to hold and handle the state machine for

the instance of the agent, including telling the state machine

to advance a time step in model time. There are two possible

ways of controlling the state machine which links to an

agent. The first (and simpler) way is to assign a state

machine to each agent. The second (more complex) way,

proposed by [21], is to use a simplified representation of a

state machine without having to create a full machine for

each agent; a way which can save a lot of memory. In the

latter case the information for the current state of the agent is

stored in the agent itself, whilst the state machine stores all

of the logic for the states and transitions. The reason for

storing information this way, rather than having a machine

for each agent, is that even for simple state machines, a high

number of objects will take up a lot of memory regardless of

how small these objects are. Due to the object-oriented

nature of this design, each state machine object requires the

creation of every state and transition present in that state

machine. The number of objects soon becomes very large,

and becomes somewhat of a waste of memory, albeit at the

expense of slower processing of state changes. However if a

small number of agents were being created or the user were

not concerned about memory usage, the gain in state change

speed may be preferable.

Let us illustrate this principle with an example. Presume a

state machine comprises of a total of 10 states and 10

transitions, and each object takes 1 byte of memory. In order

to create 100,000 agents, 1 state machine + 10 states + 10

transitions + 1 agent object will be created for each agent.

This totals 22 * 100,000 objects, so 2,200,000 objects in

memory. If there is only 1 state machine acting as a

template, there are 100,000 agent objects, plus 1 state

machine, 10 states and 10 transitions, totalling 100,022

objects in memory. Of course, the larger the state machine is,

the more effect it has on the size of the agent. Since we are

trying to save memory here, the choice is only logical. We

will provide evidence for the memory saving capabilities of

this solution in Section IV when we validate our ABS

environment.

C. State Machine Design

A state machine has logical components to it, which

makes it easy to split up into the objects we talk about in

object-oriented programming. The typical state machine is

fairly simple and composed of a set of states, and a set of

transitions. Composite states however, whilst being regarded

as a state within the agent state machine, effectively contain

their own state machine. This can be recursive, and there can

be many composite states within another state. Fig. 6 shows

Fig. 5 UML class diagram for our ABS environment

1456 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

a UML diagram similar to the NPC in Fig. 2 but more

complex.

Fig. 6 UML version of a more complex NPC Guard

What we can see in Fig. 6 is that within each composite

state there is an initial state pointer. This indicates that a

composite state effectively contains a state machine, and so

exhibits properties of both, a state machine and a normal

state. Therefore it makes sense to reuse both, the state and

state machine object, through use of multiple inheritance.

Inheriting properties from multiple objects can be a complex

problem in object-oriented programming [22]. However, in

our case it seems an appropriate solution to the

CompositeState problem.

Transitions within a state machine have certain conditions

which cause the transition to trigger, and in the case of ABM

the transitions can be triggered by a number of different

things. We have considered the four following triggers

which are often associated with transitions: condition;

message arrival; rate; timeout. These are quite basic

transitions which will cover transitions most people need to

implement, however if any other types are needed, the

transition class can be extended appropriately.

Condition-based transitions can be specified by the

programmer when a certain condition is met. Since this

condition could be any number of things (a block of code

which can return true or false), there are two feasible ways

of implementing such a transition. The first method would

be by introducing time steps to the model. This would be

using a synchronous time model, and therefore perhaps not

the best way to implement things which reflect the real

world, in particular in Social Simulation. We as people are

not expected to make decisions every arbitrary unit of time,

we simply make decisions when they need to be made.

Asynchronous time, which does not specify time steps and

instead relies on agents doing things when a condition is

met, would reflect the real world more accurately, and is

also more computationally efficient. One way of

implementing such a time model would be to use the

observer pattern. This means that once a condition is needed

for a transition, an observer will be added to monitor the

condition, and when the condition is satisfied, the

appropriate object will be notified. In our case, this will be

the lightweight object which is used to represent the agent

instance of our state machine.

Time-based transitions are based on either timeouts, or a

rate at which agents move from one state to another. The

method in which this transition can be implemented is

similar to Boolean condition based; however an easier way

of implementing such a transition in C++ would be simply

to set a timer, which notifies the agent instance of a state

machine upon expiry. This eliminates the need for an

additional observer to be added to the system.

Message-based transitions are the ones which are

triggered upon receiving a message. No particular observer

is required for this, as messages should be processed upon

arrival at an agent. When a message arrives, it will be stored

by the agent and a transition from the current state will be

triggered if that particular message matches the condition of

the agent.

D. Time Models

Agents need to periodically make decisions, which are

based on the transitions in the state machine. There are two

main ways of doing this: using an asynchronous and

synchronous time model. Both ways have their advantages

and disadvantages depending on what type of model is being

created.

Asynchronous time models are the most commonly used

when trying to model real world situations where an agent

acts of their own accord at random time intervals [23]. This

reflects best what happens in the real world in social

systems. It can also be said that typically asynchronous

models are more efficient in terms of computational

expense, due to the fact that things are only triggered when

they need to be triggered, whereas the same model run in

asynchronous time will trigger at every time step regardless

of whether it is necessary or not.

Synchronous time models on the other hand are where

"time steps" are defined, and each time step triggers an agent

to perform an action. This action can directly trigger a

transition, or it can signal to the agent that it is time to make

a decision on whether to make a transition or not. When

using synchronous time models, time steps can notify an

agent based on probability, effectively imitating

asynchronous time models.

In our system we have the choice of which time model to

use. Obviously there are advantages and disadvantages for

both and it really depends on the application, which time

model should be used.

IV. VALIDATION

Our ABS environment has been implemented in Visual

Studio 12 using C++ as the programming language. The "off

the shelf" commercial package we have chosen for our

validation experiments is AnyLogic 7, which is a multi-

paradigm eclipse based simulation IDE that supports

DANIEL DAWSON, PEER-OLAF SIEBERS, TUONG MANH VU: OPENING PANDORA’S BOX 1457

graphical model design for all major simulation paradigms

(including ABM) [24]. In order to assess run time and

memory usage we run the AnyLogic 7 and the C++

implementation on their own with no other processes using

significant RAM or CPU time. The experiments were run on

the same system to ensure fairness.

For this paper we have conducted two validation

experiments which test individual components of the agent,

including simple behaviour and composite states. We used

the synchronous time model for our tests due to the fact that

only time-based conditions were included in the model. We

have conducted further experiments using the asynchronous

time model as well as all types of transition triggers but due

to the limited space we cannot present them here. Results of

those experiments are available on request.

A. Overview of Validation Experiments

We have constructed a number of experiments to test the

individual components of our system. The purpose of these

experiments is to verify that the models running in our ABS

environment behave as expected and we also compare the

performance (in terms of runtime and memory usage) of our

system to that of AnyLogic 7.

With regards to creating the models both simulation

systems have a very different approach: Our system requires

some basic C++ programming while in AnyLogic you can

use drag/drop to create UML charts and then simply set up

the transition triggers. The AnyLogic model is then

automatically translated into Java code and is ready to be

executed from within the AnyLogic environment. For our

system, in order to construct the state machines for the

experiments, an empty class implementing

StateMachine is created, first listing each of the states as

variables, including composite states. The transitions are

then defined, and finally all the states and transitions linked

together by using an addTransition method.

B. Validation: Experiment 1

The first experiment focuses on testing the simple

decision-making capabilities of an agent. The state machine

used to control behaviour here consists of two states:

stateRed and stateBlue. When created, each agent

initially is in stateBlue and based on probability takes a

transition that leaves it to a final state stateRed. Once in

stateRed the agent will not change states any more. The

UML statechart for the simple agent is provided in Fig. 7.

The initial environment was run using 400 agents.

A counter was used in each instance to count the number

of agents which are in each state initially, and after 5 time

steps. Fig. 8 shows our system after 5 time steps (with 0

representing stateBlue and 1 representing stateRed),

and Fig. 9 shows the counter variables for each state in

AnyLogic.

It can be seen that there is a slight difference in the

number of agents in each state, due to random number

generation in each instance yielding different results. This

shows that the agents in our system behave as expected. The

experiment was then altered to run in virtual mode in

AnyLogic, which simply executes transitions as fast as

possible, and was also run without any GUI in our system.

The results in each instance are shown in Tables I and II.

Since the time taken cannot be easily recorded in AnyLogic,

the number of time steps executed in virtual time over 10

seconds was gathered, and averaged per second. The time

steps per second on our model was calculated using the time

taken for all of the transitions to complete.

TABLE I.
EXPERIMENT 1 RESULTS USING OUR SYSTEM

TABLE II.

EXPERIMENT 1 RESULTS USING ANYLOGIC

As can be seen in Table I, the number of time steps

executed per second is linearly affected by the number of

Fig. 7: UML state-chart for a simple state machine agent

Fig. 8: Our system model after 5 time steps

Fig. 9: AnyLogic model after 5 time steps

1458 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

agents present in the model, and the memory used also

grows fairly linearly with the amount of agents when

concerned with a large agent population. Table II shows that

AnyLogic also exhibits the same linear increase of memory

usage with agent population size; however, this memory

usage is far higher than our tool. The amount of time steps

that is executed per second is also quite drastically affected

in AnyLogic when a large number of agents are put into the

simulation, although it is faster than with our tool. This

could be due to the use of the lightweight state object which

is used to save memory, and a performance increase may be

obtained with the expense of more memory usage by

assigning an individual state machine to each agent. It

should be noted that AnyLogic can in fact execute multiple

transitions per time step, so the number of transitions taken

may be more than the time steps executed. This shows us

that an improvement needs to be made to our tool in terms

of the speed of the model, focusing on the use of the

lightweight AgentMachine object used to save memory.

C. Validation: Experiment 2

This experiment implements the idea of composite state

machines. In addition to the simple agent behaviour

experiment, the stateRed state will now contain a clone

of the previous state machine. The agent should move into

the stateRed state and move between the states within this

composite state. The UML statechart for the more complex

agent is provided in Fig. 10.

Fig. 10: UML state-chart with a composite state machine agent

As with the previous experiment, a counter was used in

both AnyLogic and our tool to count the number of agents in

each state. Fig. 11 and 12 illustrate the number of agents in

each state after 5 time steps in both, our system and in

AnyLogic. In Fig. 11, the numbers 0 and 1 represent

stateBlue and stateRed, respectively, and the

numbers 2 and 3 represent compStateBlue and

compStateRed, respectively. As can be seen in Figs. 11 &

12, the number of agents in each state varies between our

tool and AnyLogic due to random number being used to

determine whether a transition should be made, however the

agent behaves as expected with a composite state.

Fig. 11: Our system model after 5 time steps

Fig. 12: AnyLogic model after 5 time steps

As previously, the experiment was then altered to run in

virtual mode in AnyLogic, which simply executes transitions

as fast as possible, and without any GUI in our system. The

results are presented in Table III for our system and in Table

IV for AnyLogic.

TABLE III.

EXPERIMENT 2 RESULTS USING OUR SYSTEM

TABLE IV.

EXPERIMENT 2 RESULTS USING ANYLOGIC

Table III shows that the performance for our system has

remained almost the same as in Experiment 1 in terms of

memory usage and time steps executed per second. The

same is true for AnyLogic in relation to the time steps

executed per second, as can be seen in Table IV. However,

memory usage has gone up quite significantly. This

demonstrates the advantages of our state machine design.

One can save potentially a lot of memory when constructing

models that feature more complex statecharts.

V.CONCLUSIONS

This paper provides an insight into the often unexplored

inside world of ABS environments. We have defined the

different components (classes) of such a system, including

Environment, Agent, StateMachine, State,

DANIEL DAWSON, PEER-OLAF SIEBERS, TUONG MANH VU: OPENING PANDORA’S BOX 1459

Transition, and CompositeState. For each of these,

we have defined what is expected of them in an ABS

system, the links between them, and in addition we have

explored a variety of different ways in which these can be

implemented whilst fulfilling the requirements of an ABS

system. We have also designed and implemented some basic

tests which showed that the components work as expected.

In Section IV we have compared the performance of our

system to that of the "off the shelf" package AnyLogic. The

results demonstrate that with a synchronous time model in

mind, memory usage of our tool is much lower than that of

AnyLogic. This demonstrates the value of our ABS

environment when considering larger models where memory

usage can be of high importance, and where large agent

populations are being implemented. However, there is still

much room for improvement in terms of performance, which

has become apparent from our experimentation.

We have extensively used object oriented analysis and

design principles to create a system that is easy for others to

use and extend. This should allow others to easily

implement features they might want to include. Through

providing UML diagrams we are hopeful that we have

helped non computer scientists to understand, perhaps for

the first time, how ABS works internally. Through our tests

we have demonstrated that our C++ implementation is a

promising solution for use within the area of ABS when

memory usage is of a higher priority than features.

Currently we are continuing our validation efforts by

building more complex real world models in our ABS

environment and comparing their performance to the

performance of existing models that we have previously

built in AnyLogic, e.g. [25]-[27]. With regards to extending

the ABS environment we are considering to provide

researchers with an easier way of creating simple state

machines. XML would be a useful file format to consider for

storing models of finite state machines, as all the

information on states and transitions could be stored in a

structured way, and many tools which are used to draw

UML diagrams support the XML file format. Here we

follow the idea of [21] where a custom file format is used to

interpret HSMs.

REFERENCES

[1] M. W. Macy and R. Willer, "From factors to actors: Computational
sociology and agent-based modeling", Annual Review of Sociology,
28(1), pp. 143-166, 2002. DOI: 10.1146/annurev.soc.28.110601.
141117

[2] E. Bonabeau, "Agent-based modeling: Methods and techniques for
simulating human systems", Proceedings of the National Academy of
Sciences of the United States of America, 99, pp. 7280-7287, 2002.
DOI: 10.1073/pnas.082080899.

[3] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations, Cambridge University
Press, 2008.

[4] B. Bauer, J. P. Müller, and J. Odell, "Agent UML: A formalism for
specifying multiagent software systems", International Journal of
Software Engineering and Knowledge Engineering, 11(03), pp. 207-
230, 2001. DOI: 10.1142/S0218194001000517

[5] G. Fortino, W. Russo, and E. Zimeo, "A statecharts-based software
development process for mobile agents", Information and Software
Technology, 46(13), pp. 907-921, 2004. DOI: 10.1016/j.infsof.
2004.04.005

[6] G. Fortino, W. Russo, "ELDAMeth: An agent-oriented methodology
for simulation-based prototyping of distributed agent systems",
Information and Software Technology, 54(6), pp. 608–624, 2012.
DOI: 10.1016/j.infsof.2011.08.006

[7] Engineering Agent-Based Social Simulations, CfP for a JASSS
Special Issue, http://www.cs.nott.ac.uk/~pos/docs/pos-CfP-
JASSS_EngineeringABSS.pdf [last accessed 12/04/2014]

[8] B. Hugues, "UML for ABM", Journal of Artificial Societies and
Social Simulation, 15(1) 9, 2012.

[9] G. Booch, R. A. Maksimchuk, M. W. Engle, B.J. Young, J. Conallen,
and K.A. Houston, Object-Oriented Analysis and Design with
Applications, 3rd Edition, Pearson Education, 2007.

[10] E. Freeman, E. Robson, B. Bates, and K. Sierra, Head First Design
Patterns, O'Reilly Media, Inc., 2004.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Pearson Education,
1994.

[12] K. Barclay and J. Savage, Object-oriented Design with UML and
Java, Butterworth-Heinemann, 2003.

[13] P.-O. Siebers, and B. S. Onggo, "Graphical representation of agent-
based models in Operational Research and Management Science using
UML", in Proceedings of the 7th OR Society Simulation Workshop
(SW14), 1-2 Apr 2014, Worcestershire, UK.

[14] J. Bradshaw (ed.), Software Agents, MIT Press, 1997.
[15] J. Ferber, Multi-Agent Systems: An Introduction to Distributed

Artificial Intelligence, Vol. 1, Addison-Wesley, 1999.
[16] C. J. E. Castle and A. T. Crooks, "Principles and concepts of agent-

based modelling for developing geospatial simulations", Working
Paper 110, London: University College London, Centre for Advanced
Spatial Analysis, 2006.

[17] M. Buckland, Programming Game AI by Example, Jones & Bartlett
Learning, 2005.

[18] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, Modeling
Software with Finite State Machines: A Practical Approach. CRC
Press, 2006.

[19] Wikipedia, "File:Turnstile state machine colored.svg.",
http://en.wikipedia.org/wiki/File:Turnstile_state_machine_colored.svg
[last accessed 12/04/2014]

[20] J. D. Farmer and D. Foley, "The economy needs agent-based
modelling", Nature, 460(7256) pp. 685-686, 2009. DOI: 10.1038/
460685a

[21] J. Ricardo, E. B. Passos, W. Esteban, C. Bruno and C. Pedro,
"Dynamic game object component system for mutable behaviour
characters", in Proceedings of the VII Brazilian Symposium on
Computer Games and Digital Entertainment, 10-12 Nov 2008, Brazil.

[22] R. C. Martin, "Java and C++; A critical comparison", ObjectMentor,
1997.

[23] A. Borshchev, The Big Book of Simulation Modeling: Multi-Method
Modeling with AnyLogic 6. AnyLogic North America, 2013.

[24] XJ Technologies, http://www.anylogic.com/ [last accessed
12/04/2014]

[25] P.-O. Siebers and U. Aickelin, "A first approach on modelling staff
proactiveness in retail simulation models", Journal of Artificial
Societies and Social Simulation, 14(2) 2, 2011.

[26] T. Zhang, P.-O. Siebers, and U. Aickelin, "Modelling Electricity
Consumption in Office Buildings: An Agent Based Approach", Energy
and Buildings, 43(10), pp. 2882-2892, 2011. DOI: 10.1145/
2422531.2422535

[27] T. Zhang, P.-O. Siebers, and U. Aickelin, "Modelling the effects of
user learning on forced innovation diffusion", in Proceedings of the
UK OR Society Simulation Workshop 2012 (SW12), 26-28 Mar 2012,
Worcestershire, UK.

1460 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

