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Abstract

In attempts to further understand complex systems at an in-
dividual level, the application of agent-based modeling is
becoming prevalent across a range of academic disciplines.
With the advantages of being multi-platform, requiring little
programming experience, and supported by a large number
of freely available case study examples, Netlogo has become
a popular choice as the software tool to apply in the construc-
tion of agent-based models. To utilize the constructed model
as an informative or predictive tool, statistical analyses can
be performed to reveal the influence that a parameter has on
simulation behavior, offering an insight into the system un-
der study. Here we demonstrate the integration of Netlogo’s
parameter sweep function, Behavior Space, with an extended
version of SPARTAN, our previously published open source
statistical package for performing local and global sensitiv-
ity analyses. With the addition of SPARTAN, the researcher
can automatically create Netlogo experiment files for both
local (individual parameter) and global (latin-hypercube and
Fourier frequency) analyses, run these experiments in Net-
logo, and receive detailed statistical information on the in-
fluence a parameter has on simulation response: vital in-
formation for translating a simulation result to a hypothesis
grounded in the system being studied. To ensure our example
work is reproducible, we demonstrate use of SPARTAN us-
ing the Virus transmission and perpetuation model available
in the Netlogo model library.

Introduction

As the application of agent-based modeling has become
adopted across a range of academic disciplines, including bi-
ological, sociological, and economic, much focus has been
placed on the release of software tools to aid the generation
of a simulation of a system under study. One such popu-
lar toolkit is Netlogo (Wilensky, 1999), a freely available,
multi-platform toolkit that aims to ease the construction of
multi-agent systems. Simulations have been generated for
a wide range of applications, recent examples being to in-
form government energy policy (Lee et al., 2014), to simu-
late trout demographics in a brook system (Frank and Baret,
2014), and emergency procedure planning for building evac-
uation (Wagner and Agrawal, 2014).

Previously we have demonstrated that our bespoke agent-
based model, not generated in Netlogo, can create emer-

gent cell behavior that is statistically similar to that ob-
served experimentally (Patel et al., 2012; Alden et al., 2012),
providing a tool through which hypotheses concerning the
formation of lymphoid tissue formation can be developed
and tested. In the course of understanding the relationship
between our simulation and the biological system that it
represents, we developed SPARTAN (Simulation Parame-
ter Analysis R Toolkit ApplicatioN) (Alden et al., 2013), a
package of statistical techniques specifically designed to aid
researchers in translating a simulation result to an hypothe-
sis grounded in the real-world domain. SPARTAN is open
source and freely available from either the R package reposi-
tory (CRAN) or from www.ycil.org.uk/software/spartan. To
the best of our knowledge this was the first time a com-
prehensive package had been made available that could be
applied to agent-based as well as traditional ordinary and
partial differential equation models. Alongside the release
of the package, we demonstrated the potential the included
parameter sensitivity analysis techniques have in revealing
the influence particular simulated pathways and components
could have on the biological system.

The initial demonstration of SPARTAN utilized our lym-
phoid tissue simulator, a bespoke agent-based software tool
created in Java with the aid of the MASON Simulation
toolkit (Luke, 2005). In this case, we utilized SPARTAN in
the creation of parameter value sets, performed simulation
runs under the generated parameter conditions, and used the
relevant SPARTAN technique to analyze the results. With
this approach proving fruitful in understanding the behav-
ior of our simulator, we have recently extended SPARTAN
to enable researchers who use Netlogo to perform both lo-
cal and global sensitivity analyses of their agent-based mod-
els. Although Netlogo is equipped with the Behavior Space
feature, which allows the researcher to perform a sweep
of potential parameter values, the researcher is required to
develop routines for analyzing the resultant simulation re-
sponses. Recent work has been undertaken to link Netl-
ogo with statistical environments such as R (Thiele et al.,
2012), but does not provide statistical algorithms to fully
understand the relationship between a simulation and the
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system it represents. Here we demonstrate how combining
Netlogo with SPARTAN provides the researcher with the
tools to perform both parameter sampling and the analysis
of the resultant simulation data, for three sensitivity analy-
sis techniques. Firstly we describe the model that we have
chosen to use, a virus transmission and perpetuation model
(Wilensky, 1998) that is available in the Netlogo Model Li-
brary. We then briefly discuss the three sensitivity analysis
techniques that are included within the SPARTAN package
(one local analysis, two global analyses), before describing
the result of each analysis for simulation responses gen-
erated from the Netlogo model. This paper is supported
by a full tutorial demonstrating how each technique can
be applied to the virus transmission model, available both
within the SPARTAN package and accompanying website
(www.ycil.org.uk/software/spartan).

The Case Study: Virus Transmission and
Perpetuation

To aid the adoption of SPARTAN by researchers utilizing
Netlogo, we believed that it was important the demonstra-
tion we include here and in the tutorial can be easily repli-
cated. Thus we utilize a simulator that is freely available in
the Netlogo Model Library, with a number of modifications
that we describe here.

The Virus model (Wilensky, 1998) simulates a human
population, to suggest how a virus transmits and is perpetu-
ated amongst that population based on factors suggested by
ecological biologists (Yorke et al., 1979). A full descrip-
tion of the composition of the model is included with the
simulation. For our interests, there are four parameters that
can be set by the researcher utilizing the model: the number
of people in the population (people), the ease at which the
virus spreads (infectiousness), the probability a person re-
covers from the virus (chance-of-recover), and the duration
in weeks after which the person either recovers or dies (du-
ration). Here we will demonstrate the use of SPARTAN in
determining how both robust these parameters are to pertur-
bation and the relative influence of each parameter on simu-
lation response.

Such judgments are dependent on an analysis of how
the chosen parameter values impact a set of simulation re-
sponses at a specified simulation time-point. As the cur-
rent version of the virus model has no defined end point, we
have modified the simulator such that the simulation runs
for a 100 year period. With the simulator specifying that
a persons lifespan is 27 years if they are not killed by the
virus, modeling an 100-year time-period is sufficient for our
needs. In terms of output response, the simulator provides
the percentages of the population that are infected and im-
mune. As we want our analysis to be representative of the
entire period rather than a snapshot of the population, we
introduced four additional output measures: the number of
people who have died through not recovering from the in-

fection (death-thru-sickness), the number who died but were
immune (death-but-immune), the number who died through
old age and never caught the infection (death-old-age), and
the number of people who died while infected but during
the time period allowed for recovery (death-old-and-sick).
As we are utilizing statistical tests to determine how alter-
ations to the four input parameters described in the previous
paragraph affect these responses, which are all numbers of
people, we exclude the people parameter from the analysis,
and run all our experiments with an initial population of 150
people, leaving three input parameters of interest. Addition-
ally, to run the eFAST analysis that will be described later,
an additional global parameter is added (’dummy’), that has
no impact on simulation response. The reasoning for this
becomes clear in later sections of this paper.

To ease the reproduction of results in the latter sec-
tions of this paper, we have made the modified ver-
sion of the model available from the SPARTAN website
(www.ycil.org.uk/software/spartan)

Overview of Sensitivity Analysis Techniques in
SPARTAN

In this section, we note the three parameter sensitivity anal-
ysis techniques available within the SPARTAN package. As
we have previously described the full detail of the imple-
mentation of each technique, we cover each only briefly, and
would direct you to our previously published work for the
complete description (Alden et al., 2013; Read et al., 2012).
The section that follows this details the application of each
technique to the Netlogo Virus model.

Technique 1: Parameter Robustness

The parameter robustness technique examines the implica-
tions of any uncertainty or parameter estimation on simula-
tor response. This highlights any parameters for which the
simulation is sensitive to value perturbation, potentially sug-
gesting that caution should be applied as a response may be
an artifact of parameterization and not representative of the
system that has been captured (Helton, 2008).

Parameter robustness is determined by perturbing each
parameter independently of all others, which remain at
their baseline value. Simulation responses under the per-
turbed conditions are compared with simulation response
for baseline parameter values using the Vargha-Delaney A-
Test (Vargha and Delaney, 2000), an effect-magnitude test
used to determine if there is a statistically significant dif-
ference between simulation responses under differing con-
ditions. For each parameter, SPARTAN produces two plots:
the first detailing the A-Test response for each value it has
been assigned, easing identification of parameter values that
may cause a significant change in behavior, and a second
showing the distribution of simulation responses for each
parameter value.
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Technique 2: Global Sensitivity Analysis using
Latin-Hypercube Sampling

Whereas robustness analysis perturbs each parameter indi-
vidually, both this and the next technique seek to identify
any compound effects that are revealed when the values of
all parameters of interest are perturbed simultaneously. This
global sensitivity analysis exposes cases where the effect
one parameter has on the simulation response is dependent
on the value of another, and can indicate the parameters hav-
ing greatest influence on simulation response. Where a sim-
ulation bears a strong relationship to the real system being
modeled, such an analysis has the potential to offer signifi-
cant insight into the system under study.

This technique selects a number of simulation parame-
ter value sets using latin-hypercube (LHC) sampling. LHC
selects a value for each parameter from a specified range,
while ensuring efficient coverage of the parameter space and
minimizing correlations between chosen value sets (Read
et al., 2012; Marino et al., 2008; Saltelli et al., 2000).
Simulations are then performed for each generated set of
parameter values. A plot is produced by SPARTAN for
each parameter-simulation response pairing, revealing cor-
relations between parameter value and simulation response.
For reporting purposes, this correlation is also quantified
through calculation of the Partial Rank Correlation Coeffi-
cient (PRCC), which is reported in the plot header.

Technique 3: Global Sensitivity Analysis using
Extended Fourier Amplitude Sampling Test

Whereas Technique 2 identifies compound effects using
a sampling-based method (the hypercube), the extended
Fourier amplitude sampling test (eFAST) (Saltelli, 2004;
Saltelli and Bollardo, 1998) has been included in SPARTAN
to offer an alternative: global analysis by variance decompo-
sition. Variance in simulation output is partitioned between
the parameters of interest, providing a statistical measure
that reveals the proportion of variance that can be explained
by the perturbation of each parameter. Such a measure is a
key indicator that a parameter has a highly influential effect
on simulation response.

Of the three techniques we are describing here, this is by
far the most complex, and the reader is directed to our pre-
viously published work for the full detail of the algorithm
(Alden et al., 2013). As a brief overview, each parameter is
taken in turn as that of interest. These are accompanied by an
extra parameter, the *dummy’, which has an arbitrary range
of values and no impact on simulation response. Sinusoidal
curves of a particular frequency are created in the parameter
space, with the parameter of interest assigned a frequency
that is significantly different to the remaining parameters in
the analysis. From each curve, a specified number of values
are chosen, in turn creating a number of parameter value sets
for that parameter of interest (see Marino et al., 2008 for an
illustration of this approach). A phase shift is employed that

shifts the frequency slightly, and the sampling repeated to
mitigate the potential for identical value sets to be selected.
This leads to the selection of a number of parameter value
sets for each parameter, for each phase shift.

Simulations are executed for each of the parameter value
sets generated in this process. The responses are analyzed
by SPARTAN, taking into account the frequencies that were
used in the generation of the parameter set. Fourier anal-
ysis is used to partition variance in simulation response be-
tween the parameters, and two statistical measures produced
for each parameter: the fraction of output variance that can
be explained by that parameter (Si) and the output variance
caused by higher-order non-linear affects between the pa-
rameter and the others being studied (STi). A parameter is
judged to have a significant impact on simulation response
through contrasting these two measures with those calcu-
lated for the ’dummy’ parameter that is known to have no
impact.

Application of SPARTAN to Netlogo Model

This section demonstrates the application of the techniques
above to the Netlogo Virus model described previously. In
these analyses we treat the model default parameter val-
ues are those that create the simulation baseline behavior
(chance-of-recover=50%, infectiousness=60%, duration=20
weeks), and assign a range of values over which the pa-
rameter will be explored (chance-of-recover=10-90%, infec-
tiousness=10-90%, duration=5-40 weeks). For technique 1,
we set an amount by which the parameter value will be in-
cremented (1%, 1% and 5 weeks respectively). Each sim-
ulation was run using the Headless mode of Netlogo, al-
lowing simulations to be run in batches from the command
line. For each run, the simulation state is saved at each time-
step using the table output functionality included in Netl-
ogo’s BehaviorSpace tool. We stress that no additional out-
put function has been added to the model for our purposes,
this is produced by Netlogo itself. This ensures the tech-
niques demonstrated here are applicable to the output of any
Netlogo model.

Technique 1: Parameter Robustness

Using the specified parameter space values, SPARTAN gen-
erates a Netlogo BehaviourSpace experiment XML file.
Netlogo uses this file to perform a sweep of all potential
values for that parameter. When complete, SPARTAN can
process the simulation response file, taking each parameter
in turn and performing a statistical comparison of simula-
tion response when the parameter value is perturbed against
behavior at baseline parameter values.

The analysis produces two forms of graphical output, both
demonstrated in Figure 1. Figure 1(A) indicates how statisti-
cally different each simulation response is for each value as-
signed to a parameter, in this case the ease at which the virus
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spread (infectiousness). For there to be no difference, the A-
Test result would be 0.5. Large differences occur either side
of this, although the direction is not of concern, just the in-
dication of effect. In the case of Figure 1(A), the analysis
reveals that a statistically significant alteration is observed
for each simulation response with a perturbation of just 1%.
Such a result indicates that the simulation is very sensitive
to the value of this parameter, and this needs to be assigned
carefully.

Figure 1(B) and 1(C) are demonstrations of the result dis-
tribution that is also generated for each simulation output
measure, for each parameter being examined. In the case of
Figure 1(B), this shows how an alteration in the probability
of recovery impacts the number of people who die through
infection by the virus. This shows the interesting effect that
as the chance of recovery initially increases, the number of
people who die from the virus also initially increases, up to
a point where the number begins to fall. This may not be ex-
pected behavior, and may need to be investigated further to
determine if there are links between this parameter and the
value assigned to others. Such a conclusion can be drawn
from global sensitivity analysis techniques that we discuss
later in this paper. Figure 1(C) shows how the number of
people who die immune to the disease changes as the ease at
which the virus spread is increased. This robustness analysis
reveals an exponential-like effect, where a further increase in
the parameter value does not have much impact on the simu-
lation response. Again this may be a key consideration when
setting the value of this parameter.

Technique 2: Global Sensitivity Analysis using
Latin-Hypercube Sampling

Using the latin-hypercube sampling technique, 500 sets of
parameter values were generated over the specified param-
eter space. SPARTAN automatically creates Netlogo exper-
iment XML files containing the chosen parameter values,
and from these 500 sets of simulation responses were gen-
erated. Each parameter is then analyzed in turn, with output
responses sorted by the value assigned to that parameter, and
correlations identified as described previously.

Four of the automatically generated analysis plots can be
seen in Figure 2. Each plot is for a particular parameter
of interest, and a specified simulation response, both spec-
ified in the header. The objective is to identify any trends
in simulation response between the value of this parameter
and the response, although a subset of parameters are being
perturbed simultaneously. Figure 2(A) reveals that there is
no correlation between the duration of the infection and the
number of people who die but are immune. In 2(B) on the
other hand, there is a strong correlation between the number
of people who die immune to the disease and the probability
that they recover, as one would expect, although two other
parameters are also being perturbed. This suggests that the
researcher should give careful consideration to the value of
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Figure 1: Exemplar robustness analysis output produced by
SPARTAN. A: A-Test scores for Netlogo Virus simulation
where the ease of catching the infection is perturbed (infec-
tiousness). B: Distribution of the number of people who die
through the virus when the chance of recovery is perturbed.
C: Distribution of the number of people who die immune to
the virus when infectiousness is perturbed

this parameter. Figures 2(C) and 2(D) are interesting as they
reveal correlations between the parameter value and the sim-
ulation response for a subset of parameter values. In 2(C),
the number of people who die through the infection is corre-
lated with higher values for the chance of recovery, reinforc-
ing the suggestion that this parameter is highly influential. In
2(D), the number of people who die through old age and are
currently sick decreases rapidly under low infectious values,
with no further trend from around 40% onwards. Such a re-
sult can be used to suggest that care is taken with the setting
of this parameter, as it may not be influential on simulation
response past 40%.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



A

LHC Analysis for Parameter: duration
Measure: death.but.immune
Correlation Coefficient: 0.0718

LHC Analysis for Parameter: chance.recover
Measure: death.but.immune
Correlation Coefficient: 0.824

X X
X xX X x
X085 Ko x XX % XXX X X
X % % X X X PR XK B
X% Xy 3 VAR »
X X X, 1% Ne % x X X% X X X %
% X X x x X Kx X X x
o o [V X X x X % < N o O
a 38 X % %% X X x;o;% x XxXx X % 3z 8
o 3 X X xx X% % X XX o
e 8 x x & Xx g B Fx X XX X X X 8 3
5 % >$<>(x>< >;<><>><<>><<>< X X xxxx M XX Xxx =
5 x X x X X % XX ¥ X " X =
3 N x Ko XK KX K &
E XXX « X x XXX x FE%3 % £
X X S
=z X x x X
- § x XX x X X X ;< 3 S
c | X. X x =4 o
2 g x  xx ¥ R X X B R
« x X
3 X% X x X 2
S « X X % X S
< X x X X x <
® x x % ©
S X
s s 2 x o X XX s
S - XX X X x > 3
s S x x X X % X *x c o
g - X X X X X X g -
3 X x X X x Xy X 3
s x X X XX X XX x  0Xx X X >§< x =
X X x X;x x X
X
X
Xk % K T o o
X X X x XX
o | FewaooeX x X M X o XX XXX XK ROKXX XX XX MK X XK FKx XK
T T T T T T T T T T T T
5 10 15 20 25 30 35 40 20 40 60 80

Parameter Value

LHC Analysis for Parameter: chance.recover
Measure: death.thru.sickness
Correlation Coefficient: -0.646

Parameter Value

LHC Analysis for Parameter: infectiousness
Measure: death.old.and.sick
Correlation Coefficient: -0.544

80000 ‘ '

X
x

60000
|
6000

Xx X
x
x 00 5B 5 X R

><><><>< Mg
x

4000
|

2000
|

Median Value Across Runs Number of People
20000 40000
I I
Median Value Across Runs Number of People

XK VOKXX XX XX M X XK KKK RK XK o -
T T T T T T T T
20 40 60 80 20 40 60 80

Parameter Value Parameter Value

Figure 2: Use of SPARTAN to identify compound effects between parameters, using latin-hypercube parameter sampling. A:
Number of people who die immune to the virus, sorted by the value assigned to duration of infection. B: Number of people
who die immune to the virus, sorted by the value assigned to the chance they recover. C: Number of people who die through
the virus, sorted by the value assigned to the chance they recover. D: Number of people who die through old age while they
have the virus, sorted by the value assigned to infectiousness
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Technique 3: Global Sensitivity Analysis using
Extended Fourier Amplitude Sampling Test

Experiment parameters were generated using the sinusoidal
curve sampling method detailed previously. With four
parameters of interest (three in the simulation plus the
’dummy’), we have taken 65 parameter values from each
frequency curve, and utilized three frequency phase shifts to
ensure sufficient coverage of the parameter space, producing
780 parameter value sets. Similarly to Technique 2, SPAR-
TAN automatically produces Netlogo experiment XML files
for the chosen parameter values, and from these 780 simula-
tion responses were generated.

The automatically generated graphs for two of the out-
put measures can be seen in Figure 3. As the analysis fo-
cuses on each parameter individually, the graph shows the
impact that each parameter has on a particular variance mea-
sure when that parameter is that of particular interest. The
black bars are the Si value: the fraction of variance that can
be explained by just that parameter when chosen as param-
eter of interest. The gray bars are the STi value: the fraction
of output variance caused by higher-order non-linear affects
between this parameter and the complementary parameters.
The noticeable result from Figure 3 is that the STi value is
high across all parameters for both the shown output mea-
sures. This suggests that there is a high degree of depen-
dence between the parameters in this simulation. This is in
contrast to our previously published example where this af-
fect was relatively low (Alden et al., 2013). The interesting
information in this graph comes from the black bars, the Si
value. In Figure 3(A), showing the influence of each param-
eter on the number of people who die but are immune to the
virus, the value of the infectiousness parameter sensitivity
measure is noticeably higher than the other parameters, and
the only parameter that is statistically significant in compar-
ison to the *dummy’ measure, known to have no impact on
the simulation. This supports earlier analyses that suggest
that the infectiousness parameter value needs to be carefully
considered. A similar conclusion is drawn from Figure 3(B),
where again the infectiousness parameter is shown to have a
statistically significant impact on the number of people who
die through virus infection. The chance a person recovers
from the infection is also determined to be statistically sig-
nificant for this simulation response, as one would assume.
Interestingly this analysis reveals that the duration of infec-
tion has little impact on variance in simulation response.

Discussion

Although a number of platforms have been developed that
aid the development of simulations of complex systems, of
which Netlogo is one, similar focus has not been given to the
development of statistical tools that analyze the generated
results. Platforms are beginning to offer enhanced param-
eter analysis through filtering and charting, MASS (Multi-
Agent Simulation Suite) being one example (Ivanyi et al.,
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Figure 3: Use of eFAST method within SPARTAN to
partition variance in simulation results between parame-
ters.Black Bars: Si - the fraction of output variance ex-
plained by the value assigned to that parameter when pa-
rameter of interest; Gray Bars: STi - the variance caused by
higher-order non-linear effects between that parameter and
the others explored (includes value of Si). Error bars are
standard error over three resample curves. A: Number of
people who die immune to the virus. B: Number of people
who die due to contracting the virus

2007), yet stress the importance of a link between the plat-
form and a statistical environment (R,MATLAB, etc) for de-
tailed analysis of exported data. Such a statistical analysis is
vital for understanding the relationship between the simula-
tion and the real world system it has been built to represent.
We developed the SPARTAN package with the objective of
providing researchers with the tools to examine this key rela-
tionship. Where researchers make the choice to utilize Netl-
ogo as the software platform from which to design their sim-
ulation, the BehaviourSpace tool is very useful in providing
a means of performing a sweep of potential parameter val-
ues. Yet this leaves the researcher to develop their own tools
to analyze the simulation responses, to gain an understand-
ing of the behavior of their simulation.
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Here we have demonstrated our recent extension to
SPARTAN that simplifies the process of performing both
local and global sensitivity analyses of a Netlogo model.
Through integrating Netlogo and SPARTAN, samples are
generated that ensure full coverage of the parameter space,
and Netlogo experiment XML files are created automati-
cally. The researcher is now in the position to simply run the
batch of experiments from the command line, and analyze
the simulation responses using the relevant SPARTAN tech-
nique. Statistical information is produced in both graphical
and data table forms, easing the identification of any effects
generated through parameter perturbation. This provides the
researcher with the key information required to gain a full
understanding of how their simulation behaves, and where
the key parameter pathways lie. To aid the adoption of this
approach, we have ensured that SPARTAN is open source
and freely available from both the CRAN package repos-
itory and our website (www.ycil.org.uk/software/spartan),
and provided a detailed tutorial covering each technique.
The sample model, data, and command line scripts are also
available as exemplars. We see this as a useful addition to
the simulation researcher’s toolkit.
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