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Abstract Linking spatial pattern and process is a

difficult task in landscape ecology because spatial

patterns of populations result from complex factors

such as individual traits, the spatio-temporal variation

of the habitat, and the relationships between the

target species and other species. Mechanistic models

provide tools to bridge this gap but they are seldom

used to study the influence of landscape patterns on

biological processes. In this paper, we develop a

methodological approach based on sensitivity and

multivariate analyses to investigate the relationship

between the biological parameters of species and

landscape characteristics. As a case study, we used a

tritrophic system that includes a host plant (oilseed

rape, Brassica napus L.), a pest of the host plant (the

pollen beetle, Meligethes aeneus F.), and the main

parasitoid of the pest (Tersilochus heterocerus). This

tritrophic system was recently represented by a model

(Mosaic-Pest) that is spatially explicit at the landscape

scale and that includes 32 biological parameters. In

the current study, model simulations were compared

with observed data from 35 landscapes differing in

configuration. Sensitivity analysis using the Morris

method identified those biological parameters that

were highly sensitive to landscape configuration.

Then, multivariate analyses revealed how a parame-

ter’s influence on model output could be affected by

landscape composition. Comparison of simulated and

observed data helped us decrease the uncertainty

surrounding the estimated values of the literature-

derived parameters describing beetle dispersal and

stage transition of the parasitoid at emergence. The

advantages of using multivariate sensitivity analyses

to disentangle the links between patterns and pro-

cesses in landscape-scale spatially explicit models are

discussed.
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Introduction

Spatially-explicit simulation models are powerful

tools for understanding the links between patterns

and processes (Grimm et al. 2005; McIntire and

Fajardo 2009). Because spatial models explicitly

consider the processes responsible for the observed

patterns, i.e. spatio-temporal variation of the popula-

tion of a given species itself (Tscharntke and Brandl

2004), or in interaction with other species (Bianchi

and Schellhorn 2009) they can be used as virtual

laboratories (Charnell 2008) to test the effects of a

given set of processes on a spatial pattern. Thus, the

effects of habitat heterogeneity (Frair et al. 2005),

demographic parameters and dispersal (Wiegand et al.

2004), or gene flow (Viaud et al. 2008) on populations

patterns have been successfully studied using spa-

tially-explicit simulation models. However, simula-

tion models require often many parameters to

represent the complexity of the simulated system that

is necessary to respond to the biological question.

To better predict the real trends of the system,

spatially-explicit simulation models need to be param-

eterized on the basis of one of several observed

dataset. Optimizing the match between observed and

simulated system responses is done via inverse

modelling (Kramer-Schadt et al. 2007), i.e. searching

the model parameterizations that fit the observed data

best. Optimization tools suitable for use with spatially-

explicit simulation models are scarce because model

complexity generally makes conventional statistical

techniques (e.g., sum of squares, maximum likeli-

hood) unusable for parameter estimation. Bayesian

tools such as approximate Bayesian computation are

alternatives but require a large number of simulations

to be efficient, which makes the study of spatially-

explicit simulation models computationally expensive

(Csilléry et al. 2010; Hartig et al. 2011). Inverse

modelling techniques have been used with success to

calibrate a large range of spatially-explicit simulation

models, generally in association with a global sensi-

tivity analysis (Kramer-Schadt et al. 2004; Wiegand

et al. 2004; Beaudouin et al. 2008; Martinez et al.

2011).

The modelling of the processes underlying spatial

patterns is greatly affected by parameter estimation

because of non-linear dependencies, threshold effects,

and/or negative feedbacks. Consequently, it is crucial

to use accurate parameter estimates in order to point

the information which is most lacking for further

reducing uncertainty in model predictions (Wiegand

et al. 2004). Because not all parameters have the same

influence on model output, it can be useful to

determine whether uncertainties in particular param-

eter values lead to large uncertainties in the output,

i.e., it is useful to determine which parameter

estimates warrant the most attention. This is done

with sensitivity analysis, which measures the impact

of input factors on a selected output (Saltelli et al.

2000). Several methods are available for sensitivity

analysis and can be classified into two categories: local

sensitivity analyses (one-at-a-time methods, such as

FAST or Sobol’ methods), in which the effect of the

variation of a single factor is estimated, and global

sensitivity analyses (e.g., the Morris method), in which

the output of a factor is studied when all the factors are

varying (Cariboni et al. 2007). Selection of sensitivity

analysis method depends first on the scientific question

asked, then on the number of parameters under

consideration and on the existence of non-linear

effects or interactions between parameter effects.

The use of sensitivity analysis to investigate how

uncertainties in parameter values affect a model’s

inferential power is an integral part of modelling

(Cariboni et al. 2007).

However, an additional difficulty in studying spa-

tially-explicit simulation models is that the biological

processes may respond differently depending on

landscape composition and structure. For example,

the importance of dispersal may be greater in frag-

mented than in homogeneous landscapes (Vinatier

et al. 2012b). Disentangling the link between ecolog-

ical processes and landscape composition and structure

has been of particular importance in landscape ecol-

ogy, for example, respect to the question of the relative

impact of habitat loss and fragmentation on population

dynamics (Wiegand et al. 1999, 2005; Fahrig 2003).

As before, sensitivity analyses can provide insight

because such analyses provide a convenient frame-

work for understanding the behaviour of complex

mechanistic models. However, sensitivity analysis of

spatially-explicit simulation models is especially

challenging because there is no straightforward

method to include landscape characteristics into the

analysis.

We present here a new approach for disentangling

the complex link between ecological processes and

landscape composition and structure. The approach
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combines sensitivity and multivariate analyses of a

spatially-explicit simulation model. To demonstrate

this approach, we use a tritrophic system that includes

a pest, its parasitoid, and its host plant and for which a

spatio-temporal model has been developed (Vinatier

et al. 2012a). The development of the model, called

Mosaic-Pest, was motivated by the need to design

landscape-scale methods to control an important pest

of oilseed rape, the pollen beetle Meligethes aeneus,

and also to manage an important parasitoid of the

beetle, Tersilochus heterocerus. Mosaic-Pest consid-

ers landscape composition because both the pollen

beetle and parasitoid are sensitive to the proportion of

semi-natural habitats (i.e., woodlands and grasslands),

which are overwintering sites for the pollen beetle and

nectar sources for the parasitoid (Rusch et al. 2011).

Mosaic-Pest also considers agricultural practices that

affect pest densities, such as crop rotation (Rusch et al.

2011), ploughing (Nilsson 2010) and precocity of rape

varieties (Cook et al. 2007). The choice of this case

study was also motivated by the availability of

previously collected data on pollen beetle densities

and parasitism rates in farmer fields located at the

centre of 35 maps differing in landscape composition

and structure (Rusch et al. 2011).

The overall goals of this research were to develop a

general method for studying the relationship between

parameters and landscape composition and structure

with spatially-explicit simulation models and to

develop a general method for improving the estima-

tion of parameter values. With respect to our tritrophic

study system, the specific objectives were (i) to assess

via a global sensitivity analysis the impact of param-

eter uncertainties on population densities of pollen

beetles and parasitism rates, (ii) to narrow the range of

confidence intervals for parameters obtained in the

literature by using a variance decomposition technique

for the comparison of simulated and observed data,

and (iii) to determine how the main effects of

biological parameters vary with landscape composi-

tion via sensitivity and multivariate analyses.

Methods

Overview of the model

The Mosaic-Pest model was described in detail by

Vinatier et al. (2012a) and in Appendix 1 (Supple-

mentary Material). It simultaneously represents crop

planting and development, and host and parasitoid

dynamics and their interactions. The model is spatially

explicit, i.e., it is based on a 100 9 100 grid of 50-m

cells. The model considers four different habitat types

(oilseed rape fields, previous oilseed rape fields,

woodlands, and grasslands) because of their different

influences on insect overwintering, feeding, and egg

laying. The model was developed with Netlogo

software (Wilensky 1999).

In the Mosaic-Pest model, populations of pollen

beetles are divided into five stages: egg, 1st instar larva,

2nd instar larva, pupa, and adult. The adult changes

status during its life cycle from dispersing towards

overwintering sites, overwintering, dispersing for feed-

ing, dispersing for egg laying, to egg laying and finally

to death. Populations of parasitoids are divided into

immature and adult stages, and adult parasitoids change

status as described for pollen beetles, except for

dispersing towards overwintering sites status. At the

end of oilseed rape-growing season, the new generation

of parasitoids remains as diapausing adults within host

cocoons in the soil, whereas new adults of pollen

beetles disperse to the overwintering sites, i.e., wood-

lands. The size of populations of each species varies

with time according to transition probabilities depend-

ing on their stage, status, and location. Parasitism of

pollen beetles is described by a Thompson model

(Jourdheuil 1960; Mills and Getz 1996) that represents

the functional response of the parasitoid, i.e. the rate at

which the hosts are parasitized as a function of hosts

and parasitoids densities. Dispersion events of popula-

tions occur according to a cell-to-cell redistribution

mechanism, depending on both a dispersal kernel and

relative attractiveness of habitat elements. Survival

probability of adults depends on the power of the

distance covered by the population during dispersal.

This model includes 32 parameters describing the

demographics and dispersal of the pest and the parasit-

oid (Table 1). Parameters controlling demographic

processes are densities of insects in overwintering sites

(N0
Ma), temperature threshold for emergence (hMa),

proportion of the population surviving at emergence

(pTh,immature,NT or pTh,immature,ploughing if ploughing is

applied) and at each stage transition (pMa,adult,egg,larva,or

pupa), and duration of each stage (dMa,adult,egg,larva, or pupa).

Parameters controlling dispersal are the maximum

dispersal distance (in meters) travelled by insects before

feeding (xMa,adult), the proportion of individuals that
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survive per meter travelled (sMa), and the decrease in

habitat attractiveness with distance travelled (bMa,adult).

Values for most of the parameters were obtained from

the literature (Table 1), but some parameters were not

present in the literature and others were present but with

a large uncertainty around the estimated values.

Observed data used for model initialisation

and optimization

The realism of the Mosaic-Pest model was increased

by comparing simulation data with observed data. The

observed data set consisted of pollen beetle densities

and parasitism rates sampled along a transect in the

central field of 35 different landscapes at the end of the

flowering period during the years 2008 and 2009 [for

more details on sampling and observations, see

Appendix 2 (Supplementary Material)].

The observed data were collected in an agricultural

territory located in northwestern France (49�250N,

1�120E) and consisting of landscapes of arable land,

small woodland fragments, hedgerows, and grass-

lands. We considered 35 non-overlapping maps of 2.5-

km radius centred on an oilseed rape field within the

region. The maps were generated from aerial photo-

graphs (BD ORTHO�, IGN, 2004). Each map con-

tained different proportions of winter oilseed rape,

other crops, grassland, and woodland, with landscapes

ranging from simple (i.e.,\5 % semi-natural habitats)

to more complex (i.e., up to 58 % semi-natural

habitats). Semi-natural habitats were grasslands,

woodlands. Agricultural practices (i.e., crop alloca-

tion, rotation sequences, and ploughing) were deter-

mined based on intensive field inspection (Rusch et al.

2011) and on the official GIS-based system used by

farmers to declare crops and apply for subsidies

(Registre Parcellaire Graphique, Reglement commun-

autaire no. 1593/2000). The landscapes were then

rasterized using a 50 9 50 m resolution. Examples of

the resulting maps are presented in Appendix 3

(Supplementary Material).

The simulations were conducted so that the mod-

elled system was as similar as possible to the real

conditions: GIS polygons representing cultivated

fields, forests, and pastures were rasterized, and

observed crop allocation, rotation sequences, and

ploughing were applied to the model. For initialising

insect populations, we assigned to every cell of the

grid the same number of parasitoids or pollen beetles,T
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which were at the immature stage for parasitoids and at

the adult stage for pollen beetles (the initial densities

were considered as a parameter in the sensitivity

analysis). Every simulation began on 1 January, and

simulations were run for 300 days, from the beginning

of the overwintering period to the emergence of new

pollen beetle adults.

Sensitivity analyses and inverse parameter

estimation

We propose a five-stage approach for improving the

estimation of parameter values, analysing the sensi-

tivity of complex models to biological parameters, and

assessing interactions between influence of biological

parameters and landscape conditions while keeping

the number of simulations reasonably small (Fig. 1).

In stage 1, well-established methods for sensitivity

analysis of complex models (i.e., the Morris method)

are used. In stage 2, results of the sensitivity analysis

are analysed to reduce the range of uncertainty

surrounding important and poorly estimated biological

parameters and thus to make the model more precise,

accurate, and unbiased. In stage 3, the most influential

parameters are selected on the basis of the Morris

method. In stage 4, parameters that are similarly

influenced by the landscape are identified. In step 5,

landscape characteristics that substantially affect the

key parameters’ influences are determined. Statistical

analyses were conducted with R software (R Devel-

opment Core Team 2010) using the base, the package

‘‘sensitivity’’ for the construction of the sensitivity

plan, the package ‘‘Ade4’’ for multivariate analyses,

and the package ‘‘RNetlogo’’ to embed Netlogo into

the R environment (Thiele and Grimm 2010).

The Morris method for sensitivity analysis

of biological parameters (stage 1)

For stage 1, we used the Morris screening method

(Morris 1991) to identify the parameters that had the

most influence on the variability of the two output

variables in the observed data set, which were

densities of pollen beetles and parasitism rates. The

Morris method is suitable for models that have many

input parameters and that are computationally expen-

sive (Cariboni et al. 2007). We preferred the Morris

method over other parameter search methods, such as

the Latin hypercube sampling, because the latter

encounters computational limitations when number of

parameters exceeded 10–15 (Hartig et al. 2011). The

Morris method identifies influential parameters with a

relatively low number of model evaluations.

Following the Morris method, the possible range

(defined according to the uncertainty surrounding esti-

mates in the literature) of each of the 32 parameters was

divided into five levels with a resolution D (see Table 1).

A starting point was defined by sampling a set of start

values within the possible values for all parameters.

From this point, a trajectory was defined by increasing

(or decreasing) each parameter in turn with a step size of

D and the model was run at each of the k ? 1 steps of the

trajectory. This procedure was repeated 40 times to

explore a significant fraction of the total uncertainty

space, thus leading to 40 9 (32 ? 1) = 1,320 sensitiv-

ity runs. Furthermore, each sensitivity run is repeated for

the 35 maps, leading to 1,320 9 35 = 46,200 simula-

tions.

The elementary effect (EEi) of a parameter hk on a

trajectory j was calculated as:

EEi;jðhkÞ ¼
yjðhk þ eiDkÞ � yjðhkÞ

Dk
ð1Þ

with ei = ±1 and yj the model output.

The mean (l*) and the standard deviation (r) of the

absolute values of the elementary effects over the

trajectories were used as sensitivity measures to

ascertain the importance of the factors. A large l*

indicates a large overall influence of the parameter and

a large r implies a dependency of the parameter on the

value of the other parameters through non-linear or

interaction effects.

Comparison between observed and simulated data

(inverse modelling, stage 2)

For stage 2, we selected among the 1,320 tested

parameterizations those that optimized the relation-

ship between observed data and simulated data for the

two output variables (pollen beetle densities and

parasitism rates) across all landscape maps. This was

necessary because no single parameterization yielded

a good fit of the model to both output variables. We

preferred considering this relationship rather than

comparing directly the squared differences between

predicted and observed variables because the model is

devoted to exploratory analyses, i.e. our objective was
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to analyse how the system responds to landscape

configuration, rather than prediction analyses, i.e.

predicting without error the response variables for a

given map. Consequently, bias was not considered a

problem and precision was less important than accu-

racy. For each sensitivity run, which corresponds to a

set of 35 simulated map values, we fitted a linear

model on simulated versus observed data for pollen

beetle and parasitism rate separately. The linear model

of the form Y = a X ? b was used to estimate the

realism of the Mosaic-Pest model, where Y = simu-

lation data, X = observation data. Good accuracy

leads to a slope close to 1, good precision leads to a

high R2 and absence of bias is reflected, when the slope

is close to one, by the intercept being close to 0.

We first selected the parameterization for which

(i) the linear model was significant (P \ 0.05) for both

output variables in the data set, (ii) the slope and the

intercept were non-significantly different from 1 and

0, respectively, and (iii) the value of the R2 was higher

than 0.2. On the basis of this first selection of

parameters’ combinations, we selected the unique

combination of parameters that was both in the tenth

highest levels of R2 for pollen beetles and parasitism

rates, respectively. We preferred the linear model to

the Spearman’s or the root-mean-square deviation

statistics because the latter two were less discrimina-

tory for our data set (data not shown).

We conducted a multiple ANOVA analysis on the

1,320 sensitivity runs to test the overall influence of

each parameter on this linear model, taking separately

the R2, intercept, and slope of the linear model as a

response variable. Each biological parameter was

treated as an input factor with five modalities (the five

levels along the range of possible parameter values).

The normality of the response variable and residuals

was tested using the Shapiro–Wilk test. Following

Monod et al. (2006), a sensitivity index of each

factorial term (biological parameter) was calculated

on the basis of its sum of squares to assess the relative

Fig. 1 Overview of the

five-stage approach used in

the study. Pi, Li, li, and Mi

correspond to the abbreviate

of the ith parameter,

landscape, Morris influence,

and landscape metric,

respectively. Black boxes
illustrate the objective (in

italics) of each intermediate

stage of the approach. Thin
arrows illustrate the

transition steps of the

approach. Large coloured
arrows illustrate (i) the

statistical (ANOVA, PCA

and co-inertia for Principal

Component and co-inertia

analyses, respectively,

correlation for multiple

correlation using Pearson’s

coefficient)and (ii) the

mechanistic (the Mosaic-

Pest logo figures the model

functioning) parts of the

approach. (Color figure

online)
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influence of each parameter on the relationship

between the observed and simulated data.

Selection of the most influential parameters (stage 3)

In stage 3 we identified the parameters with the

strongest influence on the model outputs. To this end

we determined the parameters for which the values of

the Morris l* were among the three highest for at least

one map. The ordered sum of the Morris l* for the

different maps showed that for almost all maps only

the three highest l* were the most important, whereas

the others were closed to zero. The Morris method

enabled us to estimate the mean l* and the standard

deviation d of the elementary effect of each parameter

on the model’s outputs, i.e., densities of pollen beetles

and parasitism rates.

Note that the parameters identified as influential in

stages 2 and 3 were not necessarily the same because

stage 3 focused on the parameters that influenced

value of model output for the highest number of

landscapes, whereas stage 2 focused on the parameters

that influenced model accuracy and precision when

compared against real observations. Because obser-

vations were made in landscapes chosen specifically to

vary in terms of landscape factors (proportion of

different land uses), a large effect of a biological

parameter on the agreement between observations and

simulations indicated that this parameter plays a key

role in the relationship between landscape factors,

pests, and parasitoids.

Effect of landscape composition on the influence

of biological parameters (stage 4)

For stage 4, we compared the medians of the values for

the Morris l* for biological parameters in each pair of

maps to determine whether the influence of parameters

shared the same behaviour across landscape maps.

This analysis was based on (i) multiple correlation

analysis between parameter influences for a low

number of key parameters, or (ii) principal component

analysis (PCA) of parameters influences for a high

number of key parameters (we highlighted groups of

biological parameters depending on the species and

the type of parameter, i.e., dispersal or demographic).

The box-cox transformation (lambda = 2) was

applied to the values of Morris’ l* for normalization,

as no a priori exists on the distribution of this variable.

Determining landscape characteristics that influence

values of Morris l* parameters (stage 5)

For stage 5, we used multiple correlation or multivar-

iate analyses to understand the relationships between

the values of Morris’ l* for parameters and landscape

metrics on the two outputs of the model (densities of

pollen beetles and parasitism rates). The choice of

multiple correlation methods or multivariate analyses

depends on the number of influent parameters. In our

case, we considered arbitrarily a threshold of ten

parameters. For a parameters’ number exceeding this

threshold, combination of correlations between vari-

ables was too important to be considered in a synthetic

table whereas they have been calculated (data not

shown) and the use of PCA as a more aggregative

techniques was preferred.

Landscape metrics were computed on each of the

35 maps via buffer analyses (Ricci et al. 2009; Rusch

et al. 2011) [Appendix 3 (Supplementary Material)].

We considered the proportion of four habitat classes

(i.e., woodland, grassland, previous-year oilseed rape

fields, and oilseed rape fields) in eight circular zones

with radii ranging from 250 to 1750 m around the

centre of each map. The matrix of landscape metrics

by map (i.e., a data set of 32 Landscape metrics 9 35

maps) was named the Landscape metrics data set.

For a number of key parameters lower than ten, the

correlation between the value of Morris’ l* for a given

parameter and a given Landscape metric was calcu-

lated across landscapes to determine whether the

influence of a given parameter on the model output

depended on the conditions (in terms of landscape

composition) under which it was evaluated and which

habitats influenced the model’s response to biological

parameters and at what scale. For a number of key

parameters higher than 10, we used multivariate

analyses to describe the relationship between param-

eters and landscape. The values of Morris’ l* and

Landscape metrics data sets were first re-projected

separately using a principal component analysis

(PCA) to define aggregated variables that represented

groups of biological parameters and descriptors of

landscape complexity. Subsequently, a co-inertia

analysis was applied on the two PCAs. The co-inertia

analysis is a multivariate method that identifies trends

or co-relationships in multiple data sets that contain

the same samples. The significance of co-inertia

analyses was tested using the Monte-Carlo random
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permutation test. The ways in which groups of

parameters (demographic or dispersal parameters for

each species separately) and landscape composition

descriptors (buffer radii and habitat types) were

related to co-inertia axes were described.

Results

Sensitivity analysis using Morris method

and selection of the most influential parameters

(stage 1 and stage 3)

Of the 32 parameters of the Mosaic-Pest model that

were tested, six and 19 parameters were identified as

influential (i.e., they had Morris l* values that were

among the three highest for at least one map) for

pollen beetle densities and parasitism rates, respec-

tively (Table 1). The six parameters for pollen beetle

density were the pest dispersal parameters xMa,adult,

sMa, and bMa and the pest demographic parameters

pMa,winter, dMa,adult, and N0
Ma. The 19 parameters for

parasitism rates included both pest and parasitoid

dispersal and demographic parameters. Some param-

eters did not influence pollen beetle density or

parasitism rate because their uncertainty level (esti-

mated from the literature) was small and/or their

influence in the model (as characterised by the Morris

method) was negligible (e.g., dMa and pMa of pollen

beetles eggs, larvae, and pupae).

Figure 2 shows the relative importance of the

values of Morris’ l* and d for each parameter. The

large size of box plots indicates that Morris l* was

highly variable across map patterns, highlighting that

landscape composition of maps greatly affected

parameter influence (Fig. 2a). Spread of the d values

across landscape maps was low for pMa,winter and N0
Ma

parameters and high for dispersal parameters and

dMa,adult (Fig. 2b), indicating that the interactions

between other parameters and pMa,winter or N0
Ma was

low regardless of the landscape composition while the

importance of the interaction between the influence of

dispersal parameters of dMa,adult and the other param-

eters depended on the landscape context. The boxplot

medians of d parameters among biological parameters

mirrored the temporal sequence of events in the

model, i.e., d values progressively increased for

parameters controlling events during the overwinter-

ing period, dispersal events, and then adult death.

Because the Morris d indicates non-linear and inter-

action effects, this is not surprising: the value of d
increased with the cumulative number of events.

Inverse modelling (stage 2)

When a linear model was fitted to the relationship

between observed data and each run of the sensitivity

analysis plan, R2 values ranged from 0.15 to 0.43 for

pollen beetle densities and from 0.01 to 0.25 for

parasitism rates. The ANOVA models accounted for

more than 80 % of the variability of each response

variable. Three parameters for pollen beetle density

and one parameter for parasitism rate had sensitivity

indices [10 % (Monod et al. 2006) (Table 1). Fig-

ure 3a shows how parameter levels of sMa and

xMa,adult affected R2, intercept, and slope values of

the linear regression model, with an optimum of

0.999 m-1 for sMa and 300 m for xMa,adult. The

optimum for the parameter pTh,immature,ploughing was

0.2, i.e., the presence of ploughing destroyed 80 % of

the pupae (Fig. 3b). The parameter pMa,winter was not

presented in Fig. 3a because its influence on the

relationship between observation and simulation was

not clearly emphasized by the graph. Some parame-

ters, such as N0
Ma, dMa,adult, and bMa, greatly affected

pollen beetle densities as determined by the Morris

method (Fig. 2) but had little effect on the agreement

between the simulated and observed pollen beetle data

sets [sensitivity indices below 5 % (Monod et al.

2006)], indicating that these parameters were inde-

pendent of landscape, i.e., they had a high influence on

the absolute value of pollen beetle density but a weak

influence on the variation in these densities across

maps.

A total of 23 parameterizations were selected on the

basis of a significance of the linear model, the non-

significance of slope and intercept in comparison to 1

and 0, respectively, and a R2 value higher than 0.2.

Table 1 and Fig. 4 show parameterizations that most

improved the prediction of observations by Mosaic-

Pest on the basis of the R2 of the linear regression

between observed and simulated data for pollen beetle

density (n = 35, Y = 1.05 X ? 2.4, R2 = 0.44,

P \ 0.001) and for parasitism rate (n = 35, Y = 0.8

X ? 2.2, R2 = 0.25, P = 0.03). The root mean squared

error of standard deviation was 90 and 15 for pollen

beetle density and parasitism rates, respectively.
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Effect of landscape composition on the influence

of biological parameters and identification

of the landscape characteristics involved (stage 4

and stage 5)

For pollen beetle density, the value of Morris’ l* for

demographic parameters was highly correlated across

maps (r [ 0.8, P \ 0.05 in all cases). The influence of

dispersal parameters such as sMa and bMa were

negatively correlated (r \ -0.6, P \ 0.05) across

landscape maps. The influence of demographic param-

eters was not correlated with dispersal parameters,

except that the influence of N0
Ma was related to the

influence of xMa,adult (r = 0.64, P \ 0.05).

Concerning the link between the influence of

biological parameters and landscape metrics com-

puted at different distances around the central field, the

response to landscape metrics differed between one

group of demographic parameters (N0, p, and d) and

one group of dispersal parameters (x, s, and b) but the

response of each parameter within one group was the

same. In Fig. 5, we present two examples of param-

eters, one (p) belonging to the group of demographic

parameters and the other (s) belonging to the group of

dispersal parameters. The influence of p was posi-

tively related to the proportion of woodlands (r [ 0.6,

P \ 0.05 in all cases) but only for buffer radii

\1,000 m (Fig. 5a). The influence of s was negatively

related to the proportion of oilseed rape and of

previous oilseed rape in the landscape (r \ -0.6,

P \ 0.05 in all cases) and positively related to the

proportion of grasslands and woodlands in the land-

scape (r [ 0.6, P \ 0.05 in all cases) for buffer radii

[750 m (Fig. 5b).

Given the large number of interacting parameters

for parasitism rates, inertia analyses on the basis of

PCAs were used rather than multiple Spearman’s rank

correlations to understand the relationships between

groups of parameters and landscape composition. The

first factorial plane of the PCA on the values of Morris’

l* accounted for 78.1 % of the total inertia. This

indicates that the influences of demographic parame-

ters of immature pollen beetles and parasitoids were

highly correlated across landscape maps (r [ 0.8,

P \ 0.001 in all cases), except for dMa, l2 of the pollen

beetle and hTh,immature and dTh,immature of parasitoids,

which were correlated in a different group (r [ 0.6,

P [ 0.05) (Fig. 6a). Dispersal parameters were also

correlated in two distinct groups, one corresponding to

pollen beetle parameters and one to parasitoid param-

eters (r [ 0.6, P \ 0.001 in all cases) (Fig. 6a).

Co-inertia analysis was significant (P = 0.005,

based on 999 repetitions of Monte-Carlo simulations).

The co-inertia analysis of the PCA of the values of

Morris’ l* projected on the PCA of the Landscape

metrics data set explained 76.3 % of the variability

(Fig. 6a). The first factorial plane of the PCA on the

Landscape metrics data set accounted for 59.2 % of the

total inertia (Fig. 6b). Not surprisingly, landscape

metrics describing the proportion of a given habitat at

several buffer sizes were correlated among themselves.

Fig. 2 Box plots (n = 35) for the values of the Morris al* and

bd across landscape maps for pollen beetle densities. Only the

six most influential parameters are presented (a most influential

parameter was defined as one whose value for the Morris l* was

among the three highest for at least one map). Each boxplot
contains the lower whisker, the lower hinge (first quartile), the

median, the upper hinge (third quartile) and the extreme of the

upper whisker. The whiskers extend to the most extreme data

point that is no more than 1.5 times the interquartile range from

the box
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For the relationships between the Landscape metrics

data set and the values of Morris’ l*, it appeared that

dispersal parameters of parasitoids (r [ 0.6, P \ 0.05)

were related to grasslands whereas demographic

parameters of pollen beetles were related to woodlands

(r [ 0.6, P \ 0.05), except for three parameters (dMa,l2

of pollen beetle and hTh,immature and dTh,immature of

parasitoids) (Fig. 6a, b). Two dispersal parameters of

pollen beetles, xMa,adult and bMa, were linked to the

proportion of previous oilseed rape fields at distances

\1,000 m and to the proportion of oilseed rape fields at

distances up to 750 m, respectively (r [ 0.6,

P \ 0.01). Considering multicollinearities between

buffers of a given habitat, no important distance effect

was evident in the relationship between semi-natural

habitats (woodlands and grasslands) and biological

parameters.

Discussion

The Mosaic-Pest model integrates all the existing

knowledge about the ecology of M. aeneus and T.

heterocerus with regard to landscape effects. When

studying the relationships between simulated and

observed values (Fig. 1, stage 2), we demonstrated

that Mosaic-Pest is able to reproduce general trends of

the system and of pollen beetle dynamics. The

relationship between simulated and observed values

was weaker for parasitism rates than for pollen beetle

dynamics, and we therefore suspect that important

processes need to be added in the model. As expected,

the influences of dispersal parameters on model

accuracy and precision were highly variable between

the studied landscape maps because landscape com-

position affects distances between complementary

and/or supplementary habitats. The effects of demo-

graphic parameters were also highly complex when

they corresponded to processes occurring after dis-

persal events, such as duration of adult’s stage.

The sensitivity analysis of the Mosaic-Pest model

highlights the importance of correctly specifying key

parameters in studying the spatio-temporal dynamics

of the pollen beetle. Among the 32 studied parameters,

six and 19 greatly affect pollen beetle densities and

parasitism rates, respectively. For example, the dis-

persal event before feeding is crucial and relies on

parameters that should be re-examined. Moreover, the

Fig. 3 Box plots of the coefficients of the linear model

comparing observed and simulated data for a pollen beetle

densities and b parasitism rates as a function of the values of

selected biological parameters. n = 250 (the total number of

simulations per set of 35 maps divided by the five levels). The

three parameters were chosen according to the sensitivity

indexes on the linear model. Rectangles in grey indicate the

range of coefficient values considered acceptable for selecting

the best linear model, i.e. that are non-significantly different

from 1 and 0 for the slope and intercept, respectively, and that

are higher than 20 % for the R2. The dashed lines indicate the

slope, intercept, and R2 of the best linear model. Each boxplot
contains the lower whisker, the lower hinge (first quartile), the

median, the upper hinge (third quartile) and the extreme of the

upper whisker
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proportion of adults able to emerge after overwinter-

ing is also a key parameter but is rather difficult to

estimate despite recent studies on the overwintering

period (Nilsson 2010). We found a higher number of

influential parameters for parasitism rates than for

density of pollen beetles because the former involved

more processes. Moreover, the large size of box plots

indicates that the value for Morris l* was highly

variable across landscape maps, which points out the

importance of using several landscapes varying in

habitat composition for sensitivity and validation

procedures: the importance of parameters is greatly

influenced by the landscape.

The use of multivariate analyses helps explain the

influence of dispersal parameters in the system and

their strong link with landscape composition. For

pollen beetle densities, both proportion of individuals

that survive per meter travelled and the decrease in

habitat attractiveness with distance travelled depended

on the distance covered during dispersal. The influ-

ence of the proportion of individuals that survive per

meter travelled was negatively related to the propor-

tion of oilseed rape and previous oilseed rape in the

landscape and was positively related to the proportion

of grasslands and woodlands within buffer radii

[750 m. Two other dispersal parameters of pollen

beetles, the maximum dispersal distance travelled by

insects before feeding and the decrease in habitat

attractiveness with distance travelled, were also linked

to the proportion of previous oilseed rape fields. The

results of co-inertia analysis suggest that an increase in

the proportion of oilseed rape fields enhances the

connectivity between fields and limits the importance

of survival during dispersal. For example, the co-

inertia analysis highlighted that dispersal parameters

of parasitoids were related to grasslands, whereas

demographic parameters of pollen beetles were related

to woodlands. The effect of grasslands is reasonable

Fig. 4 Comparison of the

predictions of the best

parameter combination and

the observation for a pollen

beetle densities, and

b parasitism rates simulated

by the Mosaic-Pest model.

Solid line indicates a perfect

fit between observation and

simulation

Fig. 5 Spearman’s rank

correlation coefficient

between the values for the

Morris l* and proportion of

habitats between maps

across buffer radii. Example

of results for a Emergence

and b FlightSurvival

parameter of pollen beetles.

Stars correspond to a

Spearman’s rank coefficient

that is significantly different

from 0 (P \ 0.05)
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because grasslands enhance the spread of parasitoids

in the landscape and consequently enhance parasitism

rates. The influence of demographic parameters is

related to woodlands because these habitats act as

sources of pollen beetles, i.e., as hosts for parasitoids.

This provision of resources is more important when

distances are small.

These results indicate that dispersal parameters of

parasitoids before feeding are crucial and that their

estimates must be improved. This is especially the case

for the quantitative link between the dispersal window

of parasitoids and the proportion of grasslands in the

landscape. Obtaining better estimates of how landscape

affects parasitoid dispersal parameters should enhance

the implementation of innovative pest management

practices that affect demographic traits of pests and

natural enemies because the efficiency of these prac-

tices will vary with landscape composition and struc-

ture, as pointed out by Tscharntke et al. (2005). The

results on the relationship between parameter influence

and landscape composition will help in identifying the

landscapes in which a given biological parameter, e.g.,

density of overwintering insects or dispersal, will be the

most important and will therefore enable researchers to

focus on situations where the parameter is expected to

show the greatest influence. For example, the Mosaic-

Pest model will help researchers select contrasting

landscapes for calibrating dispersal processes. From a

more applied perspective, knowledge of the relation-

ship between landscape and parameter influence will

facilitate the selection of a pest management strategy

that focuses on a vulnerable part of the pest life cycle in

a given landscape.

Studying the interaction between landscape compo-

sition and the influences of parameters on the output of

a spatial model is novel and is important for under-

standing processes in landscape ecology. The co-inertia

analysis helps us understand how the main effects of the

model parameters on model outputs were affected by

landscape composition. Co-inertia analyses are partic-

ularly suitable for studying ecological data tables in a

symmetric way (ter Braak and Schaffers 2004); co-

inertia analysis, for example, has been used to study the

relationship between species composition and environ-

mental variables sampled at the same location (Dray

et al. 2003). We extended the use of co-inertia analyses

to disentangle the complex links between landscape

composition and ecological processes via a spatially

explicit model. We hope that the new methodology

presented here will help landscape modellers to go

deeper in the understanding of the link between their

model and landscape configuration.

Fig. 6 Projections on the first factorial plane of the co-inertia of a values for the Morris l* for biological parameter and b landscape

parameters. The output corresponds to parasitism rates. Results are issued from Mosaic-Pest model simulations
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The approach presented in our study, which com-

bines Morris sensitivity analysis and variance decom-

position techniques, provided useful results for our

case study and could be part of the toolbox of inverse

modelling techniques. The use of a given inverse

modelling technique for calibrating model parameters

is widely dependent on model computational time and

number of parameters to assess. For example, Bayes-

ian techniques (Martinez et al. 2011) or genetic

algorithm (Stonedahl and Wilensky 2010) could be

tested with success on some spatially explicit models

with a low number of parameters. Global sensitivity

analyses are the best techniques to calculate a

synthetic measure of parameters influence, the param-

eters space uncertainty being explored via Morris

method as presented in this paper, or latin hypercube

sampling (Luxmoore et al. 1991) and a complete

factorial plan (Beaudouin et al. 2008), depending on

number of parameters evolved. For researchers inter-

ested in linking parameter influence to landscape

metrics, different type of multivariate analyses could

be found, depending as well on the number and the

type of response variable to link (a complete review of

the multivariate analyses could be find in Ramette

2007).
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