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ABSTRACT

In this paper we present a simulation model for large networks that increases the efficiency compared to
a discrete event simulation model. These networks have two different time scales: a fast one and a slow
one. The main idea is to replace some of the faster point processes by a “fluid” (called the ghost processes)
thus accelerating the execution of the simulation. Using local modularity for the code, there is no need
to keep a list of events. Clocks are not necessarily synchronized. When a local clock advances due to a
slower event, retrospective calculations recover the fine detail lost in the fluid model. Mathematically, the
model is a special case of the Filtered Monte Carlo method. Efficiency improvement results not only from
the speed of execution, but also from variance reduction. We provide proofs of unbiasedness. Throughout
the paper we use a case scenario of an airport car park.

1 MOTIVATION

The motivation for the present work goes back to 2005, when the Melbourne airport (in Melbourne,
Australia) needed some advice to buy a new fleet of buses for the airport car park. At the time, the author
was at the University of Melbourne and she participated in finding the solution. Figure 1 depicts the route
of the buses: From the checkpoint, they first pick up all passengers in the Arrivals terminal (a) that wish
to go to the parking lots. Next they follow the loop leaving passengers and picking up new passengers
that wish to go to the Departures terminal (there may be multiple ones). At the Departures terminal (d) all
passengers still in the bus unload.

The airport needed to determine which vendor to use for the type of bus (they differ in bus capacity,
loading times and operation costs) and the number of buses to buy. They required that a quality of service
(QoS) criterion be satisfied, which they call the “95/10 rule”: at least 95% of the passengers should wait
less than 10 minutes for a bus.

The mathematical description of the process is very complex. The clients of the bus service are either
passengers arriving in (a) and going to a car park, or passengers arriving in their cars (probably in groups)
wishing to go to (d). The arrival processes are correlated: each spot in a car park can be modeled as an
on-off process. When cars arrive at the long term parking at the airport they choose the car parks depending
on the current car park occupancy, and the holding time corresponds to the number of days that the car
owners spend outside Melbourne during each trip. At the end of the trip they will arrive at (a) and request
service to go to the car park where they left the car. Trip durations are of the order of days and weeks.
This is the slowest time scale for this system. Passenger arrivals (whether at (a) or at the car parks) are the
fastest time scale processes. Keeping track of all these correlations presented practical problems and was
too complex for analysis and even for simulations.

Although never explicitly stated, there is an implicit optimization problem at hand: the number of buses
b should be the minimum required to operate under the 95/10 rule, and the type of bus affects not only
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Figure 1: The bus routes in the Melbourne airport.

the dynamics through the capacity and loading/unloading times, but also the operational costs. One must
add to the problem the assumption that an “optimal” schedule is followed with the b buses. These may
have constraints, such as the regulatory number of continuous hours that every driver can be allowed to do.
A margin of extra of buses must also be considered, on account of bus maintenance and regular repairs.
Because of the complexity, we decided to use simulation for optimization. Each simulation fixes the type
of fleet (there were only three) and evaluates the performance of the system as a function of b, seeking to
satisfy the constraint. Due to the high variability of the various processes involved, it is impossible to use
deterministic allocation methods for every hour of the day, using input that is noisy.

Inspired in the real problem, we now look at a simplified model where some interesting results can be
shown. It is on the basis of this simplified model that we ran simulations and estimated the required fleet
characteristics. Our first mathematical challenge was to express the constraint in an unequivocal manner.
We did this assuming that the 95/10 rule refers to a steady state operation of the airport, rather than to an
actual daily frequency. In order to accelerate the simulation, we used conditioning arguments and defined
our data classes so that retrospective conditional expectations can be retrieved for aggregate groups of
passengers. Vázquez-Abad and Zubieta (2005) introduced this approach for the simulation of an urban
subway system. In that study, the trains were assumed to have infinite capacity, loading is simultaneous
(and instantaneous), and people could be modeled as a fluid all along. In contrast, we consider here buses
that have limited capacity and passengers must be generated to load and unload the buses one at a time,
so we had to adapt the method.
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2 STATIONARY MODEL

To obtain a model for the arrival processes of passengers at both the parking lots and the arrivals terminal
(a), we assume that the dynamics are stationary. Realistically, business travel and leisure travel have cyclic
demands (every week), but in some very busy airports the aggregated demands from numerous trips result
in a steady pattern. As an approximation, we derive the following results for the infinite parking capacity
model.

Model Assumptions. Cars arrive at the various parking lots according to independent homogeneous Poisson
processes with rates (λp; p = 1, . . . ,P). The aggregate arrival process is therefore a Poisson process N(·)
with rate λ = ∑

P
p=1 λp. Each car will occupy its spot in the parking for the whole duration of the trip of the

corresponding car owner(s). This duration is called the holding time. We assume that consecutive holding
times {Yi, i≥ 1} are iid with a general distribution with finite mean and variance (this distribution can be
stratified by travel type, for instance, but the final results will not change if we assume that business and
leisure arrivals are independent). At the end of the trip the car owners will arrive at the terminal (a) to pick
up their cars.
Lemma 1 As t→ ∞ the arrival process at terminal (a) is a Poisson process with rate λ .

Proof. Call Na(t) the arrival process at terminal (a). Then we have:

Na(t) =
N(t)

∑
i=1

1{Ai+Yi≤t},

where (Ai; i≥ 1) are the consecutive times of arrivals of cars to the parking (regardless of which lot they
choose). Fix t and call ξi = 1{Ai+Yi≤t}. Conditioning on the event {N(t) = n}, the n arrival epochs have
the joint distribution of n iid uniform random variables on (0, t), so that Na(t) has a binomial distribution
with parameters (n,βt), where:

βt = P(ξi = 1 |N(t) = n) = P(Yi ≤ t−Ai |N(t) = n) =
1
t

∫ t

0
G(t− s)ds =

1
t

∫ t

0
G(s)ds,

where G is the distribution function of Y . Thus,

P(Na(t) = m) = e−λ t
∞

∑
n=0

(λ t)n

n!

(
n
m

)
β

m
t (1−βt)

n−m = e−λβt t (λβtt)m

m!
,

which shows that Na(t) has a Poisson distribution with parameter λβt for each time t. Independence of
increments follows from the independence of increments of the process N(·) and of the holding times.
Thus the departure process is an inhomogeneous Poisson process with rate function λ (s) = λG(s). Notice
that this is the familiar result for the output of the M/G/∞ queue (Ross 2009). As t→ ∞, we use the fact
that µ ≡ E(Y ) =

∫
∞

0 [1−G(s)]ds to obtain βt = 1− 1
t

∫ t
0 [1−G(s)]ds→ 1, which shows the result.

A similar technique to the above proof is used in Taylor and Karlin (1998) to derive the stationary
occupancy number for the M/G/∞ system. This method can be applied to our model to establish that
the aggregate (long term) occupancy numbers of the different car parks are independent Poisson random
variables with respective parameters λpµ, p = 1; . . . ,P.

2.1 Notation

There are P different parking lots. We designate the arrivals terminal as station p = 0, and the departure
terminal as station p = P+1.

N(t) : arrival process at the arrivals terminal (a), ∼PoissonP(λ ).
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Np(t) : arrival process at car park p ∈ {1, . . . ,P}, ∼PoissonP(λp) for passengers arriving at (a).
N̄(t) = Na(t)+∑

P
p=1 Np(t) : total arrival process for clients.

Wi : waiting time for the bus (in queue) of client i in minutes.
πp = P(passenger i has destination p) = λp

λ
, p = 1, . . . ,P.

C : Total bus capacity
δ : time required to load/unload each passenger (empirically about 9.75 seconds)
b : total number of buses in the fleet (control variable).
u : headway control variable.
Vj(p) : arrival time of bus j at loading dock in station p.
D j(p) : departure time of bus j from station p.
O j(p) : number of people that unload bus j at station p: the outgoing passengers.
T (p) : travel time between stations p−1 and p, for p = 1, . . . ,P.

2.2 Optimization Formulation

Passengers travel in groups, and the group size distribution is known via empirical data. Although all
our results can be developed for a model with random group sizes, the main ideas are easier to develop
assuming individual instead of group arrivals, which simplifies the notation, and this is what we do here.

It follows from Lemma 1 that for our model λa = λ , so the total arrival rate for N̄(·) is 2λ . Under the
assumption that the system is stable (every queue at the stations empties infinitely often w.p.1) the QoS
constraint can be stated as:

G = lim
H→∞

E

(
1
H

N̄(H)

∑
i=1

1{Wi>10}

)
≤ 0.05(2λ ) = 0.1λ . (1)

In order to state the objective function we first introduce the control variables. We work with a given
fleet type that determines C , δ and other operational costs. The stationary model assumes continuous
operation of the buses and no attempt is made in the present paper to assign individual drivers to trips.
Rather, we look for the optimal bus operation in steady state. Each “solution” to this problem gives rise
to specific timetables to be chosen by the management company, which is outside the scope of this paper.
If the round trip time RTT of the buses were deterministic, then the headway (defined as the mean time
between consecutive buses) would be RTT/b. However, the round trip time is a random variable that will
depend mostly on the unloading times and the loading times of the passengers waiting at the stations. Under
fluctuations of the RTT a phenomenon called “bunching” eventually occurs, where an unusually delayed
bus is closely followed by an almost empty one. Several measures exist to prevent bus bunching. Because
we study a relatively short loop for the routes, the most efficient way to control bunching is to impose
a delay that targets a desired headway. At the checkpoint depicted in Figure 1 just before the Arrivals
terminal, if bus number j arrives at time Vj and bus j−1 left from (a) at time D j−1, then the departure
time of bus j is set as D j = max(Vj,D j−1 +u), so that there are at least u minutes between consecutive
buses at the checkpoint. This control rule could be implemented at every station if desired. Instead, after
consultation with the Melbourne airport, we use this control rule at the checkpoint only, and at any other
station p 6= 0 we set:

Vj(p) = max(D j(p−1)+T (p)+δO j(p),D j−1(p)), (2)

so that buses do not overtake each other: if a bus that arrives at a station finds another bus currently loading
passengers, then (after unloading) it waits for that bus to finish loading and leave, and then takes its place
in the loading area. The time T (p) is a deterministic travel time between stations. (Random travel times
pose no difficulties for our simulation model, but it complicates notation and analysis).

Considering our stationary model for the demand of service, given (u,b) the operational costs are
defined in terms of the long term average cost per unit time, J(u,b). We assume that this quantity is directly
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measured from the dynamics of the process and can be estimated accurately with sample averages. The
problem becomes

min
u,b

J(u,b), subject to: G (u,b)≤ 0.1λ ,

where G is defined in (1).
The optimization algorithm that we use is simple. It works under the assumption that J(u, ·) is

monotonically increasing: more buses imply more costs in the long run. Under this assumption, we first
use Fibonacci search to find u0 such that G (u0,∞) ≤ 0.1λ , and set b0 = ∞. Let R̄ denote the maximum
round trip time (assumes loading and unloading of full bus). Because the function G is monotonically
increasing in u, the solution to the constrained problem must correspond to an active constraint, so we use
stochastic approximation for target tracking, for n≥ 1:

bn = min(bn−1, R̄/un)

un+1 = un− εn(G (un,bn)−0.1λ )

The fleet size bn is always initialized to overestimate the actual need for buses. Call u∗,b∗ the final value
of this iterative procedure. Then decrease b from the current value b∗ while G (u∗,b) ≤ 0.1λ . Because
the quantity G is not available in closed form we use simulations to drive the optimization algorithm.
Analysis of the optimization procedure and proof of convergence is outside the scope of this work and will
be reported elsewhere.

2.3 Infinite Capacity Bus

Fix a control (u,b). The stationary round trip time per bus is a random variable that depends on the total
loading and unloading time spent at each station. In this section we analyze the loading time and draw
stability results from it.

When a bus arrives at a station it unloads passengers (if any) and then loads passengers waiting at the
queue. During this time, more passengers may arrive, and they load as soon as the first group is in the
bus. Again, during the loading time of these new passengers, new arrivals may occur, and so on.

Let T0 be the elapsed time between the departure of the previous bus at station p and the moment when
passengers start loading the current bus. The Markov chain {Xn;n = 0,1, . . .} representing consecutive
groups of passengers that load the bus is described by:

Xn ∼ Poisson(λTn),

Tn+1 = δ Xn.

State {0} is the only absorbing state for this chain and the total loading time L is defined by:

L =
τ

∑
n=1

Tn ; where τ = min(n : Xn = 0). (3)

Call Fn the σ -algebra generated by {Xn}, and notice that {Xn} is a non-negative supermartingale only
when δλ < 1, because in this case E(Xn+1 |Fn) = λ (δXn) < Xn. This is the condition for stability that
ensures P(τ < ∞) = 1. The expected loading time for this model is calculated using E(Tn |Tn−1) = δλTn−1:

E(L |T0) = T0 +E

(
∞

∑
n=1

E(Tn |Tn−1)

)
= T0

∞

∑
n=0

(δλ )n =
T0

1−δλ
.

Let T0 =Vj(p)−D j−1(p) be the elapsed time between departure of bus j−1 and the start of loading of bus
j to station p. The model corresponds to a M/D/1 server with vacations of length T0, whose distribution
depends on u and b. Even for this simple model with infinite bus capacity, the solution is intractable
analytically. It may be possible to provide approximations to the stationary waiting times using this model,
but the QoS of interest is a tail probability, which is much harder to calculate exactly.
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2.4 Finite Capacity Bus

Fix a control (u,b) and a total bus capacity C . Consider a station p ∈ {0, . . . ,P} where a bus arrives. Let
Xn be the number of passengers loading during time Tn as before, and define T0 as the elapsed time since
the last bus departure and the time when people start loading, W0 as the initial number of people waiting
in the station and C0 ≤ C as the initial available capacity (after unloading at p). Now the dynamics are:

Zn ∼ Poisson(λTn)

Xn = min(Wn +Zn,Cn)

Wn+1 = max(0,Cn−Xn)

Tn+1 = δ Xn

Cn+1 =Cn−Xn (4)

With these new definitions, the loading time satisfies (3). The three dimensional Markov chain {(Xn,Wn,Cn)}
has again an absorbing state when Xn = 0, which is when no more passengers load. Define X = ∑

τ
n=0 Xn

as the total number of passengers that load the bus (L = δX), and define:

vi,k(t) = E(X |T0 = t,C0 = i,W0 = k).

The boundary conditions are:

vi,k(0) = 0; ∀ i,k

v0,k(t) = 0; ∀ t,k

vi,k(t) = i; ∀ t, when k ≥ i,

because in the first case there is no capacity left in the bus, and in the second case all i board the bus to
fill capacity (leaving the i− k remaining people on the station waiting for the next bus). Let k < i, then
k+m people will board if Z = m < i−k arrive during the time interval of length t, otherwise i people will
board and leave the rest of the arrivals at the station. This yields the multi-dimensional recursion:

vi,k(t) = k+(i− k)F̄i−k(t)+
i−k−1

∑
m=0

(m+ vi−k−m,0(δ (k+m))) e−λ t (λ t)m

m!
,

where F̄i−k(t) = P(Z ≥ i− k) = e−λ t
∑

∞
m=i−k

(λ t)m

m! . Because of the model with deterministic service times,
time can be discretized in multiples of δ . To solve the recursions, we start with the case k = 0, t = δ ,
increasing i and t and calculate a table numerically.

In order to find the stability condition, we now require that each queue in the stations empties infinitely
often with probability one. The incoming passenger rate is λp. During the time that a bus is loading, the
service is deterministic, using δ units of time per person. Let Qn denote the queue size at the start of
loading periods, and call q(t) the level of the queue at time t < T , where T is the time when the following
bus starts loading. Then given the initial bus capacity C:

E(q(t) |Qn) = Qn +λpt−min
(

C,
t
δ

)
,

Suppose that λpδ < 1, as before. Then the local stability condition at each station E(Qn+1 |Qn)< Qn now
reads λpE(T )≤ E(C), or:

λp ≤min
(

1
δ
,
E(C)

E(T )

)
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that is, the expected number of arrivals between buses E(T ) should be smaller than the expected available
capacity E(C). Because both T and C depend on (u,b), a closed form solution is not available. We use
an approximation to dimension our simulations as follows.

At station p = 0 (arrivals terminal), the worst case scenario is that all C seats are occupied. Of these, the
number of people that have destination p ∈ {1, . . . ,P} has a Binomial distribution with parameters (C ,πp).
Also on the worst case scenario, upon unloading at p−1 the bus fills again so that the available initial capacity
at p satisfies E(C) ≤ C πp. The time T between consecutive cycles is such that E(T ) = E(RTT + ũ)/b,
where ũ is the residual waiting time at the checkpoint to ensure that buses depart at least u time units
apart. Notice that P(ũ = 0)> 0 and that P(ũ≤ u) = 1. Again, we find an upper bound with the worst case
scenario which is when the loading times are maximal (namely, δ C ). Call K = ∑

P+1
p=1 T (p) the travel time.

Because there is loading and unloading,

K
b
≤ T ≤ K +2(P+1)δC +u

b
, with prob. 1

where we have defined K as the total travel time, so that a sufficient stability condition is:

λp ≤min
(

1
δ
,
bC πp

K

)
.

3 SIMULATION MODEL

3.1 Local Model at Stations

Consider the dynamics at a local node, namely a station p. The station keeps the (local) time D j−1(p). In
the code, this “clock” is a local clock at the station. Unloading is performed upon arrival of bus j. Loading
is programmed following (4), that is, by “groups” (indexed by n) as will be described later.

Assuming that the arrivals at station p = 0 are all independent Poisson processes with rates {λp, p =
1, . . . ,P}, then given N1 initial passengers in bus j the number that debark at station p = 1 has a Binomial
distribution Bin(N1,π1). If N2 ≤ N1 is the number of passengers left in the bus, then the number debarking
at station p = 2 has a Binomial distribution with parameters (N2, π̃2), where π̃2 = π2/(1− π1), and in
general, if there are Np passengers in the bus that boarded at (a) when the bus arrives at station p, then the
number of outgoing passengers that unload O j(p)∼ Bin(Np, π̃p), with π̃p = πp/(∑

P
`=p π`).

Stations represent the queue as a linked list of “passenger groups”. Each group gn = (Pn, In) has an
integer Pn denoting the number of people in the group, and a time interval In that records the interval where
the Pn people arrived at station p. The first group in queue g1 has the earliest arrival interval (people in
this group have been waiting longer) and will be the first to load.

Figure 2: Time line at station p: during the time that customers waiting board the bus, there may be other
arrivals which will be loaded next, and during this time, there may be other arrivals, until either the bus is
full to capacity or no more people are left in the queue.

The algorithm for loading initializes the elapsed time ∆T0 = Vj(p)−D j−1(p) as the time from the
previous bus departure until loading starts, where Vj(p) and satisfies (2). The ghost simulation model

661



Vázquez-Abad

generates only this slower time scale of bus dynamics. Individual passenger arrivals are not generated, but
rather only one random variable is produced: Z0 ∼ Poisson(λp∆T0). This represents the aggregate number
of arrivals during this time interval. These new arrivals are placed as a group at the end of the list, say in
position N, with PN = Z0, and IN = (t, t+∆T0), where t is the local station clock, initialized at t = D j−1(p).
Then t is updated to t +∆T0 and loading can start.

Refer to Figure 2: bus j arrives at station p at time Vj(p) and it commences unloading. After unloading,
the people waiting in the station start loading. But during the elapsed time there may be more arrivals
(their individual waiting times until loading are represented by lines). These must be loaded afterwards.
In our code loading is done recursively by groups: start at n = 1 at the front of the queue. While there is
available capacity in the bus (Cn > 0) and there are people waiting, if Pn ≤Cn, then all Pn load (they are
removed from position 1 in the list). If Pn >Cn, then Cn people load and the remaining ones are put back
in position 1 in the list. Every time a group loads (totally or partially) we update capacity, clocks and and
generate new arrivals:

∆Tn = δ ×min(Pn,Cn),

Zn ∼ Poisson(λp ∆Tn),

Cn+1 = max(0,Cn−Pn). (5)

These new arrivals are placed at the end of the list, say position N+1, with PN+1 = Zn, and IN+1 = (t, t+∆Tn),
where t is the local clock variable. Then t is updated to t +∆Tn.

3.2 Conditional Monte Carlo Statistics

In this section we describe how the ghost model can accelerate the simulation, and provide the basis for
variance reduction. The gain in simulation time is mostly due to advancing the clock at the station between
bus departures and arrivals. In our original ghost model (Vázquez-Abad and Zubieta 2005) passengers
were treated as a fluid, only considering expected values. Because of limited bus capacity in this problem
we have added the recursive group generation while loading takes place. It slows down the algorithm, but
not very much because typically there are very few iterations in this recursion. Generation of passengers
is a retrospective simulation and arrivals are aggregated in lumps.

The function J(u,b) can be directly estimated from the ghost model without bias. This is because the
operating costs depend on average bus utilization, which depends on the bus dynamics only. This is the
slower time scale that is accurately simulated in the ghost model.

The challenge is the estimation of the function G (u,b) which is a quantile of the passenger wait times.
There are various models that can be considered for the individual waiting time. The first is the actual wait
for each individual, from arrival to loading the bus; or from arriving to the moment when the bus leaves
the station. The personnel at the Melbourne airport mentioned that the waiting time was mostly related to
the time when the bus arrives at the station to load the passengers, and that loading times are not counted.
Apparently the psychological reaction to wait is more important when the vehicle is not yet in sight. We
followed this model in our program. For other models of the waiting time appropriate corrections may be
required.

The main results in this section show that, although the model for the simulation aggregates passengers
into groups, the final statistics is consistent for G (u,b).
Theorem 1 Let gn = (Pn, In) be a group loading such that Pn ∼ Poisson(λp|In|) and assume that Pn ≤Cn.
Let W ∗n be the number of people in group gn that wait more than 10 minutes for the bus. Conditioning on
In = (t1, t2),

E(W ∗n | In) =

{
Pn

(
t−10−t1

t2−t1

)
if t1 < t−10 < t2,

Pn if t2 < t−10.
(6)

662



Vázquez-Abad

Proof. Figure 3 shows a scheme of the relative placement of times. The group arrived during an interval
in the past. If t2 < t−10 then all waited more than 10 minutes. If t1 > t−10 then none wait more than
10 minutes.

Figure 3: Timeline for interval In and t−10.

Suppose now that t1 < t − 10 < t2. Given Pn arrivals in time interval (t1, t2), the individual arrival
epochs (Ti; i = 1 . . . ,Pn) have a joint distribution of the order statistics of iid uniform random variables on

(t1, t2). That is, Ti
d
= t1 +(t2− t1)×Beta(i,Pn− i+ 1). Call bi = (Ti− t1)/(t2− t1) ∼Beta(i,Pn− i+ 1) and

x = (t−10− t1)/(t2− t1). The number of people that wait more than 10 minutes is:

E(W ∗n | In) = E

(
Pn

∑
i=1

1{Ti≤t−10} |Pn

)
=

Pn

∑
i=1

P(Ti ≤ t−10) =
Pn

∑
i=1

P(bi ≤ x) =
Pn

∑
i=1

Ix(i,Pn− i+1)

where Ix(α,β ) is the incomplete Beta function. In the case of integer arguments, it simplifies to:

E(W ∗n | In) =
Pn

∑
i=1

(
Pn

∑
j=i

(
Pn

j

)
x j(1− x)Pn− j

)
=

Pn

∑
i=1

P(Xx > i) = E(Xx) = xPn,

for Xx ∼ Bin(Pn,x). Putting results together, this proves the claim.

In our code, it is when people load the bus that we record the statistics to estimate G (u,b). If Pn <Cn
then we use Theorem 1 to update statistics. When Pn > Cn only Cn passengers will load the bus, and
thus we add to the tally the number min(E(W ∗n ),Cn)). The remaining Pn−Cn passengers are re-inserted
in the linked list of the queue in first position. Suppose that they keep the original interval In. This will
be the first group to load the following bus. If the time between buses is large enough and the loading
time is now t ′ >> t then at loading time it will be certain that all of them waited more than 10 minutes
(t2 < t ′ −10) and the statistics (6) will not be biased. However, in the case that the next bus is ready for
loading immediately (which may happen with non zero probability) or very soon, (6) may provide a biased
estimate. The reason for this is that the people that are left waiting are always the last ones that arrived
in (t1, t2), because of the FCFS policy loading the bus in order of arrivals. The correction that we make
approximates the arrival interval of the remaining customers by setting:

t ′1 = t1 +
Cn

Pn +1
(t2− t1),

which is the expected arrival time of passenger Cn. Using this approximation, we update In = (t ′1, t2) when
the Pn−Cn passengers are reinserted in the queue. Although there is a source of bias for these (rare) groups
of passengers due to the non-lienarity of (6) in t1, the effect is very small.

Simulation efficiency is defined in terms of both precision and speed of execution, as explained by
Glynn and Whitt (1992). Because our statistics are based on conditioning, the local model is an example
of conditional Monte Carlo. While variance reduction by conditioning can be ensured for simple random
variables (Ross 2012), the case of a Markov process is not straightforward. Given N groups loading, our
statistics are of the form

E

(
N

∑
n=1

W ∗n

)
= E

(
N

∑
n=1

E(W ∗n |Fn)

)
,
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where Fn = σ(gn,Cn,∆Tn,Zn), from (5). Although each term does satisfy Var(W ∗n ) ≥ Var(W ∗n |Fn), the
contribution of covariances in the sum may prevent variance reduction for the estimation of G (u,b).
However, it is possible to show here that the correlation between groups that board different buses is very
small.

3.3 Increasing Efficiency

The computational effort required to perform the local dynamics is indeed smaller than generating every
arriving passenger and keeping a detailed list of events for unloading and loading. In order to further
speed up the computation, we have implemented a simplified version that approximates E(W ∗n |Fn). In
this implementation, instead of keeping an interval In, a single aggregate number is recorded, namely
τn = (t1 + t2)/2 which is the average expected arrival time of the passengers in group gn. This way, the
linked list representing the queue is simpler, each group having attributes g′n = (Pn,τn). When loading at
time t we update the statistics using:

E(W ∗n |gn)≈ W̃ ∗n
def
= Pn 1{τn<t−10}, (7)

and so we increase the statistics for the estimation of G (u,b) adding min(E(W ∗n ,Cn)). If Pn >Cn then we
put back the remaining customers in the front of the queue, this time with the same value of τ . This means
that we count all of the passengers that load only when their average wait is more than 10 minutes.
Theorem 1 Consider the time t when passenger group gn = (Pn, In) boards the bus, with In = (t1, t2),
and let τn = (t1 + t2)/2. Let y = t − 10 and W̃ ∗n be defined as in (7). Assuming that Pn ≤ Cn, then
E(W ∗n |Fn) = E(W̃ ∗n |Fn).

Proof. If y ≤ t1 then y < τn and all Pn wait more than 10 minutes, so W ∗n = W̃ ∗n = Pn in this case. If
y ≥ t2 then also y > τn and again W ∗n = W̃ ∗n = 0. Given y ∈ In, there is no subinterval of In that is more
likely to contain the point y, because t is determined by the bus dynamics and previous customer groups
loading. Therefore, y has uniform distribution on In. This yields

E(W̃ ∗n |Pn,y ∈ In) = PnE(1{y>τn}) = Pn/2.

On the other hand, using (6),

E(W ∗n |Fn, y ∈ In) =
Pn

(t2− t1)

∫ t2

t1

u− t1
(t2− t1)

dx =
Pn

2
,

proving the claim.

As with the previous model, when Pn ≤Cn the statistics is unbiased, but when Pn >Cn only Cn board
and the rest join the queue awaiting for the next bus to load. If this is the case then we add to the tally
Cn1{τ<t−10} and we must put back in first place the remaining customers. Because we do not have now
the interval In but only the midpoint τn, we can’t use the same correction to define g′n. Let us assess the
source of bias from these (rare) groups that fill the buses with g′n = (Pn−Cn,τn). If τn < t−10 then we
use Lemma 2 to establish unbiasdness: here all Pn should be added to the tally. Those that have to wait for
next bus will also count. Consider now the case τn > t−10. None of the Cn boarding will be counted for
the statistics, however the remaining customers will wait additional ∆T minutes for the next bus loading
time, and this may make them wait more than 10 minutes. Let I′n = (t1, t2) be the actual time when the
remaining Pn−Cn customers arrived (unknown), and t ′ = t +∆t the time when next loading starts. Use
again y = t−10. If y+∆t ∈ (0, t1) then all points in I′n have a wait of less than 10 minutes at time t ′, and
no passenger should count. However when y+∆t ∈ (τn, t1) the algorithm will add (Pn−Cn) to the count
because τn < t +∆t−10. The bias is here Pn−Cn. If ∆t > t2− y then all Pn−Cn passengers should count
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for the wait, as the algorithm does, with no bias. Finally, if y+∆t ∈ I′n then using the same argument as in
the proof of Lemma 2, the expected number that wait more than 10 minutes is (Pn−Cn)/2. In summary,
only when τn > y and Pn >Cn, the expected bias in the count is:

(Pn−Cn)P(y+∆t ≤ t1)+
(Pn−Cn)

2
P(y+∆t ∈ (t1, t2)).

We cannot evaluate these probabilities exactly using only τn. The choice between using the simplified
model g′n = (Pn,τn) or the full model gn = (Pn, In) depends on the trade off between speed and accuracy.

3.4 Ghost Model Structure

The local model described can be coded within a discrete event simulation where the event list contains all
bus movements; namely arrivals and departures from stations. However, managing list searches can always
slow down the execution of a simulation. Instead, we maximize efficiency exploiting the modularity of
the system. Because buses do not overtake each other, we can program the whole system looking at each
bus at a time: the process seen by a bus requires no anticipative knowledge of buses that start their trip
later. We need only keep the appropriate clocks at the stations and implement the unloading and loading
functions at the right times. Table 1 summarizes the classes for our code, written in JAVA.

Table 1: Classes for the ghost model.

Class Variables Methods
GhostSystem (main) all global variables checkpoint, Stats
Bus Cn, Np, local clock Load/unload groups, add riders
Station t (local clock), D j(p), LinkedList (queue) PassArrivals, List mgmt
PassengerGroup gn = (Pn,τn) –

The main program executes an outer loop for buses around an inner loop of stations. Logically, each
bus executes its round trip from the Arrivals terminal (a) to the Departures terminal (d). The bus receives
an initial departure time from the Arrivals terminal and the GhostSystem uses this time to compute all time
dependent trip calculations. Each station p is aware of the time count for bus j and it keeps the consecutive
departure times D j(p). GhostSystem uses (2) when a bus arrives at a station: the bus provides the clock
D j(p−1)+T (p) and O j(p), and the station p provides the information D j−1(p). This keeps station clocks
updating in a forward direction even though system wide time shifts depending on the active bus.

Interestingly, the simulation is performed constantly going forward and backwards in time. Indeed, not
only do we perform retrospective simulation every time that buses load passengers (to generate arrivals),
but also when the outer loop of buses is executed, say for bus j’s trip, with high probability bus j+1 will
have a starting time which is before the time that bus j has finished its round trip.

In addition to the local dynamics as explained before, we keep a “parking bay” (a queue) for unused
buses. When b is very large, there may be unused buses that should be called for only when the time u is
elapsed from a departure and no other bus has finished its round trip.

4 CONCLUDING REMARKS

This paper presents the extension of a methodology that works well when fast Poisson processes can be
aggregated for the simulation. Although it is well known that conditioning on time intervals, the expected
number of arrivals is proportional to the rate, this approximation would result in significant bias when
loading “fluid” passengers into buses. To remedy the situation we resort to the generation of aggregated
groups of passengers. Using conditioning arguments, it is possible to simplify the required bookkeeping
and calculations to a minimum, thus speeding up the simulation.
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For the problem of quantile estimation, we have identified the source of bias and provided a methodology
can that be used to treat other performances. The trade off between accuracy (bias) and speed of execution
will highly depend on the problem at hand. Naturally very large networks with very different time scales
may benefit much more from the ghost model than networks with similar time scales.

The program is “linear”, looping each bus at a time, and very easy to code. Perhaps the most challenging
part of the code is taking account of the various clocks at the bus depot, when bus rides must be started.
Although our current program depends highly on the specific structure of the problem where buses do not
overpass each other, several modifications can be made to fit other problems.
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