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ABSTRACT 

We develop a simulation modeling framework for evaluating the effectiveness of breast cancer screening 
policies for US women of age 65+.  We introduce a two-phase simulation approach to modeling the main 
components in the breast cancer screening process. The first phase is a natural-history model of the inci-
dence and progression of untreated breast cancer in randomly sampled individuals from the designated 
population.  Combining discrete event simulation (DES) and system dynamics (SD) submodels, the sec-
ond phase is a screening-and-treatment model that uses information about the genesis of breast cancer in 
the sampled individuals as generated by the natural-history model to estimate the benefits of different pol-
icies for screening the designated population and treating the affected women.  Based on extensive simu-
lation-based comparisons of alternative screening policies, we concluded that annual screening from age 
65 to age 80 is the best policy for minimizing breast cancer deaths or for maximizing quality-adjusted 
life-years saved. 

1 INTRODUCTION 

Breast cancer is one of the most common cancers among North American women, with 232,340 new cas-
es of breast cancer and 39,620 deaths expected in 2013 (American Cancer Society 2013a). The benefits of 
mammography for middle-aged women are commonly accepted, and much work has been done in evalu-
ating the costs and benefits of screening women in this age group (Mandelblatt et al. 2009; Nelson et al. 
2009).  On the other hand, there are no well-established screening guidelines for women at least 65 years 
old (Mandelblatt et al. 2009; Nelson et al. 2009; USPSTF 2009). Furthermore, clinical trials for breast 
cancer screening have generally not included women who are at least 65 years old; and clinicians do not 
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anticipate any clinical trials specific to breast cancer screening in the future (USPSTF 2009). This re-
search addresses the aforementioned gap in breast cancer screening guidelines using simulation.  

Section 2 of Tejada et al. (2013a) contains a comprehensive review of previous analytical and simula-
tion-based approaches to the evaluation of breast cancer screening-and-treatment policies. The two simu-
lations developed in our research go beyond the previous work in the following key respects: (i) They use 
a factor-based method to determine the annual risk of breast cancer for each woman individually; (ii) 
They use an individualized tumor growth equation in which the tumor growth rate is a function of a wom-
an’s age, and the parameters of the equation vary randomly across different women in the system; (iii) 
They provide a direct linkage between the tumor growth equation and an individualized stochastic process 
representing the progression of breast cancer through its various stages for each affected woman in the 
system; (iv) They are calibrated to data from the period 2001–2010, and they project the impacts of both 
screening and operational policy decisions for the future years 2012–2020; (v) They allow screening poli-
cies to be individualized to other important risk factors, not just age; and (vi) They allow the impacts of 
changes in either screening or operational policies to be evaluated in the same modeling environment.  

Figure 1 depicts the overall structure of our two-phase simulation framework.  Phase I is the focus of 
Tejada et al. (2013a), encompassing a natural-history model of the incidence and progression of untreated 
breast cancer for randomly sampled individuals from the designated population of older US women. The 
natural-history simulation is a discrete event simulation (DES) model that contains a population growth 
submodel as well as incidence, progression, and survival submodels.  The primary output of the natural-
history simulation is a database of older women whose untreated breast cancer histories are known; and 
these histories are critical inputs to the Phase II screening-and-treatment simulation, which is the focus of 
Tejada et al. (2013b). 

The screening-and-treatment simulation integrates DES and system dynamics (SD) modeling tech-
niques so as to represent the following simultaneously: (i) the screening and treatment activities and the 
resulting progression of health states and incurred costs for each individual in the simulated population; 
and (ii) the population-level state variables (stocks) and their associated rates of change (flows) that gov-
ern the overall operation of the US system for detecting and treating breast cancer. 

 
Figure 1: Two-phase simulation approach to evaluating breast cancer screening policies. 
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The screening-and-treatment simulation model is composed of interacting submodels that respective-
ly represent screening, treatment, survival and mortality, costing, and population growth. For each woman 
in the simulated population, the DES submodel represents her associated screening events, diagnostic 
procedures, and treatment results; however the details of her behavior are subject to the influence of the 
population-level SD submodel, which encompasses pervasive factors (state variables) that affect her ad-
herence to screening. For both the natural-history and screening-and-treatment simulations, each run 
spans the period 2001–2020.  For each screening policy to be evaluated, the screening-and-treatment sim-
ulation calculates key performance measures from the record of detailed activities for each woman in the 
simulated population. 

The remainder of this article is organized as follows. Section 2 covers the natural-history simulation 
model and its principal submodels. Section 3 contains an overview of the screening-and-treatment simula-
tion model, with special emphasis on the interactions among its principal DES and SD submodels.  In 
Section 4 we summarize the results of an extensive simulation-based comparison of a wide range of 
screening policies with respect to selected performance measures. In Section 5 we summarize our main 
findings and recommendations for future work. 

2 NATURAL-HISTORY SIMULATION MODEL 

2.1 Model Overview 

The natural-history simulation is made up of a number of interacting submodels—namely, the cancer in-
cidence submodel, the disease progression submodel, the survival and mortality submodel, and the popu-
lation growth submodel.  As elaborated below, the most important input to the natural-history simulation 
is a data set containing information about breast cancer risk factors for individuals in the designated popu-
lation of US women of age 65+. The Breast Cancer Surveillance Consortium (BCSC 2006, 2009, 2010) 
provided to us a “de-identified” data set containing breast cancer risk factors for slightly over one million 
women, where “de-identification” ensures that names, dates of birth, and other identifying information 
have been removed for the protection of the participants.  The BCSC (2010) data set consists of infor-
mation from seven mammography registries in different locations across the United States, and it is repre-
sentative of the designated population of US women of age 65+.  For each individual woman in the natu-
ral-history simulation, her risk factors are randomly sampled with replacement from this data set when 
she enters the simulation. 

The natural-history simulation establishes a baseline for capturing the benefits of screening and 
treatment by determining the earliest time that a cancer could be detected for each woman in the simulat-
ed population.  We assume “perfect visibility” of the disease progression in all women composing the 
simulated population.  We define the ideal of perfect visibility to mean that for each woman, every year 
her disease status is perfectly observed and verified so that the resulting diagnosis is error free.  For the 
natural-history simulation, we also assume that all cancers remain untreated.  

The time-step for both the natural-history and screening-and-treatment simulations is one year—i.e., 
we simulate all the events for a given year, then we move to the next year and simulate all the events for 
that year; and this process is repeated until we reach the end of the time horizon in 2020. This approach to 
the operation of the natural-history simulation makes the most effective use of the available literature, be-
cause the logistic regression equations of Barlow et al. (2006) predict a woman’s probability each year of 
being diagnosed with breast cancer as a function of her risk factors after a screening mammogram (breast 
cancer diagnoses within one year are included); and we use life-tables with breast cancer deaths removed 
(Rosenberg 2006) to predict the probability of surviving one more year as a function of a woman’s cur-
rent age and birth year. To establish a natural history of untreated breast cancer for each woman in the 
simulated population, on successive years we compute her one-year probability of being diagnosed with 
breast cancer and determine if breast cancer would be detected during that year.  For each woman in the 
simulated population, this process continues until one of the following occurs: (i) the woman is still alive, 
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either with or without breast cancer, when the simulation stops at the end of the year 2020; (ii) the woman 
dies from breast cancer before the end of the simulation; or (iii) the woman dies from other causes before 
the end of the simulation.  If based on the Barlow risk equations we determine that the woman develops 
invasive breast cancer during the simulation, then the cancer is not treated; instead the cancer is allowed 
to progress until one of the outcomes (i), (ii), or (iii) occurs  

Figure 2 shows the possible transitions between health states for each individual woman in the natu-
ral-history simulation. Women who are diagnosed with ductal carcinoma in situ (DCIS) are not cancer 
free; but in the natural-history simulation, we assume that those women do not die from breast cancer 
based on the evidence provided in the SEER data (SEER 2012a, 2012b). 

 
Figure 2: The health-state transitions for the natural-history model. 
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tion, we can use the Barlow risk equations to estimate the probability that a woman with given risk-factor 
levels will be diagnosed with breast cancer within one year of her mammogram. Because the primary ob-
jective of the natural-history simulation is to generate an accurate history of untreated breast cancer for 
each woman in the simulated population, we simulate an error-free screening mechanism.  Barlow et al. 
(2006) and the documentation for the BCSC Risk Estimation Data Set (BCSC 2006) define “being diag-
nosed with cancer” in this context as a confirmed diagnosis of breast cancer within one year of the screen-
ing mammogram.  While the BCSC has data on false positives, there are no false positive results in the 
BCSC Risk Estimation Data Set.  In addition, the effect of false negative results is reduced by waiting one 
full year after the screening mammogram to make the final determination regarding whether a cancer was 
actually present.  In summary, we believe that the method used to collect the BCSC Risk Estimation Data 
Set justifies our use of the Barlow risk equations in the natural-history simulation to estimate the proba-
bility that a woman will develop breast cancer (invasive or DCIS) within the year following each mam-
mogram. 

2.2 Disease Progression Submodel 

The disease progression submodel consists of a tumor growth equation for tracking tumor size, and a 
stage progression model for determining the stage of breast cancer as a function of the tumor size at the 
time of diagnosis.  To describe the size of a single breast cancer tumor, we used a Gompertz equation 
proposed by Norton (1988) that represents the number of cells in the tumor at each point in time. This ap-
proach was chosen because there are abundant data suggesting that breast cancer growth in an individual 
woman can be accurately represented by a general Gompertz equation (Surbone and Norton 1993).  
 Invasive breast cancer is a progressive disease, and the stage at diagnosis plays a significant role in 
determining not only the type of treatment used but also the patient’s prospects for survival. Breast cancer 
is typically defined in terms of three stages: local, regional, and distant. The ultimate cause of breast can-
cer death is the spread of malignant cells to other parts of the body and the resulting destruction of other 
organs such as the brain and liver. Clearly, both the natural-history simulation and the screening-and-
treatment simulation need a method for determining the stage of breast cancer at diagnosis, which is de-
pendent upon the size of the tumor at diagnosis. The larger the tumor, the greater the chance that the can-
cer has spread to the lymph nodes (regional cancer) or other major organs (distant cancer). 
 Plevritis et al. (2007) use SEER data (National Cancer Institute 2007) to construct a stochastic pro-
cess representing the stage progression of breast cancer that allows us to estimate the probability of breast 
cancer being in the local, regional, and distant stages as a function of tumor diameter. The Plevritis sto-
chastic process fits clinical data reasonably well, and it is easy to incorporate into the natural-history sim-
ulation since we have a method for determining the diameter of a woman’s breast cancer tumor at diagno-
sis based on her individualized Gompertz equation for the number of cells in that tumor at that time. In 
the screening-and-treatment simulation, the stage at diagnosis is used to determine the length of time sur-
vived after treatment.  

2.3 Survival and Mortality Submodel 

The “de-identified” BCSC (2010) data set that is randomly sampled in the natural-history simulation does 
not include information about death ages for women without cancer. To assign a death age for women 
who do not die of cancer before 2020, we use life-tables provided by Rosenberg (2006) in which breast 
cancer has been removed as a cause of death.  This table contains data for every birth year in the period 
1900–2000. In the natural-history simulation, each year a woman has a probability of death occurring 
from causes other than breast cancer, and this probability is assigned according to the aforementioned 
life-tables. For each woman who does not die from breast cancer, we compute her age at death from other 
causes; and we store this quantity for use in statistics calculations and for use when the same population is 
re-simulated in the screening-and-treatment simulation. This approach allows the natural-history simula-
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tion to differentiate between breast cancer–related deaths and deaths from other causes, making it possible 
to calculate life-years saved by using different screening policies, and the number of cancer deaths avert-
ed in any given year. 

2.4 Population Growth Submodel 

It is important to account for changes in the size of the simulated population over time. To determine the 
current rate of growth of the designated population of US women of age 65+, we obtained US Census da-
ta and determined the annual percentages of growth in that population for the period 2000–2009 (US Cen-
sus Bureau 2009). We fitted a linear regression equation to this time series. We started in the year 2000 
because we wanted to capture the recently increasing trend in the designated population, and the end of 
the year 2000 is the beginning of the simulation “warm-up” period. We generated annual increases in the 
size of the simulated population of US women of age 65+ as follows: after the events of one year (e.g., 
the first year) have occurred in the simulation and the current year has been advanced (e.g., to the second 
year), we know the number of women who died in the previous year, the number of women still alive, and 
the expected size of the simulated population at the end of the current year based on the fitted regression 
equation.  Therefore we can estimate the expected increase in the size of the simulated population for the 
current year; and the number of women actually entering the simulated population at the beginning of the 
current year is sampled from a Poisson distribution whose mean is our estimate of the expected popula-
tion increase. 

3 SCREENING-AND-TREATMENT SIMULATION MODEL 

3.1 DES Submodels for Screening, Diagnostic Procedures, Treatment, Survival, and Costing 

When the screening-and-treatment simulation model is invoked, a user interface is displayed that enables 
the user to select values for the primary design variables and run-control parameters using option buttons, 
check boxes, and drop-down combo boxes as detailed in the Online Supplement to Tejada et al. (2013b). 
Following the user’s specification of the screening policy to be evaluated, women enter the screening-
and-treatment simulation exactly as they entered the natural-history simulation. As discussed in Tejada et 
al. (2013a), individual attributes and cancer histories associated with women who entered the natural-
history simulation are stored in a database in the order that those individuals entered the natural-history 
simulation.  In the screening-and-treatment simulation, those individuals are then retrieved from the data-
base in the same order and are reassigned their corresponding attributes and cancer histories so that they 
enter the screening-and-treatment simulation at the same points in simulated time that they entered the 
natural-history simulation.   
 We perform 10 runs of the screening-and-treatment simulation for each screening policy to be evalu-
ated; and we use the method of common random numbers (Kelton, Sadowski, and Swets 2010) to sharpen 
the comparisons between different screening policies.  Thus, the same 10 randomly sampled populations 
used in the natural-history simulation are re-created in the screening-and-treatment simulation; and to 
each individual in each simulated population, we apply separately each screening policy selected for 
comparison.  This approach enables us to compute more precise point and confidence interval (CI) esti-
mators for the mean differences in performance between selected screening policies.  
 After her attributes and breast cancer history are initialized at the time she joins the simulated popula-
tion in the screening-and-treatment model, each woman enters the screening submodel that represents all 
activities related to detection of breast cancer.  The screening submodel implements the selected screen-
ing policy, samples the probability of adherence to each screening appointment for each individual, and 
determines the type of screening, diagnostic, and work-up exams to perform on that individual as re-
quired. Whereas false positive results and false negative results can occur for screening exams, diagnostic 
exams can have false positives but not false negatives; and work-up exams such as biopsies are assumed 
to be perfect so that they yield only true positives and true negatives. If breast cancer is present in an indi-
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vidual, then as in the natural-history simulation (Tejada et al. 2013a, Section 5.2), the stage of breast can-
cer at diagnosis is determined according to the stochastic process formulated by Plevritis et al. (2007) to 
represent the progression of the disease.  
 The treatment submodel is relatively simple, as the details of treatment are not currently the focus of 
this research. Only women with a detected breast cancer enter the treatment submodel.  Through consulta-
tion with breast cancer experts, we estimated the probabilities that such women are treated given their age 
and the presence of other comorbid diseases.  If a woman diagnosed with breast cancer does not receive 
treatment, then in the screening-and-treatment simulation, her age at death and cause of death are identi-
cal to the corresponding outcomes in the natural-history simulation. 
 The survival submodel only processes women who are correctly diagnosed with breast cancer and are 
selected for treatment in the treatment submodel.  For each woman in the survival submodel, we estimate 
an age at death resulting from breast cancer based on SEER data (National Cancer Institute 2009) and an 
age at death resulting from other causes based on breast cancer–adjusted life-tables (Rosenberg 2006); 
and we use the minimum of these two estimates to assign the woman’s age at death and cause of death.  
In addition to computing the number of life-years saved, the survival submodel computes the number of 
quality-adjusted life-years (QALYs) saved based on utilities from the breast cancer literature. 
 Within the screening-and-treatment simulation model, the costing submodel keeps track of the costs 
incurred for screening exams, diagnostic exams, work-up exams, and treatment of breast cancer. The sum 
of these costs is used to compute the cost-effectiveness of each alternative screening policy. 

3.2 SD Submodel: Population-Level State Variables 

3.2.1 Structure and Operation of the Combined DES/SD Simulation 

The purpose of the SD submodel is to represent population-level elements of the screening process, spe-
cifically those factors influencing adherence to a given screening policy. It may have been possible to 
capture these effects using a pure DES approach, but the increased computational complexity of such an 
approach would have caused excessive run times and thus would have prevented us from effectively us-
ing simulation optimization techniques to identify promising screening policies. Adherence to a screening 
policy is based on a number of factors, some at the population level, such as the amount of congestion at 
screening facilities, and others at the individual level, such as the presence of other comorbid diseases in 
each woman. 
 Figure 3 shows the combined DES/SD causal loop diagram for the screening-and-treatment simula-
tion. The top half of the figure displays characteristics of individual women, which are represented as at-
tributes of the associated entities in the DES submodel; and the bottom half of the figure displays charac-
teristics of the population, which are represented by state variables in the SD submodel. The SD and DES 
submodels are related through the following: (i) a logistic regression equation for predicting nonadher-
ence to breast cancer screening as a function of key attributes of each individual woman; (ii) the “primary 
state variables” that directly affect the key attributes in (i); and (iii) “hybrid state variables” that directly 
affect the operation of the DES submodel.  In the causal loop diagram, if component A affects component 
B, then there is an arrow originating at A and terminating at B ( )A B .→ There is also a direction of in-
fluence, positive or negative, associated with each arrow. A positive influence means that if the state vari-
able associated with component A increases, then the state variable associated with component B also in-
creases ( )A B .→+  Negative influence means that if the state variable associated with component A 

increases, then the state variable associated with component B decreases ( )A B .→−  
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Figure 3: Causal loop diagram for the combined DES/SD model. 
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potentially affect those attributes. Some state variables are user inputs, and intermediate state variables are 
functions of some of the user-assigned state variables or other state variables. Hybrid state variables are 
defined at the population level but are directly linked to individuals. Moreover, yearly additive changes in 
the probability of a false negative mammogram depend on the state variable that represents the current 
level of screening technology. 

4 RESULTS AND DISCUSSION 

In this section we summarize the results of comprehensive experiments with the screening-and-treatment 
simulation so as to compare the performance of alternative breast cancer screening policies over the peri-
od 2012–2020.  To make a convincing case that the simulation-generated results for the period 2012–
2020 are a valid representation of what can be expected to happen in the near future under each alterna-
tive screening policy, we validated the output of the screening-and-treatment simulation for the period 
2001–2011 against SEER breast cancer data for the latter time period. Because of space limitations, the 
results of this validation are presented in the Online Supplement to Tejada et al. (2013b) and in Tejada  et 
al. (2013c).  

With the help of our breast cancer experts, we chose five performance measures as the most im-
portant. The five most important performance measures are the following: 1M , the number of breast can-
cer deaths during the period 2012–2020; 2M , the number of QALYs saved by screening during the peri-
od 2012–2020; 3M , the percentage of cancers diagnosed in the distant stage during the period 2012–
2020; 4M , the cost/QALY saved by screening during the period 2012–2020; and 5M , the total cost of 
false positive exams and benign biopsies during the period 2012–2020.   

Preventing deaths from breast cancer is the primary objective of screening, and we argue that the 
number of lives saved (or its complement 1M ) is the most important performance measure for a screening 
policy. Similarly, 2M  (the number of QALYs saved) is important because it measures not only the years 
of life saved but also the quality of those additional years of life accumulated over the entire population.  

In scenarios involving different overall objectives, we sought to optimize the corresponding perfor-
mance measure as the basis for identifying the “best” breast cancer screening policy from a set of alterna-
tive policies.  Therefore, we solved the following three stochastic optimization problems— 

1S : Minimize 4M  (cost/QALY saved) subject to the following constraints: (i) all screening intervals 
(including low- and high-risk patients) are restricted to 1, 2, 3, 4, or 5 years; and (ii) the stopping 
age is restricted to 70, 75, 80, 85, 90, 95 or 100 years. 

2S : Minimize 1M  (breast cancer deaths) subject to the following constraints: (i) 4M $50,000≤ ; (ii) 
all screening intervals (including low- and high-risk patients) are restricted to 1, 2, 3, 4, or 5 
years; and (iii) the stopping age is restricted to 70, 75, 80, 85, 90, 95 or 100 years. 

3S : Maximize 2M  (QALYs saved) subject to the following constraints: (i) 4M $50,000≤ ; (ii) all 
screening intervals (including low- and high-risk patients) are restricted to 1, 2, 3, 4, or 5 years; 
and (iii) the stopping age is restricted to 70, 75, 80, 85, 90, 95 or 100 years. 

OptQuest for Arena (Kelton, Sadowski, and Swets 2010) was used to identify the five best screening pol-
icies for each problem; then paired Student’s t-tests were performed to identify the policy or group of pol-
icies that can be declared statistically best in terms of the associated performance measure. 

When the objective for the period 2012–2020 is to minimize breast cancer deaths (problem 2S ) or to 
maximize QALYs saved (problem 3S ), among the thousands of policies tested we found that the follow-
ing five screening policies are best (where all policies have a starting age of 65 years): 1P , annual screen-
ing stops at age 80; 2P , annual screening stops at age 75; 3P , annual screening for the top 10% in terms 
of risk, biennial screening for everyone else, and screening stops at age 80; 4P , annual screening for the 
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top 5% in terms of risk, biennial screening for everyone else, and screening stops at age 80; and 5P , bien-
nial screening stops at age 80. In addition to policies 1P  through 5P , our performance evaluation includes 
the screening guidelines of the American Cancer Society (ACS) and the US Preventive Services Task 
Force (USPTF) as follows: (a) policy ACS specifies annual screening for all women of age 65+; and (b) 
policy USP specifies biennial screening for women from age 65 to age 74. For problem 2S , Table 1 
summarizes the results (i.e., the sample averages across 10 replications) for the main performance 
measures accumulated over the simulated population, whose size is 0.1% of the size of the population of 
US women of age 65+.  Thus the tabulated results must be multiplied by 1000 to yield comparable esti-
mates for the latter population. 

Table 1: Main performance measures for top 5 screening policies to minimize breast cancer deaths. 

Policy 
Cancer 
Deaths 
2012–2065 

QALYs Saved  
2012–2020 

% Distant 
Stage 2012–
2020 

Cost/QALY 
Saved 
 2012–2020 

Cost of False 
Positives 
2012–2020 

P1 538.4 1139.9 23.5 $47,990 $10,042,405 
P2 552.8 1058.2 28.2 $39,182 $8,271,523 
P3 563.1 729.4 30.1 $47,320 $5,009,230 
P4 564.4 721.3 29.9 $48,062 $4,995,410 
P5 560.8 744.3 30.5 $45,030 $4,826,113 
ACS 536.0 1227.2 18.3 $60,402 $12,424,720 

USP 560.3 686.5 33.5 $37,952 $4,130,990 

Table 1 summarizes the results for each of the top five screening policies, including the estimated 
mean values for each of the five primary performance measures and the associated ranking of each policy 
with respect to each performance measure.  Note that the sum of ranks in provides a rough overall meas-
ure of the performance of each screening policy when the five main performance measures are taken into 
account simultaneously.  Based on our review of Table 1, we concluded that in terms of breast cancer 
deaths, QALYs saved, and percentage of cancers diagnosed in the distant stage, the best alternative is pol-
icy 1P . Although policy 1P  ranks third in cost-effectiveness and last in cost of false positives, these 
measures are less important; and from a practical standpoint we do not feel the negative impact on lives 
saved that would result by switching from policy 1P  to policy 2P  is justified by the increase in cost-
effectiveness or by the decrease in cost of false positives that would result from such a switch.  For exam-
ple, from Table 1 we see that on average there are 14.4 fewer cancer deaths with policy 1P  compared with 
policy 2P ; however, we must remember that since we are only simulating 0.1% of the designated popula-
tion of US women of age 65+, this translates into an estimate of 14,400 fewer cancer deaths for the desig-
nated population over the period 2012–2020.  We consider the latter result to be strong evidence that poli-
cy 1P  is preferred in comparison with policy 2P .    

When comparing policies 1P  through 5P  with the current guidelines ACS and USP, we concluded 
that although the USP policy was the most cost effective and had the lowest cost of false positives, it 
compared unfavorably with policy 1P  in terms of saving lives. The ACS policy was superior to all the 
other policies in terms of saving life; however it compared unfavorably with policy 1P  in terms of 
cost/QALY saved and cost of false positives. We concluded that policy 1P  was the most effective com-
promise between policies ACS and USP. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

From the perspectives of both practical and statistical significance, we concluded that annual screening 
for all women from age 65 until age 80 was a superior policy in terms of saving lives. Nevertheless, some 
policy makers may not judge the performance measures 1M  and 2M  to be the most important; and one of 
the primary features of the screening-and-treatment simulation is its ability to evaluate alternative screen-
ing policies with respect to almost any relevant performance measure.  

Many researchers and practitioners working at the interface between computer simulation and health 
care systems engineering have strongly supported the idea of effectively integrating the DES and SD 
methodologies in large-scale health care simulations (Brailsford 2007, 2008); and we believe that our 
screening-and-treatment simulation can be regarded as a template or guide for how future combined 
DES/SD simulation models may be designed for other application domains.  In addition, the screening-
and-treatment simulation provides an approach to modeling a complex disease and the screening and 
treatment of that disease in a population when several disparate performance measures are of nearly equal 
importance. 

Among the principal directions for future work, special attention should be given to the following: (i) 
developing a more accurate representation of each woman’s attribute for the presence of comorbidities as 
that attribute depends on her age, health status, and other key medical and socioeconomic variables in the 
past; (ii) developing a more accurate representation of the way in which each woman’s risk factors for 
breast cancer such as body mass index and family history of breast cancer evolve over time; (iii) develop-
ing more accurate representations of the types of treatment for women who are diagnosed with breast 
cancer and for the survival of those women after treatment as that survival process depends on the type of 
treatment and the stage of breast cancer at diagnosis; and (iv) formulating a definitive measure of the total 
effect of false positive exams that can be used to compare alternative screening policies. 
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