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Abstract
A new Modelica library, named CellularPDEVS, is in-
troduced in this manuscript. This new library facilitates
the description of one- and two-dimensional Cellular Au-
tomata (CA) models in Modelica. CellularPDEVS models
have been specified using Parallel DEVS. The library has
been implemented using the functionality of the DEVS-
Lib library which supports the Parallel DEVS formalism in
Modelica. CellularPDEVS allows the user to focus on de-
scribing the behavior of the cell and the characteristics of
the cellular space. CellularPDEVS models are compatible
with other DEVSLib models, facilitating the combination
of CA, Parallel DEVS and other Modelica models. Three
examples are presented: Wolfram’s rule 30 and 110, and
the Conway’s Game of Life.

Keywords Modelica, Cellular Automata, Parallel DEVS,
CellularPDEVS, DEVSLib

1. Introduction
Cellular automata (CA) are a class of models initially pro-
posed in the 1940s by John von Neumann and Stanislaw
Ulam [30, 29, 28]. CA are dynamic, discrete-time and
discrete-space models. They are represented as a grid of
identical discrete volumes, named cells [11]. The grid can
be in any finite number of dimensions. The state of each
single cell is finite and it is usually represented using in-
teger numbers. The operational dynamics of the automata
is described by a rule or transition function that is used to
update the state of each cell at discrete time steps. This rule
constitutes a function of the current state of the cell and the
state of its neighbors, and defines the state of the cell for the
next time step [27]. Examples of different neighborhoods
are shown in Figure 1: the Moore’s neighborhood that in-
cludes all the surrounding cells; the von Neumann’s neigh-
borhood that includes the cells adjoining the four faces of
one cell; or the extended von Neumann’s that also includes
each cell just beyond one of the four adjoining cells [34].
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Figure 1. Examples of CA neighborhoods: a) Moore’s; b)
von Neumann’s and; c) extended von Neumann’s.

As it can be observed, the definition and behavior of
the CA are simple. CA can provide an intuitive way of de-
scribing complex behavior using simple rules. CA may be
considered as discrete idealizations in time and space of
physical systems [35]. Due to its simplicity, CA have been
used to describe models of complex systems in multiple do-
mains. CA models have been developed in areas like chem-
istry [12], economics [22], medicine [10], biology and en-
vironment [13], and urban architecture [18], among many
others [8]. An extension of CA models, named Lattice Gas
Cellular Automata (LGCA), has been applied to the study
of fluid flows. LGCA models have been also extended into
Lattice Boltzmann Models (LBM) that are used as a micro-
scopic approach for the study of fluid dynamics [33].

CA models can be combined with models described us-
ing different formalisms. For example, macroscopic quan-
tities are usually calculated from LGCA and LBM mod-
els in order to combine them with other continuous-time
models. One of the motivations of the work presented in
this manuscript is to facilitate the combination of CA and
continuous-time models using Modelica.

Discrete-event modeling specifications have been used
to formally describe the behavior of CA, facilitating the de-
velopment of models and their understanding. For instance,
DEVS has been used by Zeigler [37] and Wainer [32] to
describe CA models. The former provides a description
of CA using Classic DEVS and Multicomponent DEVS.
Models following these specifications can be implemented
using tools such as DEVSJAVA [38], CoSMoS and MS4
Me™[36]. The latter introduces the Cell-DEVS formalism
that is supported by CD++ [31].

On the other hand, the general-purpose, object-oriented
modeling languages support the physical modeling paradigm
[2]. In particular, the Modelica language [14] facilitates
the object-oriented description of DAE-hybrid models, i.e.,

121



models composed of differential and algebraic equations,
and discrete-time events. Modelica supports a declarative
description of the continuous-time part of the model (i.e.,
equation-oriented modeling) and provides language ex-
pressions for describing discrete-time events. A detailed
description of the characteristics of the language can be
found in the specification of the language [14].

Modelica features have facilitated the development of
libraries supporting several modeling formalisms and de-
scribing phenomena in different physical domains [15].
The main Modelica library is the Modelica Standard Li-
brary (MSL) [17] which is developed and supported by
the Modelica Association. Modelica facilitates the reuse of
models and model components which contribute to reduce
the cost of new model development [21].

A number of Modelica libraries have been implemented
for supporting discrete-event modeling formalisms, includ-
ing StateCharts [6], state graphs [19], hybrid automata [20],
Petri Nets [16] and extended Petri Nets [5]. The DEVSLib
library was developed by the authors to facilitate the de-
scription of Parallel DEVS models in Modelica, and their
combination with other Modelica models [24, 25].

Modelica has been used to describe CA models. The
Game of Life is a particular example of two dimensional
CA. The description in Modelica of the Conway’s Game of
Life is discussed by Fritzson [7]. In this implementation,
the cellular space is represented using a matrix of integer
numbers. The initial condition is set using a vector that
contains the coordinates of the initially active cells. The
behavior of the model is implemented using a function that
is evaluated at discrete intervals using the Modelica sample
operator. Two for loops are used in this function to iterate
over all the components of the matrix, calculating the state
of the neighbors (following Moore’s neighborhood) and
updating the state of the current component.

A new Modelica library, named CellularPDEVS, has
been developed by the authors in order to facilitate the de-
scription of CA. CA in CellularPDEVS are described us-
ing the Parallel DEVS formalism, as coupled models of
interconnected atomic cells. CellularPDEVS has been pro-
grammed using the DEVSLib Modelica library [25]. In this
way, CA constructed using CellularPDEVS are compatible
with the models described using DEVSLib, facilitating the
connection between CA, Parallel DEVS and other Mod-
elica models. The CellularPDEVS library can be freely
downloaded as a part of the DESLib library [26, 4].

The structure of the manuscript is as follows. A short
introduction to Parallel DEVS is presented in Section 2.
The use of the Parallel DEVS as a base for CA imple-
mentation in Modelica is discussed in Section 3. The ar-
chitecture and functionality of the CellularPDEVS library
are described in Section 4. The construction of new CA us-
ing CellularPDEVS, as well as examples of one and two
dimensional CA, are presented in Section 5. Finally, some
future work ideas and conclusions are given in Sections 6
and 7, respectively.

2. Parallel DEVS
The Parallel DEVS formalism is briefly introduced in this
section. Models in Parallel DEVS can be described behav-
iorally (named atomic) or structurally (named coupled).

2.1 Atomic Parallel DEVS Models
According to the Parallel DEVS formalism, an atomic
model is the smallest component that can be used to de-
scribe the behavior of a system. It is defined by a tuple of
eight elements [3, 37]:

Atomic =< XM , S, YM , δint, δext, δcon, λ, ta >

where:

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input
ports and values.

S is the set of sequential states.

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output
ports and values.

δint : S −→ S is the internal transition function.

δext : Q ×Xb
M −→ S is the external transition function,

where Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the
total state set and e is the time elapsed since the last
transition.

δcon : Q×Xb
M −→ S is the confluent transition function.

λ : S −→ Y b
M is the output function.

ta : S −→ <+
0,∞ is the time advance function.

An atomic model remains in the state s ∈ S, for a time
interval ts = ta(s). After ts is elapsed, an internal event
is triggered and the state is changed to snew = δint(s).
Before that, an output can be generated using the output
function and the state prior to the event (output = λ(s)).

A new internal event is scheduled to occur at time in-
stant tnew = ta(snew) + time, where time is the current
time, i.e., the time instant of the current event, and ta(snew)
is the duration until the next internal event scheduled as a
consequence of the current event. The duration ta(snew) is
a function of the new state snew.

Multiple inputs can be received simultaneously through
one or several ports:

• If any input is received at time text and text < ts (so
the inputs are received before the next internal event),
an external event is triggered. As a consequence of
the external event, the state is changed to snew2 =
δext(s, e, bag), where s is the current state, e is the
elapsed time since the last transition (text − tlast) and
bag ⊆ XM is the set of received input messages.

• If the external input is received at time text and text =
ts, the external and the internal events are triggered
simultaneously. This situation triggers a confluent event
(that substitutes the external and internal events), and
the state is changed to snew3 = δcon(s, e, bag), being s
the current state, e the elapsed time, and bag ⊆ XM the
set of received inputs (similarly to the δext function).
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Also, similarly to the internal events, an output can
be generated as output = λ(s) before executing the
confluent transition function.

New internal events are also scheduled after the external
and confluent transitions using ta(). Note that the time
advance function can return a zero value, generating an
immediate internal event.

2.2 Coupled Parallel DEVS Models
The Parallel DEVS formalism supports the hierarchical and
modular description of the model. Every model has an
interface to communicate with other models.

A coupled Parallel DEVS model is a model composed of
several interconnected atomic or coupled models that com-
municate externally using the input and output ports of the
coupled model interface. It is described by the following
tuple [37]:

Coupled =< X,Y,D, {Md|d ∈ D}, EIC,EOC, IC >

where:

X = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input
ports and values.

Y = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output
ports and values.

D is the set of the component names.

Md is a DEVS model, for each d ∈ D.

EIC is the External Input Coupling: connections between
the inputs of the coupled model and its internal compo-
nents.

EOC is the External Output Coupling: connections be-
tween the internal components and the outputs of the
coupled model.

IC is the Internal Coupling: connections between the
internal components.

The connection of Parallel DEVS models implies the es-
tablishment of an information transmission mechanism be-
tween the connected models. Parallel DEVS models follow
a message passing communication mechanism. A model
generates messages as outputs using its output function
which are received by other models as external inputs. Mes-
sages can be received simultaneously through one or multi-
ple ports. Connections between models can be in the form
of 1-to-1, 1-to-many and many-to-1. Each message can
transport an arbitrarily complex amount of information, de-
pending on the particular application or experiment being
studied.

3. Specification of CellularPDEVS Models
Parallel DEVS has been used to describe the CA compo-
nents (i.e., the cell and the cellular space) implemented in
CellularPDEVS. The formal specification of these compo-
nents is presented in this section.

3.1 Specification of the Cell Models
CellularPDEVS includes two cell models: Cell1D and
Cell2D. The formal specification of the one dimensional
cell,Cell1D, following Parallel DEVS is shown in Table 1.

The interface of Cell1D is composed of:

• The “inE” input port, used to connect with its eastern
neighbor.

• The “inW ” input port, used to connect with its western
neighbor.

• The “inext” input port, used to receive external inputs
from outside the cellular space.

• The “out” output port, used to communicate the state
of the cell.

A graphical representation of the interface of the Cell1D
model is shown in Figure 2.

inW inE

inext

out

Cell1D

Figure 2. Interface of the Cell1D model.

The state variables of Cell1D are:

• phase that represents if the cell is “active” or “passive”.
An “active” phase means that the state variable CS of
the cell has changed in the current time step. The cell
remains “active” until the change of the state is com-
municated to the neighbors. Otherwise, the phase is
“passive”.

• sigma that represents the time delay until the execution
of the next internal transition of the cell.

• CS that represents the current state of the cell repre-
sented by the Cell1D model.

• NE and NW that are used to locally store the state of
the neighbors, also represented by Cell1D models.

The behavior of the Cell1D model is as follows. An ex-
ample of cell simulation is shown in Figure 3, where the
evolution of the inputs, outputs and the state of the cell
are shown. Initially, cells have sigma = ∞ and phase =
“passive” meaning that without an external input no in-
ternal transitions will be executed in the cell. Input events
sent to the “inext” port are intended for initializing the cell,
and have to be received at discrete time steps. The default
duration of the time step is 1 second, however it can be
adjusted as desired. Input events received at port “inext”
update the state variable CS of the cell, set phase =
“active” and schedule an internal event at time + 0.5
(i.e., the middle of the current time step). In the exam-
ple shown in Figure 3, the initial input event is received
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Table 1. Parallel DEVS specification of the Cell1D model included in CellularPDEVS.

Cell1D =< X,S, Y, δint, δext, δcon, λ, ta >

where:
XM = {(ps, v)|p ∈ {“inE”, “inW ”, “inext”}, v ∈ Z}
S = {“active”, “passive”} × R+

0,∞ × Z× Z× Z
YM = {(‘out”,Z)}
δint(phase, sigma,CS,NE , NW ) =

(“passive”, 0.5, CS,NE , NW ) if phase == “active”

(“passive”,∞, CS,NE , NW ) if phase == “passive” and CS == Rule(CS,NE , NW )

(“active”, 0.5, Rule(CS,NE , NW ), NE , NW ) if phase == “passive” and CS 6= Rule(CS,NE , NW )

δext(phase, sigma,CS,NE , NW , e,Xb
M ) =

(phase, 0.5, CS, VE , NW ) if event received in port “inE” , whose value VE ∈ Z
(phase, 0.5, CS,NE , VW ) if event received in port “inW ” , whose value VW ∈ Z
(phase, 0.5, CS, VE , VW ) if events received in ports “inE” and “inW ” , whose values VE , VW ∈ Z
(“active”, 0.5, Vext, NE , NW ) if event received in port “inext” , whose value Vext ∈ Z

δcon(S, e,X
b) = δint(δext(S, e,X

b))
λ(phase, sigma,CS,NE , NW ) ={

(“out”, CS) if phase == “active”

∅ if phase == “passive”

ta(phase, sigma,CS,NE , NW ) = max(sigma, 0)

at time = 2s. The scheduled internal event generates an
output to send the new state to the neighbors (e.g., output
at time = 2.5s in the figure), fires an internal transition
that sets phase = “passive” and schedules a new inter-
nal event at time + 0.5 that corresponds to the next time
step. The new scheduled internal event will fire a new in-
ternal transition to update the state CS of the cell using
the Rule function. If CS 6= Rule(CS,NE , NW ) (i.e., CS
changes) then phase = “active”, sigma = 0.5 (i.e., the
middle of the time step) and CS = Rule(CS,NE , NW )
(e.g., in the example, phase always changes to “active′′

when CS changes). Otherwise, phase = “passive” and
sigma = ∞ (e.g., in the example CS remains constant at
time = 3s and sigma = ∞). Each neighbor receives the
update of the state in the middle of the time step as an ex-
ternal event. This fires an external transition that updates
the locally stored neighbor state with the received value
and sets sigma = 0.5 to schedule an internal event at the
next time step (e.g., in the example, changes in the states of
the neighbors are received as external inputs, and the local
state variables NE and NW are updated with the received
values).

The formal specification of the Cell2D is analogous to
the Cell1D, provided the following modifications. Addi-
tional input ports have to be included to connect with the
additional neighbors (e.g., eight neighbors in the case of
the Moore’s neighborhood). The state has also to be ex-
tended to locally store the states of the additional neigh-
bors. The δext is used to update the locally stored states
with the values received with the events. This function has

Figure 3. Cell1D model execution example.
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Table 2. Parallel DEVS specification of the CellSpace1D model.

CellSpace1D =< X,Y, {Md|d ∈ D}, EIC,EOC, IC >

where:
X = {(p, v)|p ∈ {“in1”, . . . , “inN”}, v ∈ Z}
Y = {(p, v)|p ∈ {“out1”, . . . , “outN”}, v ∈ Z}
Md = Cell1D for all d ∈ D, where D = {cell1, . . . , cellN}
EIC = {(CellSpace1D, “ini”)− (celli, “inext”)|i = 1, . . . , N}
EOC = {(CellSpace1D, “outi”)− (celli, “out”)|i = 1, . . . , N}
IC = {(celli−1, “out”)− (celli, “inW ”)|i = 2, . . . , N}∪

{(celli+1, “out”)− (celli, “inE”)|i = 1, . . . , N − 1}∪
{(cellN , “out”)− (cell1, “inW ”), (cell1, “out”)− (cellN , “inE”)}

to be extended to allow all the possible combinations of
input events from the ports of the model.

3.2 Specification of the Cellular Space Model
CellularPDEVS includes two models that represent cellu-
lar spaces:CellSpace1D andCellSpace2D. Each cellular
space is defined as a coupled Parallel DEVS model. Cellu-
lar spaces are composed of individual cells and their in-
terconnections. The formal specification of the one dimen-
sional cellular space, CellSpace1D, using Parallel DEVS
is shown in Table 2.

inW inE

inext

out

1DCell

inW inE

inext

out

1DCell

inW inE

inext

out

1DCell

in1 in2 in3

out1 out2 out3

Figure 4. CellSpace1D model of size 3.

The CellSpace1D model is defined as an array of
Cell1D atomic models. The size of the array is N . An
example of one dimensional CA with three cells is shown
in Figure 4. Each cell in the array receives connections
from its eastern neighbor (to the “inE” port) and its west-
ern neighbor (to the “inW ” port) following the one di-
mensional Moore’s neighborhood. The boundaries of the
space are considered wrapped, so the western neighbor of
the first cell of the array is the last cell of the array and
vice-versa for the eastern neighbor of the last cell (cf. con-
nections shown in Figure 4). The interface of the cellular
space is composed of one input port (“ini”) and one out-
put port (“outi”) for each cell in the space. These ports
are connected to the “inext” and “out” ports of each cell,
respectively.

The specification of the CellSpace2D model is analo-
gous to the CellSpace1D provided the following modifi-

cations. The cellular space has to be defined as a two di-
mensional matrix of Cell1D atomic models. The size of
the space is N × N . Each cell receives connections from
its eight neighbors to its input ports. The boundaries are
also wrapped considering the two dimensions of the space.

4. Architecture of CellularPDEVS
The architecture of the CellularPDEVS library is shown in
Figure 5.

Figure 5. Architecture of the CellularPDEVS library.

The library is structured in two areas: 1) user’s area and;
2) developer’s area. The user’s area is composed of:

• The Users Guide that contains the user oriented docu-
mentation.

• The CellSpace1D model that is used to construct new
one dimensional CA.

• The CellSpace2D model that is used to construct new
two dimensional CA.
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• The Examples package that contains several examples
of use.

The developer’s area is encapsulated into the SRC pack-
age and contains the internal implementation of the models
and the developer oriented documentation. CellularPDEVS
includes two atomic DEVSLib models to represent one
and two dimensional cells, named Cell1D and Cell2D re-
spectively. Cellular spaces, named SRC.CellSpace1D and
SRC.CellSpace2D, are constructed as an array or a matrix
of interconnected Cell1D or Cell2D models depending on
the dimension of the space.

The connections between cells are predefined into the
cellular space describing the Moore’s neighborhood. Since
these connections between individual cells generate alge-
braic loops in the cellular space, a BreakLoop model from
the DEVSLib library is inserted between cell connections.
The BreakLoop model uses the Modelica pre operator to
break the loop. The boundaries of the cellular space are
wrapped automatically, by using the mod operator in the
calculations of the indecees for the connections of cells.

Also, the cellular space includes the models required
to generate the graphical animation of the simulation. The
World, Fixed and fixedShape models, from the Multibody
package of the Modelica Standard Library, have been used
to generate the 1D and 2D visualizations.

Each cellular space model in CellularPDEVS includes
a replaceable function, named Rule that needs to be re-
declared in order to define the transition function for new
models. The inputs of this function are the state of the cur-
rent cell and its neighbors, and the output is the future state
of the current cell. The prototype of this function is shown
in Listing 1.

function Rule
input Integer s;
input Integer[N] neighbors;
output Integer sout;

algorithm
end Rule;

Listing 1. Prototype of the CellularPDEVS transition
function (N is the number of neighbors).

Finally, the cellular space also includes a Generator and
a DUP_N models, from the DEVSLib library that are used
to initialize the required cells at the beginning of the sim-
ulation. A message with Type == 1 is sent by the Gen-
erator model to each cell to be initialized. This message is
received and managed by the external transition function of
the cell which initializes the state and schedules an internal
transition.

5. Modeling using CellularPDEVS
The construction of new CA using CellularPDEVS requires
the description of the parameters of the cellular space (i.e.,
size and initial conditions of the cells) and the rule or tran-
sition function that describes the behavior of each cell. The
formalism and the internal implementation of the cellular
space and the cells is transparent to the user. As mentioned

before, the graphical animation of the simulation is auto-
matically generated, and it can be deactivated using a pa-
rameter of the model.

The transition function can be any Modelica function
with the state of the cell and its neighbors as inputs, and the
updated cell state as output (cf. the prototype of this func-
tion shown in Listing 1). All these values are represented
using integer numbers.

CellularPDEVS models can be combined with any other
Modelica model. The state of the cells in the automata
can be observed using a variable, named state, included
in the CellSpace1D and CellSpace2D models. Also, the
state of the cells can be modified during the simulation by
sending a message to the in1 port of the desired cell. The
message has to have Type == 1 and transport the new
value for the cell. This message can be sent from any model
constructed using DEVSLib. The DUP_N model can be
used to duplicate the message if multiple cells have to be
changed simultaneously.

Additionally, DEVSLib includes interfaces between
continuous-time models and Parallel DEVS models which
translate continuous-time signals into event trajectories
(i.e., series of messages), and viceversa. These interface
models allow combining the use of Parallel DEVS models
developed with DEVSLib and hybrid models developed
using other Modelica libraries. In this way, the behavior of
a continuous Modelica model can be used to affect the state
of the CA model, and viceversa.

The continuous-time to discrete-event interfaces trans-
late continuous-time signals into event trajectories, where
each event corresponds with the send of a message. Two
different implementations of this interface are included
in DEVSLib: quantization (Quantizer model) and value-
crossing interfaces (CrossUP and CrossDOWN models).
The quantization interface generates an event (i.e., a mes-
sage) for every change in the continuous-time signal bigger
than a given quantum value. The value-crossing interface
generates an event every time the continuous signal crosses
a given value in one direction, upwards or downwards.

The discrete-event to continuous-time interface trans-
lates the received message values into a piecewise-constant
real signal. A boolean output is also included, together with
the output real signal, in order to notify the reception in-
stant of the messages. This boolean output may be use-
ful when the received messages have the same value and
consequently the reception instants cannot be inferred from
the output real signal. This interface is implemented by the
DICO model.

CellularPDEVS includes a package that contains several
example model that are used to demonstrate its function-
ality and facilitate the construction of new models. These
models have been also used to validate the library by com-
parison with equivalent models constructed using Golly
which is an open source application for exploring CA mod-
els [9].

The examples included are the Wolfram’s rule 30 and
rule 110 [35] and two different initial conditions for the
Conway’s Game of Life. These models are detailed next.
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5.1 Examples of One Dimensional CA
The Wolfram’s rule 30 and rule 110 represent two different
transition functions for one dimensional CA. These func-
tions evaluate the state of a cell and its two adjacent neigh-
bors and return the future state for the cell. The state of each
cell is binary. The combination of possible input values and
their outputs are shown in Table 3. The number of the rule,
30 and 110, defines the decimal value of the binary outputs
of each function (e.g., looking at the future state row of the
table, the binary values of the output can be interpreted as
a decimal number: for the rule 30, 000111102 = 3010).

Table 3. Wolfram’s rule 30 and rule 110.

Rule 30
current pattern 111 110 101 100 011 010 001 000
future state 0 0 0 1 1 1 1 0

Rule 110
current pattern 111 110 101 100 011 010 001 000
future state 0 1 1 0 1 1 1 0

(a)

(b)

Figure 6. Simulation of CellularPDEVS 1D models: a)
rule 30 and; b) rule 110.

The implementation of these rules in Modelica is straight
forward. The code included in CellularPDEVS for the rule
30 is shown in Listing 2. An analogous code is included in
the library for the rule 110.

The models of the rule 30 and rule 110 are constructed
in CellularPDEVS by extending the CellSpace1D model,
and redeclaring the Rule function with the corresponding
functions. The parameters of the models are the size of the
cellular space size (named Ssize) and the initial cell (named
init_cell), since all Wolfram rules have only one active cell
at the beginning of the simulation. The simulation results of
the rule 30 and rule 110 models with a space size of 20, the
cell in the middle of the space as initial cell (i.e., init_cell
= 10) and a simulation time of 10 time steps are shown in
Figure 6.

function r30
input Integer s;
input Integer[2] neighbors;
output Integer sout;

protected
Integer[2] n = neighbors;

algorithm
if n[2]==1 and s==1 and n[1]==1 then
sout := 0;

elseif n[2]==1 and s==1 and n[1]==0 then
sout := 0;

elseif n[2]==1 and s==0 and n[1]==1 then
sout := 0;

elseif n[2]==1 and s==0 and n[1]==0 then
sout := 1;

elseif n[2]==0 and s==1 and n[1]==1 then
sout := 1;

elseif n[2]==0 and s==1 and n[1]==0 then
sout := 1;

elseif n[2]==0 and s==0 and n[1]==1 then
sout := 1;

elseif n[2]==0 and s==0 and n[1]==0 then
sout := 0;

end if;
end r30;

Listing 2. Rule 30 Modelica code.

5.2 Examples of Two Dimensional CA
CellularPDEVS includes an implementation of the Game
of Life model described by Conway. This model represents
a two dimensional cell space where each cell may be alive
or dead. The transition function of the model is defined by
the following rules:

• A dead cell becomes alive when it has a number of alive
neighbors equal to 3.

• A living cell dies when it has less than 2 or more than 3
alive neighbors.

• Otherwise, the cell remains in its current state.

function conway
input Integer s;
input Integer[8] neighbors;
output Integer sout;

protected
Integer[8] n = neighbors;

algorithm
sout := s;
if s==0 then // dead, maybe borns
if sum(n)==3 then
sout := 1;

end if;
else // alive, maybe dies
if (sum(n)<2 or sum(n)>3) then
sout := 0;

end if;
end if;

end conway;

Listing 3. Modelica code of the Game of Life’s transition
function.

The description of 2D models in CellularPDEVS is
analogous to the 1D ones. The Game of Life model is con-
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(a) torus, time = 0 (b) torus, time = 1 (c) torus, time = 2 (d) torus, time = 3 (e) torus, time = 4

(f) torus2, time = 0 (g) torus2, time = 1 (h) torus2, time = 2 (i) torus2, time = 3 (j) torus2, time = 4

Figure 7. Simulation of CellularPDEVS 2D models. The Conway’s Game of Life.

structed by programming its transition function, as shown
in Listing 3. The model extends the CellSpace2D model
and redeclares the Rule function using the conway func-
tion shown. The initial state of the model is described as a
matrix where each row represents the coordinates that cor-
respond to the cells in the space that will be initially active
(e.g., [1,2;2,3;4,4]). The first cell, (1,1), corresponds to the
top-left cell of the matrix. The first index represents rows
and the second represents columns (e.g., (3,5) represents
the cell in the third row and the fifth column).

The first five steps of the simulation of two initial states,
named torus and torus2, for the game of life model in
CellularPDEVS are shown in Figure 7. The torus model
corresponds to the initial cells: [1,2; 2,3; 3,1; 3,2; 3,3]. This
model evolves in a periodical diagonal movement from
the top-left area of the cellular space to the bottom-right.
The torus2 model corresponds to the initial cells: [2,2; 2,4;
3,5; 4,5; 5,5; 6,3; 6,4; 6,5; 5,2]. This model evolves in
a periodical vertical movement from the top area of the
cellular space to the bottom area.

6. Future Work
The models presented in this manuscript have been in-
cluded in CellularPDEVS in order to validate the library
and demonstrate its functionality. CellularPDEVS will be
used to model more complex systems using CA such as a
cement clinker cooler [1] or a PEM fuel cell [23]. The de-
velopment of these models will show the applicability of
library. Also, these new CA models will be used to evalu-
ate the simulation performance of the library in comparison
with the already developed Modelica models.

7. Conclusions
A new Modelica library has been developed to facilitate
the description of Cellular Automata. These are discrete-
time and -space models represented using a grid of indi-

vidual cells, whose state is updated at discrete time steps
using a predefined transition function. The library supports
the description of one and two dimensional automata. The
main components of the library are the cell and the cellular
space. The behavior of these components has been speci-
fied using the Parallel DEVS formalism.

The behavior of each cell is specified as an atomic Par-
allel DEVS model and implemented using the DEVSLib li-
brary. The interface of the cell allows it to receive messages
from its neighbors and from outside the cellular space. The
state of the cell represented by the model is described using
an integer number. Different behaviors can be described by
redeclaring the rule, or transition function that defines the
dynamics of the cell. The duration of the time step can be
adjusted to the requirements of the simulation.

The cellular space is specified as a coupled Parallel
DEVS model. It is composed of a grid of interconnected
cell models. The interface of the cellular space allows to
receive external messages, via its input ports, and to ob-
serve the state of the automata, via its output ports. This
interface facilitates the combination of cellular automata
models with other Modelica models. The boundaries of the
cellular space are wrapped. It uses the Moore’s neighbor-
hood by default. However, future versions will allow the
user to define the neighborhood as desired. A graphical an-
imation of the simulation is automatically generated.

Three examples have been presented in order to demon-
strate the functionality of the library and validate its mod-
els. The Wolfram’s rule 30 and rule 110 elementary cellular
automata as examples of one dimensional automata. The
Conway’s Game of Life, including two initial conditions,
as an example of two dimensional automata.
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