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ABSTRACT 

When faced with output from multiple simulation models, a decision maker must aggregate the forecasts 

provided by each model. This problem is made harder when the models are based on similar assumptions 

or use overlapping input data. This situation is similar to the problem of expert judgment aggregation 

where experts provide a forecast distribution based on overlapping information, but only samples from 

the output distribution are obtained in the simulation case. We propose a Bayesian method for aggregating 

forecasts from multiple simulation models. We demonstrate the approach using a climate change exam-

ple, an area often informed by multiple simulation models. 

1 INTRODUCTION 

Decision makers faced with complex decisions often turn to simulations to inform their understanding. 

With one simulation model, the output of the simulation can update their prior knowledge and be used to 

maximize their expected outcomes.  With multiple simulation models, each providing forecasts of system 

behavior and the output of interest, the decision maker is left with the choice of which to trust. This situa-

tion is prevalent in decisions affected by climate change as there are multiple competing simulation mod-

els of future climate (Stainforth et al. 2007), but can occur in other applications with model uncertainty 

(Chick 1997, Chick 2001, Zouaoui and Wilson 2003, Zouaoui and Wilson 2004). Current simulation re-

search has focused on model uncertainty, frequently represented as the probability that the system is rep-

resented by a given model. However, the focus of the decision maker is the distribution of the system’s 

output given all data from the multiple simulation models and how this affects their consequent decision.  

 This situation is akin to updating a decision maker’s prior knowledge given forecasts from multiple 

experts. Clemen and Winkler (1999) review several models for combining expert forecasts with the deci-

sion maker’s prior information. These models follow the Bayesian aggregation framework developed in 

Morris (1974, 1977, 1983). Each expert provides a distribution to the decision maker to represent his or 

her uncertainty about the quantity of interest. Correlation between the expert forecasts is often introduced 

because of overlapping information available to the experts (Clemen 1987) and thus used in determining 

their responses to elicitation questions (Winkler 1981, French 1980, French 1981, Lindley 1983, Lindley 

1985, Mosleh et al. 1988, Clemen 1987, Clemen and Reilly 1999, Jouini and Clemen 1996). In the case of 

multiple simulation models, each simulation will be provide a number of draws from their output distribu-

tion, rather than a full distribution. There will also be overlapping information from the simulation models 

as it is likely that the simulation inputs are based on some of the same data and their may be some overlap 

in the model logic. 

In this paper, we introduce a method for aggregating simulation forecasts adapted from the expert 

judgment aggregation method of Winkler (1981). Current simulation research in model uncertainty is re-

viewed in Section 2 along with Winkler’s method. The adapted method for simulation forecasts is 
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presented in Section 3. An empirical demonstration of the method is provided in Section 4 and Section 5 

offers conclusions and recommendations. 

2 A REVIEW OF PREVIOUS WORK 

2.1 Relationship to Model Uncertainty 

Most work on model uncertainty considers the probability of each model being correct, denoted 

, which is certainly of interest where   is possible model and   is the simulated data available. 

Chick (1999) offers a Bayesian approach for model uncertainty by placing a probability distribution on 

the input model itself. Chick’s model includes a probability that each given distribution is correct and 

each distribution is then conditioned on that distribution being the correct one. Prior probabilities are then 

assigned for each model being correct,  for . The probability that a given model  is 

correct given input data can then be found using 

 . (1) 

Chick discusses techniques for finding prior distributions on parameters and calculating posteriors, such 

as above, including using conjugate priors, numerical approximations, and MCMC techniques. The prob-

lem of sampling from different input models to obtain correct output samples is first discussed in Chick 

(1997). Chick (2001) extends this general algorithm to handle the input model uncertainty framework 

from Chick (1999) and provides a general sampling algorithm for sampling from the Chick (1999) 

framework. While each of these algorithms obtains correct samples from the simulation outputs that are 

consistent with equivalent probabilistic calculations for non-simulation based analysis, they do not allow 

us to decompose the output uncertainty into its constituent pieces, namely stochastic, model, and parame-

ter uncertainty.  

Zouaoui and Wilson (2003) provide an extension of the Chick (1997) algorithm that allows sepa-

ration of stochastic and parameter uncertainty using Bayesian Model Averaging (Draper 1995). Zouaoui 

and Wilson (2004) further extend this approach to separate stochastic uncertainty, model uncertainty, and 

parameter uncertainty for the model uncertainty framework in Chick (2001). They propose an algorithm 

to ensure sufficient draws from each input model and each sampled input model parameter for a fixed 

number of simulation replications. The final calculation is a weighted mean where the weights are the 

posterior probability of each model given the input data. Components of the output variance are then cal-

culated by considering variations for a given model and variations between models. The output variance 

due to model uncertainty is estimated by  

,     (2) 

where  and  is the posterior probability of model  given the input data. 

The output variance due to the stochastic nature of the simulation is estimated by  

        (3) 

and the output variance due to parameter uncertainty is estimated by  

 , 
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where  and .  

The simulation work in the previous section focuses on , the probability that a particu-

lar model is correct or best, which is of primary interest to the simulation model builder. The primary 

quantity of interest to the decision maker is , the prediction of the quantity of interest. It should 

be noted that the distribution of  can be found under the approaches in the previous section using 

 , (4) 

but we may also consider each  to be a sample from a forecast distribution of . Forecasts from ei-

ther experts or predictive models are often a critical input to any decision problem. The decision maker 

may have her own opinion of the value or distribution of various parameters of the problem, but she will 

often incorporate the opinions of experts in to her beliefs. In our case, simulation models provide these 

forecasts instead of experts.  

2.2 Aggregation of Point Forecasts 

Winkler (1981) develops an aggregation technique for experts’ assessments of   using the multivariate 

normal distribution that is frequently cited in the literature. Winkler’s approach assumes that each fore-

caster provides their estimated distribution of  in terms of the mean  and standard deviation  of a 

normal distribution. Winkler’s likelihood is formed by assuming that 

       
,      (5) 

which denotes a multivariate normal distribution with mean vector , a vector of  ones multiplied by 

the constant , and covariance matrix . Thus, each expert’s assessment varies around  according to 

dependent normal distributions. Winkler suggests that the decision maker may use  to estimate 

the variances along the diagonal of  in (1).  

In this formulation, each expert specifies his or her own full distribution of the quantity of interest. In 

many decision situations, simulation models are used to provide forecasts to inform the decision, for ex-

ample climate change decisions (Stainforth et al. 2007) or decisions about the risk of oil spills (Merrick et 

al. 2002). Simulation models provide a set of samples from their output distributions, not a complete dis-

tribution. Suppose we have  simulation models each of which provide estimates of a given unknown 

output quantity. Let  denote the unknown value of the output quantity modeled by these  models. Let 

 denote the output of the -th replicate of the m-th simulation model,  and . 

Let  represent the set of output data   .  

In the simulation case, each  is a sample from the forecast distribution of the -th simulation 

model rather than a specification of the whole forecast distribution. In Winkler’s model, a multivariate 

distribution is used to introduce dependencies between the forecasts as each is based on common infor-

mation. This will also be true in the case of multiple, alternative simulation models, as they will be at least 

partially based on the same input data and there can be overlap in the logic used to build them. Thus, an 

assumption of independence between outputs from these models is not appropriate.  
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3 AGGREGATION OF SIMULATION FORECASTS 

In this paper, we introduce the approach taken to forecast aggregation in the decision analysis literature, 

adapting it for use with simulation output. We modify Winkler’s model to aggregate a set of samples from 

 simulation models. Using the notation introduced in the introduction, we assume that  

      (6) 

and that  are conditionally independent given  and , as each element is an independent rep-

lication from a simulation. The likelihood for  given  and  can then be written as 

   (7) 

Completing the square and re-arranging, we obtain 

    (8) 

where 

      (9) 

Summing over , we find that 

     (10) 

where 

 ,        (11) 

where . Thus, the likelihood for  given  and  is a normal distribution where 

the mean is a weighted linear combination of the average output from each simulation model. 

 Winkler offers two variations to handle  in his forecast aggregation approach. One assumes  is a 

hyperparameter known to the decision maker. The other assumes  is unknown and assigns a conjugate 

inverse-Wishart prior distribution. However in expert forecast aggregation, each forecaster only provides 

a single forecast so there are not sufficient degrees of freedom to learn about . In the simulation ver-

sion, we have multiple draws from each simulation model, allowing updating of the distribution of . 

Thus, we use the latter variation. Let 

                 (12) 

denote the prior assumptions. The posterior distributions given  are then 

p

   1, ,,..., ~ 1,
T

j j p jY Y MVNormal Y Σ

1,..., qY Y  


1,..., qY Y Σ

      

   

11
1 2

1

11
2

1

| , ,..., exp 1 ' 1

exp 1 ' 1 .

q

q j j

j

q

j j

j

L   

 









   

 
    

 





Σ Y Y Y Σ Y

Y Σ Y

   
2

* *1
1 2

1

| , ,..., exp ,
q

q j

j

L    


 
   

 
Σ Y Y

1

* * 1

1

1'
  and  1' 1.

1' 1

j

j 






 

Σ Y
Σ

Σ

j

    
2

* *1
1 2

| , ,..., exp ,qL q     Σ Y Y

* 1

1
1

1'
 =

1' 1

q
j

j n









* Σ Y

Σ

1

1 q

jq 

  jY Y 
1,..., qY Y 

 





   
 

*

0 0

0 0

| ~ ,  

~ ,

Normal q

IWishart S

  







 1,..., qD  Y Y

536



Merrick 

 

          (13) 

where 

  .    (14) 

The marginal posterior distribution of  given  is 

 

and the posterior predictive distribution of  given  is then 

. 

4 EMPIRICAL DEMONSTRATION 

4.1 A Decision Maker’s Problem 

Climate change has become a major factor in long range planning for companies and governments. One 

consideration in construction and development in coastal areas is the potential for sea level rise. There is 

mounting evidence that sea levels have been much higher in previous periods of Earth’s history (Raymo 

and Mitrovica 2012, Deschamps et al. 2012). Thus, climate simulation models are providing forecasts of 

sea level rise in major US coastal cities as high as 25 feet. Figure 1 shows the complete probability densi-

ty functions of the outputs of four hypothetical simulation models, each modeling sea level rise in feet at a 

major US coastal city.  
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Figure 1: The density functions for predicted sea level rise from four simulation models. 

 The outputs of simulation models 2 and 3 are close in mean (7ft and 8ft respectively), while the out-

puts of simulation models 1 and 4 are quite different (15ft and 25ft). The variances of outputs 2 and 3 are 

relatively low (each 1), while the variances of outputs 1 and 4 are higher (4 and 6.25). Thus, outputs 2 and 

3 share significant common support and outputs 1 and 4 share some common support.  

 Scientists are mostly interested in which model is correct and what this says about the assumptions 

underlying each model. However, the decision maker’s primary interest is the sea level rise and how this 

affects their overall development decisions. It is clear in this example, that a decision maker will consider 

which model is closer to the truth. Are the similarity of the output of models 2 and 3 evidence that they 

are correct? Or is this evidence that they are based on similar assumptions and data? In the end though, 

the decision maker should consider the posterior distribution of  given  samples from the outputs of 

each of these four models. Let us consider the posterior distribution provided by the aggregation tech-

nique offered in Section 3. 

4.2 Learning from Multiple Simulation Models 

Suppose the decision makers prior belief is      , but the decision maker is highly uncertainty, so we 

set        ,        , and       , where  is a  identity matrix. This indicates a priori inde-

pendence and the values are chosen to set the prior densities of  to be equal under each approach. Fig-

ure 2 shows the prior distribution implied by these assumptions as a dashed line. While the priors are 

proper, they shown little prior knowledge of the sea level rise of interest. 10 samples are taken from each 

simulation model represented in Figure 1. The posterior distribution given these samples is shown as a 

solid line in Figure 2. With a small number of simulations with output distributions that differ greatly, the 

posterior distribution of sea level rise has a low variance and indicates a posterior expected sea level risk 

of 12.95 ft.  
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Figure 2: The prior and posterior density functions of decision maker’s beliefs about  . 

 

The posterior distributions obtained with Bayesian methods can be sensitive to the prior assumptions. 

Let us examine the primary parameters that can reflect the decision maker’s beliefs in before observing 

the simulated forecasts. The prior mean    reflects the decision maker’s prior beliefs about the expected 

sea level rise. However, it is clear from the form of the posterior distribution of in (13) that the effect of 

    depends on the parameter   . Figure 3 shows the prior and posterior distributions of  for varying 

values of      and   . For        ,    has little effect on the posterior distribution of  . However, for 

        the effect is significant and draws the posterior mass towards the value of   . 
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Figure 3: The prior and posterior density functions of decision maker’s beliefs about  . 
  

 Prior beliefs about overlapping information used in the creation of simulation models can also be 

specified through the prior covariance parameter   . Suppose the decision maker believes that simula-

tions 1 and 4 are based on similar model assumptions and possibly overlapping input data and so sets the 

correlation between the two models in    , denoted     , appropriately before observing the simulated 

forecast samples. Further, the decision maker may believe similar overlap between models 2 and 3 and so 

set       appropriately. Table 1 shows the effect of varying values of      and       on the posterior mean 

  . The effects of values varying from 0 to 0.8 are not as large as seen in Figure 3. The posterior calcula-

tions in (14) shows that the posterior covariance matrix is the sum of the prior covariance matrix and the 

terms reflecting the dependence between the residuals of the simulated forecasts samples around the value 

of  . The posterior covariance matrix is then used in (13) to calculate the weights of each models average 

simulated forecast in the calculation of the posterior mean of  . Positive dependence between two models 

in     reduce their weight in (13) as the information each provides overlaps with the other. Simulations 1 

and 4 have higher forecasted values, so dependence between them allows the impact of simulations 2 and 

3 to increase and provides a lower posterior mean of  . Similarly, dependence between simulations 2 and 

3 allows the influence of simulations 1 and 4 to increase and provides a higher posterior mean of  . 
 

Table 1: The effect of prior assumptions of model dependence on the posterior mean. 
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0.4 0.8 14.179 

0.8 0 13.098 

0.8 0.4 13.542 

0.8 0.8 13.873 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

We have demonstrated that forecast aggregation approaches can be extended to handle forecasts in the 

form of samples from simulation models. This approach provides a different focus than previous simula-

tion model uncertainty literature, specifically focusing on the prediction of the quantity of interest to a de-

cision maker. Our method uses a multivariate normal distribution, based on the forecast aggregation 

method in Winkler (1981). This approach accounts for dependencies between the simulation outputs 

caused by common data sources or modeling assumptions. This dependence prevents over or underesti-

mation of the quantity of interest, but can also account for the use of common random numbers or other 

variance reduction techniques. We have demonstrated the approach using a climate change example, an 

area often informed by multiple simulation models. 
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