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ABSTRACT

Global optimization problems are relevant in many fields (e.g., control systems, operations research,
economics). There are many approaches to solving these problems. One particular approach is model-
based methods, which are a class of random search methods. A model-based method iteratively updates
its probability density function. At each step, additional weight is given to solution subspaces that are
more likely to yield an optimal objective value. Model-based methods can be analyzed by writing down a
corresponding system of differential equations similar to the well known Fokker-Planck equation, which
models the evolution of probability density functions for diffusions. We propose an innovative model-based
method, Cumulative Weighting Optimization (CWO), which can be proven to converge to an optimal
solution. Using this rigorous theoretical foundation, we design a CWO-based numerical algorithm for
solving global optimization problems. Interestingly, the well-known cross-entropy (CE) method is a special
case of this CWO-based algorithm.

1 INTRODUCTION

Many problems in engineering and science can be formulated as global optimization problems. These
problems are challenging when their objective functions are nonlinear (e.g., non-convex, multi-modal, or
badly scaled). If we are only interested in finding their local extrema and they are differentiable, then
the standard local optimization method (i.e., first derivative being zero) would suffice. If there are only a
few local extrema, then we can easily find a global optimal solution by evaluating all of them. However,
this approach does not work on objective functions with absence of structural information (e.g., non-
differentiable), or in the presence of many local extrema. Approaches developed to solve these problems
can be divided into two categories: deterministic and random search algorithms. Random search algorithms
can be further divided into instance-based (e.g., simulated annealing, genetic algorithm, tabu search, nested
partitions, generalized hill climbing, and evolutionary programming) and model-based algorithms (e.g.,
annealing-adaptive search, cross-entropy (CE), and estimation of distribution algorithms (EDAs)). For the
interested reader, Hu et al. (2012) have a recent survey paper on model-based methods, which also contains
references to instance-based methods mentioned in this paragraph.

We provide a new addition, inspired by Cumulative Prospect Theory (CPT), to the class of model-based
methods. The new CWO-based algorithms have an intuitive connection with the risk-sensitive nature of
the human decision making process.

In the rest of this paper, we will proceed in the following sequence. In Section 2, we present our
problem statement. In Section 3, we introduce probability weighting functions. In Section 4, we will work
with the case when the solution space is discrete (i.e., X = {1,2,3,4, . . .}) and provide the reader some
insight into the construction of our probability weight updating equation. Later in the same section, we
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will prove the convergence properties for the equation. Our convergence proof is a modified version of
the model-based evolutionary optimization by Wang et al. (2010) and Wang (2011), which are a recent
addition to model-based approaches. Finally, in Section 5, we will suggest a CWO-based algorithm and
present its simulation results. Other CWO-based algorithms will be explored in the future.

2 PROBLEM

In many engineering applications, we are looking for a “best” solution based on some criterion. For
example, in the well known traveling salesman problem (TSP), we are looking for the cheapest route
that visits all cities and terminates at the starting point. Problems of this nature can be formulated as the
following optimization problem:

x∗ ∈ argmax
x∈X

H(x), (1)

where x∗ is an optimal solution to the problem and X is the solution space (in many applications X ⊂Rn).
H : X →R, the objective function, is a bounded deterministic measurable function. In the rest of this
paper we assume the following:
Assumption 1 There exists a global optimal solution to Equation (1), i.e., ∃x∗ ∈X such that H(x) ≤
H(x∗) ∀x 6= x∗ ∀x ∈X .

This assumption is true for many optimization problems. For example, the assumption holds trivially
when X is a finite discrete solution space. We do not assume any other structural information about the
objective function (i.e., convexity, differentiability). The objective function may have many local extrema.

It is common in many situations to introduce a measurable strictly increasing fitness function, φ : R→
R+, and reformulate Equation (1) as:

x∗ ∈ argmax
x∈X

φ (H(x)) . (2)

Since the reformulated problem guarantees the range of the new fitness-objective function (i.e., φ (H (·)))
will always be non-negative, and it is equivalent to the original problem, we will solve Equation (2) in
place of Equation (1).

3 PROBABILITY WEIGHTING FUNCTIONS

Probability weighting functions have many applications in science and engineering. In this paper, we are
most concerned with using them to re-weight the probabilities of outcomes. Weighting is suggested by
Cumulative Prospect Theory (CPT) as an important part of the human decision making process. Prospect
Theory (PT), the predecessor to CPT, was suggested in the 1970s by Kahneman and Tversky (1979). They
were unsatisfied with PT and suggested its improved version, CPT, in the 1990s Tversky and Kahneman
(1992). CPT improves PT by re-weighting the outcome cumulative probability function instead of the
outcome probability density function. This elegant approach can also be useful for global optimization
problems. The purpose of this section is to familiarize the reader with probability weighting functions,
which will be used later for iteratively updating probability weights. We first introduce several definitions
to assist us in our discussion.

Definition 1 A weighting function, w : [0,1]→ [0,1], is a monotonically increasing and Lipschitz continuous
function with w(0) = 0 and w(1) = 1.

Definition 2 A weighting function, w : [0,1]→ [0,1], is optimal-seeking if

w(αx+(1−α)y)> αw(x)+(1−α)w(y), ∀α ∈ (0,1), x 6= y ∈ [0,1].

Optimal-seeking is called risk-seeking in fields that model risk-sensitivity.
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Assumption 2 w is an optimal-seeking weighting function.
Examples of weighting functions can be found in Diecidue et al. (2009). An optimal-seeking weighting

function tends to place more weight on highly unlikely, yet highly rewarding outcomes. In the sequel,
we apply the optimal-seeking weighting functions to good-news functions (i.e., complementary cumulative
distribution functions). It should be noted that the optimal-seeking re-weighted expected payoff is greater
than that of the risk-neutral. This will be an important feature in proving the convergence of the CWO
method.

4 DISCRETE SOLUTION SPACE

We want to find a solution for Equation (2) assuming that

X := {1,2,3,4, . . .} .

We further assume the discrete topology for X . We denote the set of optimal measures on (X ,B (X ))
by

P∗
X := {P ∈PX |P(X ∗) = 1} ,

where X ∗ is the set of all optimal solutions, i.e.,

X ∗ := {i∗ ∈X |H(i)≤ H(i∗) ∀i ∈X } ,

and PX is the set of all possible probability measures over B (X ). It should not surprise the reader that
if we can find an element of P∗

X , then we have found a solution to the global optimization problem stated
in Equation (2). We assume X ∗ has only a finite number of elements.

Assumption 3 The objective function, H : X →R, has a finite number of optimal solutions, i.e., the set

X ∗ := {i∗ ∈X |H(i)≤ H(i∗) ∀i ∈X }

has a finite number of elements.
Our objective is to restrict the temporal evolution of the probability measure such that it will eventually

concentrate its probability density at the optimal solutions. This evolution can be defined on a measurable
space, (X ×R+,B (X ×R+)), where X is the given solution space and R+ represents time. If the
evolution happens in discrete time or iteration steps, then R+ can be replaced by {0,1,2,3, . . .} . To solve
Equation (1), we want to find a probability measure P and a t∗ ∈R+ such that

P({(t, i)|i ∈X ∗}) = P({(t, i)|i ∈X }) , ∀t ≥ t∗.

In other words, P at some finite time t∗ is a member of P∗
X . We denote the resulting probability space by(

X ×R+,B
(
X ×R+

)
,P
)
.

At each time t, P induces a probability measure on the measurable space (X ,B (X )),

Pt (BX ) := P({(t, i)|i ∈ BX }) , ∀BX ∈B (X ) , (3)

resulting in a probability space (X ,B (X ) ,Pt). Conversely, if we knowPt at all times, then we can construct
a P that satisfies Equation (3). The coordinate random variable is denoted by X (i.e., X (i) = i, i ∈X ).
Similarly, the outcome random variable is denoted by Y, where Y = φ (H (X)) . We denote the set of all
possible outcomes from evaluating φ (H (·)) over X by

Y :=
{

y ∈R+|∃i ∈X s.t. y = φ (H (i))
}
.
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A sensible next step is to write down the dynamics of Pt with respect to time (i.e., Ṗt), and interestingly
we will be able to prove that

Et [φ (H (X))] :=
∫

X
φ (H (i))dPt :=

∫
Y

ydPφ(H(X))
t (4)

is a function strictly increasing in t. In the equation above, Pφ(H(X))
t is the probability measure of the

random variable φ (H (X)) induced by X . Of course, probability weighting functions from Section 3 play
a key role in the equations for Ṗt (We opted for the notation Pt instead of Pw

t for simplicity, but the reader
should be mindful of Pt’s dependence on w.). Using Equation (4) along with Lyapunov stability analysis,
we will conclude the convergence of Pt to an optimal solution (i.e., an element of P∗

X ).
The generalized solution probability vector equation has the form:

dxi (t)
dt

= βi (t)

(
w

(
∑

j:φ(H( j))≥φ(H(i))
x j (t)

)
−w

(
∑

j:φ(H( j))>φ(H(i))
x j (t)

))
(5)

· · ·− xi (t) ∀i ∈X

∑
φ(H(i))=y

β (i,y, t) = 1, ∀y ∈ Y ∀t ∈R+,

where xi : R+→ [0,1] is the probability measure assigned to an element i∈X , and βi (t) := β (i,φ (H (i)) , t)
is a distribution rule defined below. In Equation (5), which is a nonlinear Fokker-Plank equation (cf.
Kolokoltsov (2010), Frank (2005)), the difference between the first w distorted term and the second w
distorted term is the event φ (H ( j)) = φ (H (i)). Wang et al. (2010) have an alternative set of evolution
equations, also nonlinear Fokker-Plank equations, motivated by evolutionary game theory.

Definition 3 A distribution rule with respect to a given objective function, φ (H (·)), is a mapping β :
X ×Y ×R+→ [0,1] such that

∑
φ(H(i))=y

β (i,y, t)dx = 1 ∀y ∈ Y ∀t ∈R+.

Connecting this equation with the discussion at the beginning of this section, the reader should note
that

Pt (X = i) = xi(t) ∀i ∈X .

The generalized outcome probability vector equation has the form:

dyz (t)
dt

= w

(
∑

j: j≥z
y j (t)

)
−w

(
∑

j: j>z
y j (t)

)
− yz (t) ∀z ∈ Y .

We pay special attention to the best outcome equation:

dy∗ (t)
dt

= w

(
∑

j: j≥∗
y j (t)

)
− y∗ (t) ,

where ∗ := φ (H (i∗)) i∗ ∈X ∗.
In the rest of this section, we want to study the convergence properties of Equation (5). Furthermore,

we want to understand the stability properties, in the Lyapunov sense, of its limit points. The first step in
understanding Equation (5) is to understand the existence and uniqueness of its solutions. The outline of
our proof follows Oechssler and Riedel (2001) and Hofbauer et al. (2009).
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Theorem 4 For each x(0) ∈PX , the ordinary differential equation (5) has a unique solution for t ∈R+.
Here, β : X ×Y ×R+→ [0,1] is a distribution rule.

Proof. For the proof of this theorem, we are only using the fact that β is a bounded function. In the
future, β could depend on both i ∈X and x(t) ∈PX . We use the total variation norm, ‖·‖ , on a σ -finite
signed measure space over (X ,B (X )) :

‖x(t)‖= sup
A∈B(X )

∑
i∈A
|xi(t)| .

Since x(t) ∈PX is a probability measure ∀t, and |βi| ≤ 1 , we know the following inequalities hold:

supA∈B(X ) ∑i∈A
∣∣βi (t)

(
w
(
∑ j:φ(H( j))≥φ(H(i)) x j (t)

)
−w

(
∑ j:φ(H( j))>φ(H(i)) x j (t)

))
− xi (t)

∣∣
≤ supA∈B(X ) ∑i∈A

∣∣βi (t)
(
w
(
∑ j:φ(H( j))≥φ(H(i)) x j (t)

)
−w

(
∑ j:φ(H( j))>φ(H(i)) x j (t)

))∣∣
+supA∈B(X ) ∑i∈A |xi (t)| ≤ 2.

Hence, we conclude that the right hand side of Equation (5) is bounded by 2. Next, we need to prove that
the right hand side of Equation (5) is Lipschitz continuous.

supA∈B(X ) ∑i∈A

∣∣∣(βi (t)
(

w
(

∑ j:φ(H( j))≥φ(H(i)) x1
j (t)
)
−w

(
∑ j:φ(H( j))>φ(H(i)) x1

j (t)
))
− x1

i (t)
)

≤ supA∈B(X ) ∑i∈A

∣∣∣(w
(

∑ j:φ(H( j))≥φ(H(i)) x1
j (t)
)
−w

(
∑ j:φ(H( j))>φ(H(i)) x1

j (t)
))
− x1

i (t)

−
((

w
(

∑ j:φ(H( j))≥φ(H(i)) x2
j (t)
)
−w

(
∑ j:φ(H( j))>φ(H(i)) x2

j (t)
))
− x2

i (t)
)∣∣∣

≤ supA∈B(X ) ∑i∈A

∣∣∣w(∑ j:φ(H( j))≥φ(H(i)) x1
j (t)
)
−w

(
∑ j:φ(H( j))>φ(H(i)) x1

j (t)
)

−
(

w
(

∑ j:φ(H( j))≥φ(H(i)) x2
j (t)
)
−w

(
∑ j:φ(H( j))>φ(H(i)) x2

j (t)
))∣∣∣+ ∣∣x1

i (t)− x2
i (t)
∣∣

≤ K supA∈B(X ) ∑i∈A

∣∣∣∑ j:φ(H( j))=φ(H(i)) x1
j (t)−∑ j:φ(H( j))=φ(H(i)) x2

j (t)
∣∣∣

+supA∈B(X ) ∑i∈A
∣∣x1

i (t)− x2
i (t)
∣∣

≤ K supA∈B(X ) ∑i∈A

∣∣∣∑ j:φ(H( j))=φ(H(i)) x1
j (t)− x2

j (t)
∣∣∣+ supA∈B(X ) ∑i∈A

∣∣x1
i (t)− x2

i (t)
∣∣

≤ K
∥∥x1(t)− x2(t)

∥∥+∥∥x1(t)− x2(t)
∥∥≤ (K +1)

∥∥x1(t)− x2(t)
∥∥ .

Hence, the right hand side of Equation (5) is Lipschitz continuous in x with the constant K+1, where
K is the Lipschitz constant for w (see Definition 1). Using Corollary 3.9 of Zeidler (1989), we conclude
that Equation (5) with an initial measure x(0) ∈PX has a unique solution x(t) ∀t ∈R+.

The next Lemma is needed in Theorem 8, which shows Et [φ (H (X))] is monotonically increasing in t.

Lemma 5 Given an optimal-seeking weighting function, w, there exists a ζ̃ such that

∑
ζ∈Y

ζ

(
w

(
∑

j:Y≥ζ

y j (t)

)
−w

(
∑

j:Y>ζ

y j (t)

)
− yζ (t)

)
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can be decomposed into the sum of its non-negative and negative parts:

∑
ζ≥ζ̃

ζ

(
w

(
∑

j:Y≥ζ

y j (t)

)
−w

(
∑

j:Y>ζ

y j (t)

)
− yζ (t)

)
︸ ︷︷ ︸

non−negative

∑
ζ<ζ̃

ζ

(
w

(
∑

j:Y≥ζ

y j (t)

)
−w

(
∑

j:Y>ζ

y j (t)

)
− yζ (t)

)
︸ ︷︷ ︸

negative

.

Proof. Since w is a monotonically increasing function, it satisfies

w
(
∑ j:Y≥ζ y j (t)

)
−w

(
∑ j:Y>ζ y j (t)

)
yζ (t)

≥ 0.

Furthermore, since w is an optimal-seeking function we have

w
(
∑ j:Y≥ζ1 y j (t)

)
−w

(
∑ j:Y>ζ1 y j (t)

)
yζ1 (t)

>
w
(
∑ j:Y≥ζ2 y j (t)

)
−w

(
∑ j:Y>ζ2 y j (t)

)
yζ2 (t)

∀ζ1 ≥ ζ2 ∈ Y .

(6)

In addition, since w(0) = 0 and w(1) = 1, we know that

w
(
∑ j:Y≥ζ y j (t)

)
−w

(
∑ j:Y>ζ y j (t)

)
yζ (t)

> 1

for some ζ ∈Y . From Equation (6) we know if ζ2 satisfies the above inequality, then so does ζ1 ≥ ζ2 ∈Y .

Hence, we can conclude that ζ̃ is the smallest such ζ .

At the beginning of this section, we stated implicitly that if we can find an element of P∗
X , then

we have found a solution to the global optimization problem stated in Equation (2). The theorems below
present a blueprint, through the use of Equation (5), to obtain an element of P∗

X . In Theorem 4, an initial
point can be any element of PX . As we have discovered, PX is too large a set to initialize Equation (5)
to guarantee as t → ∞ the solution probability vector, x(t), will be an element of P∗

X . Hence, we need
to constrain our initial points to a smaller set.

Definition 4 We denote the set of all x(0) for which there exists an optimal solution, i∗ ∈X ∗, such that
xi∗(0)> 0 by O .

In other words, O contains all initial probability vectors with nonzero weights on at least one optimal
solution. The next theorem proves the total probability measure on the optimal solution set will converge to
1 as t→∞. On the other hand, the total probability measure on the non-optimal solution set will converge
to 0 as t→ ∞.

Theorem 6 If x(t) is a solution for Equation (5), then it satisfies the following with x(0) ∈O:
1) The total probability weight on the optimal solutions, ∑i∈X ∗ xi (t), is a monotonically increasing

function of t. In fact, it converges to 1 as t→ ∞;
2) The probability of any non-optimal solution, xi (t) : R+→ [0,1] i /∈X ∗, approaches zero as t→ ∞.
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Proof. We know that
∑

i∈X ∗
xi (t) = y∗ (t) ,

hence we only need to prove y∗ is a monotonically increasing function of t. By writing down the equation
for y∗:

dy∗ (t)
dt

= w

(
∑

j: j≥∗
y j (t)

)
− y∗ (t) ,

and knowing the optimal-seeking property of w

w

(
∑

j: j≥∗
y j (t)

)
> y∗ (t) ,

we conclude that
dy∗(t)

dt
> 0 ∀y∗(t) 6= 1, and

dy∗(t)
dt

= 0 when y∗(t) = 1.

Since x(0) ∈O implies y∗ (0)> 0 , the first claim is proved.
The second claim follows from the first claim. Since y∗ (∞) = 1, and x is a solution probability vector

(i.e., sum of the xis is 1), we can conclude the following:

lim
t→∞

∑
i∈X

xi (t) = lim
t→∞

∑
i∈X ∗

xi (t)+ ∑
i/∈X ∗

xi (t) = 1+ lim
t→∞

∑
i/∈X ∗

xi (t) = 1

=⇒ lim
t→∞

∑
i/∈X ∗

xi (t) = 0 =⇒ lim
t→∞

xi (t) = 0 ∀i /∈X ∗.

The conclusion follows.

We are interested in finding the limit points of Equation (5). Ideally, these limit points should be
elements in P∗

X . This is accomplished by picking the initial point set more carefully.

Definition 5 The limit set of Equation (5), with all distribution rules, starting from an element x(0) ∈I is

EI :=
{

x∞ ∈PX |x∞ = lim
t→∞

x(t) , x(0) ∈I
}
.

We characterize the limit set of Equation (5) when x(0) ∈O in the following theorem.

Theorem 7 The limit set of Equation (5) started in O is P∗
X , i.e.,

EO = P∗
X :=

{
x ∈PX | ∑

i∗∈X ∗
xi∗ = 1

}
.

Proof. To prove the first claim, we will first prove EO ⊃P∗
X , then we will prove EO ⊂P∗

X . The
first case, EO ⊃P∗

X , can be trivially proved by taking an element x ∈P∗
X , we notice that x ∈ O , and

by definition of EO (i.e., the limit set of Equation (5) staring from O), we conclude x ∈ EO .
Now we proceed to prove EO ⊂P∗

X . We prove by contradiction. Assume there is an element e ∈ EO ,
but not in P∗

X such that:

ėi (t) = βi (t)

(
w

(
∑

j:φ(H( j))≥φ(H(i))
e j (t)

)
−w

(
∑

j:φ(H( j))>φ(H(i))
e j (t)

))
− ei (t)

ei (0)≥ 0, ei(∞)> 0, i /∈X ∗.

This contradicts the second claim of Theorem 6, where ei (∞) = 0.
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The next theorem shows the monotonically increasing nature of Et [φ (H (X))], which will be useful
later in proving some stability properties for Equation (5).

Theorem 8 Let x(t) be a solution of the dynamics represented by Equation (5) with an initial point in
O . Then the following statements are true:

1) The expected outcome, i.e., Et [φ (H (X))] := ∑i∈X φ (H (i))xi (t), is monotonically increasing with
t;

2) If x(t) /∈ EO for any t ∈R+, then Et [φ (H (X))] is strictly increasing with t.

Proof. We start our proof by differentiating the average outcome function:

d
dt
Et [φ (H (X))] =

d
dt
Et [Y ]

= ∑
ζ≥ζ̃

ζ

(
w

(
∑

j:Y≥ζ

y j (t)

)
−w

(
∑

j:Y>ζ

y j (t)

)
− yζ (t)

)

+ ∑
ζ<ζ̃

ζ

(
w

(
∑

j:Y≥ζ

y j (t)

)
−w

(
∑

j:Y>ζ

y j (t)

)
− yζ (t)

)
(Lemma. 5)

≥ ζ̃

(
∑

ζ∈Y
w

(
∑

j:Y≥ζ

y j (t)

)
−w

(
∑

j:Y>ζ

y j (t)

)
− yζ (t)

)
= ζ̃ ×0 = 0.

Here, the last equality is true because

∑
ζ∈Y

w

(
∑

j:Y≥ζ

y j (t)

)
−w

(
∑

j:Y>ζ

y j (t)

)
= 1, and ∑

ζ∈Y
yζ (t)=1.

The ζ̃ variable is used to decompose the expected outcome function into non-negative and negative parts
(see Lemma 5). The first claim is proved.

The second claim is proved by contradiction. We assume that x(t) is not in the limit set, and

d
dt
Et [φ (H (X))] = 0.

Along with Theorem 6, the equality above implies that x(t), the density function at time t, has all its
probability mass on the optimal solutions. From Theorem 7, we know a limit point has its probability mass
on the optimal solutions. However, we assumed x(t) is not a limit point, hence we reach a contradiction.

We will now proceed to prove some stability properties concerning Equation (5), but first we need to
introduce our definitions of stability given a metric d.

Definition 6 Let L be a subset of PX . For a point x(t) ∈PX , we define the distance between x(t) and
L as

d (x(t),L ) := inf{d (x(t),q) , ∀q ∈L } .

L is called Lyapunov stable if for all ε > 0, there exists a δ > 0 such that

d (x(0) ,L )< δ ⇒ d (x(t) ,L )< ε, ∀t > 0.
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Lyapunov was also interested in other stronger types of stability.

Definition 7 Let L be a subset of PX . L is called asymptotically stable if L is Lyapunov stable, and
there exists a δ > 0 such that

d (x(0) ,L )< δ ⇒ d (x(t) ,L )→ 0

as t→ ∞.
The next theorem is the main result of this section. It states EO is compact and asymptotically stable.

Theorem 9 EO is a compact set and it is asymptotically stable.

Proof. We need to first prove that EO is a compact set. Since from our Theorem 7, we have EO = P∗
X

and can instead prove

P∗
X :=

{
x ∈PX | ∑

i∗∈X ∗
xi∗ = 1

}
is compact. It is easy to see that P∗

X is tight due to Assumption 3. Furthermore, we can prove it is a
closed set by contradiction. Assume there exists a sequence {xn} ∈P∗

X such that xn→ x̂ /∈P∗
X . This

implies ∃N such that ∀n > N we have ∑i∗∈X ∗ xn
i∗ < 1, and ∑i/∈X ∗ xn

i > 0, which contradicts the second
claim of Theorem 6. Hence, P∗

X = EO is a compact set. Consider the Lyapunov function

V (xt) = E [φ (H (X∗))]−Et [φ (H (X))] ,

where x∗ ∈P∗
O and X∗ is the corresponding random variable. Note that V (xt) is positive for all xt ∈

PX \P∗
X , and V (xt) = 0 for xt ∈P∗

X = EO . From Theorem 8 we have V̇ (xt) < 0 for all t > 0 and
xt /∈P∗

O . Furthermore, we know EO is a compact set. Applying a generalized version of Lyapunov’s
theorem (see Bhatia and Szegö (1970), Theorem 2.2), the desired conclusion is reached.

Chapter V of Bhatia and Szegö (1970) presented a generalized version of Lyapunov’s theorem on a
general metric space. In the proof of Theorem 9, we applied this generalized Lyapunov’s theorem on the
Banach Space of σ -finite signed measures over (X ,B (X )), where we used the total variation distance

d
(
x1,x2)= sup

A∈B(X )
∑
j∈A

∣∣x1
j(t)− x2

j (t)
∣∣ .

We have proven so far that if we start Equation (5) in O , then the possible limit points are elements of
EO =P∗

X . In other words, the limit points are the set of optimal solution probability vectors. Furthermore,
the set EO is asymptomatically stable.

5 NUMERICAL EXAMPLES: ASYMMETRIC TRAVELING SALESMAN PROBLEMS (ATSP)

We modify the model-based algorithm found in Hu et al. (2007) by changing how the density is propagated.
The modified algorithm (see Algorithm 1) is applied to an asymmetric traveling salesman problem taken
from the website http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95. When step 5 of
Algorithm 1, the weight-update stage, is applied assuming uniform sample weight and the weighting
function

w(p) :=
10pσ + ln(1+ e−σ )− ln

(
1+ e(−1+10p)σ

)
10θ + ln(1+ e−ρ)− ln(1+ e9σ )

, (7)
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where σ is the optimal-seeking factor and ρ is the quantile threshold, the resulting algorithm is named
CWO U. Algorithm 1 will converge under Equation (5) using any optimal-seeking w. The choice of
Equation (7) as the weighting function w is due to its connection to CE, which is explained below.

Algorithm 1: Generic CWO Algorithm
1. Initialization: Select a number N0 as the total initial number of candidate solutions generated at
each iteration and an initial gθ0 (a parameterized probability density distribution) defined on X.
Pick an initial quantile ρ0 ∈ (0,1), ε ≥ 0, α > 0, λ ∈ (0,1);
2. Generation: Generate Nk i.i.d candidate solutions {xi

k}N
i=1 from

g̃θk = (1−λ )((1−β )gθk−1 +βgθk)+λU,

where U is the uniform distribution;
3. Quantile-Update: Calculate the (1−ρk)-quantile, γ̃k+1 (ρk,Nk) := φ (H)(d(1−ρk)Nke), where dae
is the smallest integer greater than a and H(i) is the i-th highest value for the sequence{

φ
(
H
(
xi

k

))}Nk

i=1;
4. Parameter-Update:
if k=0 or γ̃k+1 (ρk,Nk)≥ γ̄k +

ε

2 , then
Set γ̄k+1 = γ̃k+1 (ρk,Nk) , ρk+1 = ρk, Nk+1 = Nk;

else
Find the largest ρ̄ ∈ (0,ρk) such that γ̃k+1 (ρ̄,Nk)≥ γ̄k +

ε

2 ;
if such a ρ̄ exists and ρ̄ > ρmin, then

γ̄k+1 = γ̃k+1 (ρ̄,Nk) , ρk+1 = ρ̄, Nk+1 = Nk;
else

γ̄k+1 = γ̄k, ρk+1 = ρk, Nk+1 = dαNke;

5. Weight-Update: Update the weights of the generated samples {xi
k}N

i=1 according to weight
updating methods based on Equation (5), producing the p.m.f pX ,k+1 = ∑

N
i=1 wi

k+1δ (x− xi
k), where

wi
k+1 is the updated weight for xi

k;
6. Density Projection: Construct gθk+1 by projecting the density pX ,k+1 = ∑

N
i=1 wi

k+1δ (x− xi
k) onto

gθ by solving the equation:

θk+1 = argmax
θ∈Θ

N

∑
i=1

wi
k+1 lngθ

(
xi

k
)

;

7. Stop: if some stopping criterion is satisfied; otherwise go to step 2 and k = k+1.

We remind the reader that the density update equation for cross entropy is

pCE
X ,k+1 (x) =

1{φ (H (s))> γ}
l

pCE
X ,k (x)

∝ 1{φ (H (s))> γ}pCE
X ,k (x) ,

(8)

where an indicator function is used to select the elite samples. In fact, the cross-entropy equation is just
the limiting case, as σ →∞ in Equation (7), of the CWO U algorithm. For each iteration, we increase the
value of σ proportional to the iteration count (i.e., σ = ∆k). As we increase the optimal-seeking factor, the
derivative of Equation (7) will approach a step function (i.e., Equation (8)) with its discontinuity occurring
at ρ = 0.1.
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We will compare the performance of our CWO U algorithm against that of the CE algorithm. In the
following numerical examples, we fixed ∆ to be 0.01. Table 1 contains the results from running 20 trials
of CWO U and CE algorithms with the parameters ρ0 = 0.1, ρmin = 0.001, N0 = 1000, ε = 0, α = 1,
λ = 0.01, and β = 0.7.

Table 1: CWO U and CE performance results.

ATSP Ncities NTotal (Std. err.) Hbest H∗ H∗ δ∗ δ ∗ δ (Std. err.)

ft53 53 90,450(6.0e3) 6,905 7,679 7,037 0.112 0.0191 0.060(0.0244)

ce ft53 53 65,100(5.7e3) 6,905 7,676 7,088 0.111 0.0265 0.075(0.0276)

6 CONCLUSION

In the first part of this paper, we proved the convergence of CWO-based algorithms. The proofs provide
a rigorous mathematical foundation for the CWO U algorithm we proposed in the numerical examples
section. Interestingly, the standard cross-entropy (CE) approach is just a limiting case of the CWO U
algorithm. Comparing the numerical results of CWO U with those of CE, we believe our algorithm is
better at obtaining an optimal solution. Of course, the improvement in performance is at the expense of
increasing computational costs.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation (NSF) under Grants CNS-0926194,
CMMI-0856256, CMMI-0900332, and EECS-0901543, and by the Air Force Office of Scientific Research
(AFOSR) under Grant FA9550-10-1-0340.

REFERENCES
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